1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
|
(** Basic tests for atctics that don't import anything else
(and hence can be run even when nothing else even builds. *)
From Coq Require Import String.
From stdpp Require Import tactics.
Local Unset Mangle Names. (* for stable goal printing *)
Local Open Scope string_scope.
Goal ∀ P1 P2 P3 P4 (P: Prop),
P1 ∨ (Is_true (P2 || P3)) ∨ P4 →
(P1 → P) →
(P2 → P) →
(P3 → P) →
(P4 → P) →
P.
Proof.
intros * HH X1 X2 X3 X4.
destruct_or? HH; [ exact (X1 HH) | exact (X2 HH) | exact (X3 HH) | exact (X4 HH) ].
Qed.
Goal ∀ P1 P2 P3 P4 (P: Prop),
P1 ∨ P2 →
P3 ∨ P4 →
(P1 → P3 → P) →
(P1 → P4 → P) →
(P2 → P3 → P) →
(P2 → P4 → P) →
P.
Proof.
intros * HH1 HH2 X1 X2 X3 X4.
destruct_or?; [ exact (X1 HH1 HH2) | exact (X3 HH1 HH2) | exact (X2 HH1 HH2) | exact (X4 HH1 HH2) ].
Qed.
Goal ∀ P1 P2 P3 P4 (P: Prop),
id (P1 ∨ P2) →
id (P3 ∨ P4) →
(P1 → P3 → P) →
(P1 → P4 → P) →
(P2 → P3 → P) →
(P2 → P4 → P) →
P.
Proof.
intros * HH1 HH2 X1 X2 X3 X4.
Fail progress destruct_or?.
Fail progress destruct_or!.
destruct_or! HH1; destruct_or! HH2;
[ exact (X1 HH1 HH2) | exact (X2 HH1 HH2) | exact (X3 HH1 HH2) | exact (X4 HH1 HH2) ].
Qed.
Goal ∀ P1 P2 P3 P4,
P1 ∧ (Is_true (P2 && P3)) ∧ P4 →
P1 ∧ P2 ∧ P3.
Proof.
intros * HH. split_and!; [ destruct_and? HH; assumption | destruct_and?; assumption | ].
destruct_and?. Fail destruct_and!. assumption.
Qed.
(** Tests for [case_match] *)
Goal ∀ n : nat, match n with | 0 => n = 0 | S n' => n = S n' end.
Proof.
intros. by case_match.
Restart. Proof.
intros. by case_match eqn:Heq; revert Heq. (* [revert Heq] checks that [Heq] exists *)
Qed.
Goal ∀ n m : nat, match n with | 0 => m = 0 | S n' => m = S n' end → n = m.
Proof.
intros. by case_match.
Restart. Proof.
intros. by case_match eqn:Heq; revert Heq. (* [revert Heq] checks that [Heq] exists *)
Qed.
(** Tests for [select] tactics *)
Goal ∀ (n : nat), ∃ m : nat, True.
Proof. intros ?. rename select nat into m. exists m. done. Qed.
Goal ∀ (P : nat → Prop), P 3 → P 4 → P 4.
Proof. intros P **. rename select (P _) into HP4. apply HP4. Qed.
Goal ∀ P Q : Prop, True ∨ True → P ∨ Q → Q ∨ P.
Proof.
intros P Q ??.
(* should select the last hypothesis *)
destruct select (_ ∨ _); by constructor.
Restart. Proof.
intros P Q ??.
(* should select the last hypothesis *)
destruct select (_ ∨ _) as [H1|H2].
- right. exact H1.
- left. exact H2.
Restart. Proof.
intros P Q ??.
(* should select the last hypothesis *)
inv select (_ ∨ _); by constructor.
Restart. Proof.
intros P Q ??.
(* should select the last hypothesis *)
inv select (_ ∨ _) as [H1|H2].
- right. exact H1.
- left. exact H2.
Restart. Proof.
intros P Q ??.
(* should select the last hypothesis *)
inversion select (_ ∨ _); by constructor.
Restart. Proof.
intros P Q ??.
(* should select the last hypothesis *)
inversion select (_ ∨ _) as [H1|H2].
- right. exact H1.
- left. exact H2.
Qed.
(** [mk_evar] works on things that coerce to types. *)
(** This is a feature when we have packed structures, for example Iris's [ofe]
(fields other than the carrier omitted). *)
Structure ofe := Ofe { ofe_car :> Type }.
