1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
|
From Coq Require Export Permutation.
From stdpp Require Export numbers base option list_basics list_relations list_monad.
From stdpp Require Import options.
(** The function [list_find P l] returns the first index [i] whose element
satisfies the predicate [P]. *)
Definition list_find {A} P `{∀ x, Decision (P x)} : list A → option (nat * A) :=
fix go l :=
match l with
| [] => None
| x :: l => if decide (P x) then Some (0,x) else prod_map S id <$> go l
end.
Global Instance: Params (@list_find) 3 := {}.
(** The function [resize n y l] takes the first [n] elements of [l] in case
[length l ≤ n], and otherwise appends elements with value [x] to [l] to obtain
a list of length [n]. *)
Fixpoint resize {A} (n : nat) (y : A) (l : list A) : list A :=
match l with
| [] => replicate n y
| x :: l => match n with 0 => [] | S n => x :: resize n y l end
end.
Global Arguments resize {_} !_ _ !_ : assert.
Global Instance: Params (@resize) 2 := {}.
(** The function [rotate n l] rotates the list [l] by [n], e.g., [rotate 1
[x0; x1; ...; xm]] becomes [x1; ...; xm; x0]. Rotating by a multiple of
[length l] is the identity function. **)
Definition rotate {A} (n : nat) (l : list A) : list A :=
drop (n `mod` length l) l ++ take (n `mod` length l) l.
Global Instance: Params (@rotate) 2 := {}.
(** The function [rotate_take s e l] returns the range between the
indices [s] (inclusive) and [e] (exclusive) of [l]. If [e ≤ s], all
elements after [s] and before [e] are returned. *)
Definition rotate_take {A} (s e : nat) (l : list A) : list A :=
take (rotate_nat_sub s e (length l)) (rotate s l).
Global Instance: Params (@rotate_take) 3 := {}.
(** The function [reshape k l] transforms [l] into a list of lists whose sizes
are specified by [k]. In case [l] is too short, the resulting list will be
padded with empty lists. In case [l] is too long, it will be truncated. *)
Fixpoint reshape {A} (szs : list nat) (l : list A) : list (list A) :=
match szs with
| [] => [] | sz :: szs => take sz l :: reshape szs (drop sz l)
end.
Global Instance: Params (@reshape) 2 := {}.
Definition sublist_lookup {A} (i n : nat) (l : list A) : option (list A) :=
guard (i + n ≤ length l);; Some (take n (drop i l)).
Definition sublist_alter {A} (f : list A → list A)
(i n : nat) (l : list A) : list A :=
take i l ++ f (take n (drop i l)) ++ drop (i + n) l.
(** The function [mask f βs l] applies the function [f] to elements in [l] at
positions that are [true] in [βs]. *)
Fixpoint mask {A} (f : A → A) (βs : list bool) (l : list A) : list A :=
match βs, l with
| β :: βs, x :: l => (if β then f x else x) :: mask f βs l
| _, _ => l
end.
(** These next functions allow to efficiently encode lists of positives (bit
strings) into a single positive and go in the other direction as well. This is
for example used for the countable instance of lists and in namespaces.
The main functions are [positives_flatten] and [positives_unflatten]. *)
Fixpoint positives_flatten_go (xs : list positive) (acc : positive) : positive :=
match xs with
| [] => acc
| x :: xs => positives_flatten_go xs (acc~1~0 ++ Pos.reverse (Pos.dup x))
end.
(** Flatten a list of positives into a single positive by duplicating the bits
of each element, so that:
- [0 -> 00]
- [1 -> 11]
and then separating each element with [10]. *)
Definition positives_flatten (xs : list positive) : positive :=
positives_flatten_go xs 1.
Fixpoint positives_unflatten_go
(p : positive)
(acc_xs : list positive)
(acc_elm : positive)
: option (list positive) :=
match p with
| 1 => Some acc_xs
| p'~0~0 => positives_unflatten_go p' acc_xs (acc_elm~0)
| p'~1~1 => positives_unflatten_go p' acc_xs (acc_elm~1)
| p'~1~0 => positives_unflatten_go p' (acc_elm :: acc_xs) 1
| _ => None
end%positive.
(** Unflatten a positive into a list of positives, assuming the encoding
used by [positives_flatten]. *)
Definition positives_unflatten (p : positive) : option (list positive) :=
positives_unflatten_go p [] 1.
Section general_properties.