Goal ∀ A : ofe, True.
intros A.
let x := mk_evar A in idtac.
Abort.
(** More surprisingly, it also works for other coercions into a
universe, like [Is_true : bool → Prop]. *)
Goal True.
let x := mk_evar true in idtac.
Abort.
(** get_head tests. *)
Lemma test_get_head (f : nat → nat → nat → nat) : True.
Proof.
let f' := get_head (f 0 1 2) in unify f f'.
let f' := get_head f in unify f f'.
Abort.
(** inv tests *)
Inductive even : nat → Prop :=
| Even0 : even 0
| Even2 n : even n → even (S (S n)).
Lemma inv_test_1 n : even (2 + n) → even n.
Proof. intros H. inv H as [|? H']. Show. done. Qed.
Lemma inv_test_2 (a b c d : nat) : a ≠ c → (a, b) = (c, d) → False.
Proof.
(* Test taken from https://github.com/coq/coq/issues/2465 *)
intros DIFF EQ. inv EQ. (* Thanks to the simplify_eq this solves the goal. *)
Qed.
Check "inv_test_num".
Lemma inv_test_num n : True → even (2 + n) → even n.
Proof.
(* Make sure we do the same thing as [inversion_clear] when there are
other hypotheses before the one we invert. *)
inversion_clear 2 as [|? H']. Show.
Restart. Proof.
inv 2 as [|? H']. Show. done.
Qed.
(** o-tactic tests *)
Check "otest".
Lemma otest (P Q R : nat → Prop)
(HPQR1 : ∀ m n, P n → Q m → R (n + m))
(HPQR2 : ∀ m n, P n → Q m → R (n + m) ∧ R 2)
(HP0 : P 0)
(HP1 : P 1)
(HQ : Q 5) : R 6.
Proof.
(** Imagine we couldn't [apply] since the goal is still very different, we
need forward reasoning. Also we don't have proof terms for [P n] and [Q m] but
a short proof script can solve them. [n] needs to be specified, but [m] is
huge and we don't want to specify it. What do we do? The "o" family of tactics
for working with "o"pen terms helps. *)
opose proof (HPQR1 _ (S _) _ _) as HR; [exact HP1|exact HQ|]. exact HR.
Restart. Proof.
(** We can have fewer [_]. *)
opose proof (HPQR1 _ (S _) _) as HR; [exact HP1|]. exact (HR HQ).
Restart. Proof.
(** And even fewer. *)
opose proof (HPQR1 _ (S _)) as HR. exact (HR HP1 HQ).
Restart. Proof.
(** The [*] variant automatically adds [_]. *)
opose proof* (HPQR1 _ (S _)) as HR; [exact HP1|exact HQ|]. exact HR.
Restart. Proof.
(** Same deal for [generalize]. *)
ogeneralize (HPQR1 _ 1). intros HR. exact (HR HP1 HQ).
Restart. Proof.
ogeneralize (HPQR1 _ 1 _); [exact HP1|]. intros HR. exact (HR HQ).
Restart. Proof.
ogeneralize* (HPQR1 _ 1); [exact HP1|exact HQ|]. intros HR. exact HR.
Restart. Proof.
(** [odestruct] also automatically adds subgoals until there is something
to destruct, as usual. Note that [edestruct] wouldn't help here,
it just complains that it cannot infer the placeholder. *)
Fail edestruct (HPQR2 _ 1).
odestruct (HPQR2 _ 1) as [HR1 HR2]; [exact HP1|exact HQ|]. exact HR1.
Restart. Proof.
(** [ospecialize] is like [opose proof] but it reuses the name.
It only works on local assumptions. *)
Fail ospecialize (plus 0 0).
ospecialize (HPQR1 _ 1 _); [exact HP1|]. exact (HPQR1 HQ).
Restart. Proof.
ospecialize (HPQR1 _ 1). exact (HPQR1 HP1 HQ).
Restart. Proof.
ospecialize* (HPQR1 _ 1); [exact HP1|exact HQ|]. exact HPQR1.
Qed.
(** Make sure [∀] also get auto-instantiated by the [*] variant. *)
Lemma o_tactic_with_forall (P Q R : nat → Prop) :
P 1 → Q 1 → (∀ n, P n → Q n → R n) → R 1.
Proof.
intros HP HQ HR.
ospecialize* HR; [exact HP|exact HQ|exact HR].
Restart. Proof.
intros HP HQ HR.
opose proof* HR as HR'; [exact HP|exact HQ|exact HR'].
Qed.
(* Like [inversion], this does *not* clear. *)
Check "oinversion_test1".
Lemma oinversion_test1 n : even (2 + n) → even n.
Proof. intros H. oinversion H as [|n' Hn' EQ]. Show. done. Qed.
Lemma oinv_test1 : ~(∀ n, even n).
Proof. intros H. oinv (H 1). Qed.
(* Ensure we clear the [H] if appropriate. *)
Check "oinv_test2".
Lemma oinv_test2 n : even (2 + n) → even n.
Proof.
intros H. oinv H as [|? H']. Show. done.
Restart. Proof.
oinv 1 as [|? H']. Show. done.
Qed.
Lemma oinv_test_num (P : Prop) n :
P → (P → even (2 + n)) → even n.
Proof.
intros HP. oinv 1.
{ exact HP. }
done.
Qed.
(** Some tests for f_equiv. *)
(* Similar to [f_equal], it should solve goals by [reflexivity]. *)
Lemma test_f_equiv_refl {A} (R : relation A) `{!Equivalence R} x :
R x x.
Proof. f_equiv. Qed.
(* And immediately solve sub-goals by reflexivity *)
Lemma test_f_equiv_refl_nested {A} (R : relation A) `{!Equivalence R} g x y z :
Proper (R ==> R ==> R) g →
R y z →
R (g x y) (g x z).
Proof. intros ? Hyz. f_equiv. apply Hyz. Qed.
(* Ensure we can handle [flip]. *)
Lemma f_equiv_flip {A} (R : relation A) `{!PreOrder R} (f : A → A) :
Proper (R ==> R) f → Proper (flip R ==> flip R) f.
Proof. intros ? ?? EQ. f_equiv. exact EQ. Qed.
Section f_equiv.
Context `{!Equiv A, !Equiv B, !SubsetEq A}.
Lemma f_equiv1 (fn : A → B) (x1 x2 : A) :
Proper ((≡) ==> (≡)) fn →
x1 ≡ x2 →
fn x1 ≡ fn x2.
Proof. intros. f_equiv. assumption. Qed.
Lemma f_equiv2 (fn : A → B) (x1 x2 : A) :
Proper ((⊆) ==> (≡)) fn →
x1 ⊆ x2 →
fn x1 ≡ fn x2.
Proof. intros. f_equiv. assumption. Qed.
(* Ensure that we prefer the ≡. *)
Lemma f_equiv3 (fn : A → B) (x1 x2 : A) :
Proper ((≡) ==> (≡)) fn →
Proper ((⊆) ==> (≡)) fn →
x1 ≡ x2 →
fn x1 ≡ fn x2.
Proof.
(* The Coq tactic prefers the ⊆. *)
intros. Morphisms.f_equiv. Fail assumption.
Restart. Proof.
intros. f_equiv. assumption.
Qed.
End f_equiv.
(** Some tests for solve_proper (also testing f_equiv indirectly). *)
(** Test case for #161 *)
Lemma test_solve_proper_const {A} (R : relation A) `{!Equivalence R} x :
Proper (R ==> R) (λ _, x).
Proof. solve_proper. Qed.
Lemma solve_proper_flip {A} (R : relation A) `{!PreOrder R} (f : A → A) :
Proper (R ==> R) f → Proper (flip R ==> flip R) f.
Proof. solve_proper. Qed.
(* Test that [solve_proper_finish] uses [eassumption].
Think of [R] being Iris's [dist]. *)
Lemma solve_proper_finish_evar {A} (R : nat → relation A) (x y : A) :
R 0 x y → ∃ n, R n x y.
Proof. intros. eexists. solve_proper. Qed.
(** This is a more realistic version of the previous test, showing how such
goals can arise for real. Needs to involve a subrelation so that the
[eassumption] in [solve_proper_finish] doesn't already do the whole job, i.e.,
we need the right mode for [SolveProperSubrelation]. *)
Lemma solve_proper_finish_evar' {A} (R1 R2 : nat → relation A) (f : A → nat) :
(∀ n, subrelation (R2 n) (R1 n)) →
(∀ n, Proper (R1 n ==> eq) f) →
∀ n, Proper (R2 n ==> eq) (λ x, S (f x)).
Proof.
intros Hsub Hf. solve_proper_core ltac:(fun _ => eapply Hf || f_equiv).
Qed.