Context {A : Type}.
Implicit Types x y z : A.
Implicit Types l k : list A.
(** * Properties of the [find] function *)
Section find.
Context (P : A → Prop) `{!∀ x, Decision (P x)}.
Lemma list_find_Some l i x :
list_find P l = Some (i,x) ↔
l !! i = Some x ∧ P x ∧ ∀ j y, l !! j = Some y → j < i → ¬P y.
Proof.
revert i. induction l as [|y l IH]; intros i; csimpl; [naive_solver|].
case_decide.
- split; [naive_solver lia|]. intros (Hi&HP&Hlt).
destruct i as [|i]; simplify_eq/=; [done|].
destruct (Hlt 0 y); naive_solver lia.
- split.
+ intros ([i' x']&Hl&?)%fmap_Some; simplify_eq/=.
apply IH in Hl as (?&?&Hlt). split_and!; [done..|].
intros [|j] ?; naive_solver lia.
+ intros (?&?&Hlt). destruct i as [|i]; simplify_eq/=; [done|].
rewrite (proj2 (IH i)); [done|]. split_and!; [done..|].
intros j z ???. destruct (Hlt (S j) z); naive_solver lia.
Qed.
Lemma list_find_elem_of l x : x ∈ l → P x → is_Some (list_find P l).
Proof.
induction 1 as [|x y l ? IH]; intros; simplify_option_eq; eauto.
by destruct IH as [[i x'] ->]; [|exists (S i, x')].
Qed.
Lemma list_find_None l :
list_find P l = None ↔ Forall (λ x, ¬P x) l.
Proof.
rewrite eq_None_not_Some, Forall_forall. split.
- intros Hl x Hx HP. destruct Hl. eauto using list_find_elem_of.
- intros HP [[i x] (?%elem_of_list_lookup_2&?&?)%list_find_Some]; naive_solver.
Qed.
Lemma list_find_app_None l1 l2 :
list_find P (l1 ++ l2) = None ↔ list_find P l1 = None ∧ list_find P l2 = None.
Proof. by rewrite !list_find_None, Forall_app. Qed.
Lemma list_find_app_Some l1 l2 i x :
list_find P (l1 ++ l2) = Some (i,x) ↔
list_find P l1 = Some (i,x) ∨
length l1 ≤ i ∧ list_find P l1 = None ∧ list_find P l2 = Some (i - length l1,x).
Proof.
split.
- intros ([?|[??]]%lookup_app_Some&?&Hleast)%list_find_Some.
+ left. apply list_find_Some; eauto using lookup_app_l_Some.
+ right. split; [lia|]. split.
{ apply list_find_None, Forall_lookup. intros j z ??.
assert (j < length l1) by eauto using lookup_lt_Some.
naive_solver eauto using lookup_app_l_Some with lia. }
apply list_find_Some. split_and!; [done..|].
intros j z ??. eapply (Hleast (length l1 + j)); [|lia].
by rewrite lookup_app_r, Nat.add_sub' by lia.
- intros [(?&?&Hleast)%list_find_Some|(?&Hl1&(?&?&Hleast)%list_find_Some)].
+ apply list_find_Some. split_and!; [by auto using lookup_app_l_Some..|].
assert (i < length l1) by eauto using lookup_lt_Some.
intros j y ?%lookup_app_Some; naive_solver eauto with lia.
+ rewrite list_find_Some, lookup_app_Some. split_and!; [by auto..|].
intros j y [?|?]%lookup_app_Some ?; [|naive_solver auto with lia].
by eapply (Forall_lookup_1 (not ∘ P) l1); [by apply list_find_None|..].
Qed.
Lemma list_find_app_l l1 l2 i x:
list_find P l1 = Some (i, x) → list_find P (l1 ++ l2) = Some (i, x).
Proof. rewrite list_find_app_Some. auto. Qed.
Lemma list_find_app_r l1 l2:
list_find P l1 = None →
list_find P (l1 ++ l2) = prod_map (λ n, n + length l1) id <$> list_find P l2.
Proof.
intros. apply option_eq; intros [j y]. rewrite list_find_app_Some. split.
- intros [?|(?&?&->)]; naive_solver auto with f_equal lia.
- intros ([??]&->&?)%fmap_Some; naive_solver auto with f_equal lia.
Qed.