Definition option_rel {A} (R : relation A) (mx my : option A) :=
match mx, my with
| Some x, Some y => R x y
| None, None => True
| _, _ => False
end.
Arguments option_rel : simpl never.
Lemma solve_proper_convertible {A} (R : relation A) (x y : A) :
R x y → (option_rel R) (Some x) (Some y).
Proof.
(* This needs [solve_proper] to use an assumption that doesn't syntactically
seem to be about the same variables, but actually up to conversion it exactly
matches the goal. *)
intros R'. solve_proper.
Qed.
Section tests.
Context {A B : Type} `{!Equiv A, !Equiv B}.
Context (foo : A → A) (bar : A → B) (baz : B → A → A).
Context `{!Proper ((≡) ==> (≡)) foo,
!Proper ((≡) ==> (≡)) bar,
!Proper ((≡) ==> (≡) ==> (≡)) baz}.
Definition test1 (x : A) := baz (bar (foo x)) x.
Goal Proper ((≡) ==> (≡)) test1.
Proof. solve_proper. Qed.
Definition test2 (b : bool) (x : A) :=
if b then bar (foo x) else bar x.
Goal ∀ b, Proper ((≡) ==> (≡)) (test2 b).
Proof. solve_proper. Qed.
Definition test3 (f : nat → A) :=
baz (bar (f 0)) (f 2).
Goal Proper (pointwise_relation nat (≡) ==> (≡)) test3.
Proof. solve_proper. Qed.
(* We mirror [discrete_fun] from Iris to have an equivalence on a function
space. *)
Definition discrete_fun {A} (B : A → Type) `{!∀ x, Equiv (B x)} := ∀ x : A, B x.
Local Instance discrete_fun_equiv {A} {B : A → Type} `{!∀ x, Equiv (B x)} :
Equiv (discrete_fun B) :=
λ f g, ∀ x, f x ≡ g x.
Notation "A -d> B" :=
(@discrete_fun A (λ _, B) _) (at level 99, B at level 200, right associativity).
Definition test4 x (f : A -d> A) := f x.
Goal ∀ x, Proper ((≡) ==> (≡)) (test4 x).
Proof. solve_proper. Qed.
Lemma test_subrelation1 (P Q : Prop) :
Proper ((↔) ==> impl) id.
Proof. solve_proper. Qed.
End tests.
(** The following tests are inspired by Iris's [ofe] structure (here, simplified
to just a type an arbitrary relation), and the discrete function space [A -d> B]
on a Type [A] and OFE [B]. The tests occur when proving [Proper]s for
higher-order functions, which typically occurs while defining functions using
Iris's [fixpoint] operator. *)
Record setoid :=
Setoid { setoid_car :> Type; setoid_equiv : relation setoid_car }.
Arguments setoid_equiv {_} _ _.
Definition myfun (A : Type) (B : setoid) := A → B.
Definition myfun_equiv {A B} : relation (myfun A B) :=
pointwise_relation _ setoid_equiv.
Definition myfunS (A : Type) (B : setoid) := Setoid (myfun A B) myfun_equiv.
Section setoid_tests.
Context {A : setoid} (f : A → A) (h : A → A → A).
Context `{!Proper (setoid_equiv ==> setoid_equiv) f,
!Proper (setoid_equiv ==> setoid_equiv ==> setoid_equiv) h}.
Definition setoid_test1 (rec : myfunS nat A) : myfunS nat A :=
λ n, h (f (rec n)) (rec n).
Goal Proper (setoid_equiv ==> setoid_equiv) setoid_test1.
Proof. solve_proper. Qed.
Definition setoid_test2 (rec : myfunS nat (myfunS nat A)) : myfunS nat A :=
λ n, h (f (rec n n)) (rec n n).
Goal Proper (setoid_equiv ==> setoid_equiv) setoid_test2.
Proof. solve_proper. Qed.
Definition setoid_test3 (rec : myfunS nat A) : myfunS nat (myfunS nat A) :=
λ n m, h (f (rec n)) (rec m).
Goal Proper (setoid_equiv ==> setoid_equiv) setoid_test3.
Proof. solve_proper. Qed.
End setoid_tests.
(** Regression tests for [naive_solver].
Requires a bunch of other tactics to work so it comes last in this file. *)
Lemma naive_solver_issue_115 (P : nat → Prop) (x : nat) :
(∀ x', P x' → x' = 10) → P x → x + 1 = 11.
Proof. naive_solver. Qed.
|