Lemma list_find_insert_Some l i j x y :
list_find P (<[i:=x]> l) = Some (j,y) ↔
(j < i ∧ list_find P l = Some (j,y)) ∨
(i = j ∧ x = y ∧ j < length l ∧ P x ∧ ∀ i' z, l !! i' = Some z → i' < i → ¬P z) ∨
(i < j ∧ ¬P x ∧ list_find P l = Some (j,y) ∧ ∀ z, l !! i = Some z → ¬P z) ∨
(∃ z, i < j ∧ ¬P x ∧ P y ∧ P z ∧ l !! i = Some z ∧ l !! j = Some y ∧
∀ i' z, l !! i' = Some z → i' ≠ i → i' < j → ¬P z).
Proof.
split.
- intros ([(->&->&?)|[??]]%list_lookup_insert_Some&?&Hleast)%list_find_Some.
{ right; left. split_and!; [done..|]. intros k z ??.
apply (Hleast k); [|lia]. by rewrite list_lookup_insert_ne by lia. }
assert (j < i ∨ i < j) as [?|?] by lia.
{ left. rewrite list_find_Some. split_and!; [by auto..|]. intros k z ??.
apply (Hleast k); [|lia]. by rewrite list_lookup_insert_ne by lia. }
right; right. assert (j < length l) by eauto using lookup_lt_Some.
destruct (lookup_lt_is_Some_2 l i) as [z ?]; [lia|].
destruct (decide (P z)).
{ right. exists z. split_and!; [done| |done..|].
+ apply (Hleast i); [|done]. by rewrite list_lookup_insert by lia.
+ intros k z' ???.
apply (Hleast k); [|lia]. by rewrite list_lookup_insert_ne by lia. }
left. split_and!; [done|..|naive_solver].
+ apply (Hleast i); [|done]. by rewrite list_lookup_insert by lia.
+ apply list_find_Some. split_and!; [by auto..|]. intros k z' ??.
destruct (decide (k = i)) as [->|]; [naive_solver|].
apply (Hleast k); [|lia]. by rewrite list_lookup_insert_ne by lia.
- intros [[? Hl]|[(->&->&?&?&Hleast)|[(?&?&Hl&Hnot)|(z&?&?&?&?&?&?&?Hleast)]]];
apply list_find_Some.
+ apply list_find_Some in Hl as (?&?&Hleast).
rewrite list_lookup_insert_ne by lia. split_and!; [done..|].
intros k z [(->&->&?)|[??]]%list_lookup_insert_Some; eauto with lia.
+ rewrite list_lookup_insert by done. split_and!; [by auto..|].
intros k z [(->&->&?)|[??]]%list_lookup_insert_Some; eauto with lia.
+ apply list_find_Some in Hl as (?&?&Hleast).
rewrite list_lookup_insert_ne by lia. split_and!; [done..|].
intros k z [(->&->&?)|[??]]%list_lookup_insert_Some; eauto with lia.
+ rewrite list_lookup_insert_ne by lia. split_and!; [done..|].
intros k z' [(->&->&?)|[??]]%list_lookup_insert_Some; eauto with lia.
Qed.
Lemma list_find_ext (Q : A → Prop) `{∀ x, Decision (Q x)} l :
(∀ x, P x ↔ Q x) →
list_find P l = list_find Q l.
Proof.
intros HPQ. induction l as [|x l IH]; simpl; [done|].
by rewrite (decide_ext (P x) (Q x)), IH by done.
Qed.
End find.
Lemma list_find_fmap {B} (f : A → B) (P : B → Prop)
`{!∀ y : B, Decision (P y)} (l : list A) :
list_find P (f <$> l) = prod_map id f <$> list_find (P ∘ f) l.
Proof.
induction l as [|x l IH]; [done|]; csimpl. (* csimpl re-folds fmap *)
case_decide; [done|].
rewrite IH. by destruct (list_find (P ∘ f) l).
Qed.
(** ** Properties of the [resize] function *)
Lemma resize_spec l n x : resize n x l = take n l ++ replicate (n - length l) x.
Proof. revert n. induction l; intros [|?]; f_equal/=; auto. Qed.
Lemma resize_0 l x : resize 0 x l = [].
Proof. by destruct l. Qed.
Lemma resize_nil n x : resize n x [] = replicate n x.
Proof. rewrite resize_spec. rewrite take_nil. f_equal/=. lia. Qed.
Lemma resize_ge l n x :
length l ≤ n → resize n x l = l ++ replicate (n - length l) x.
Proof. intros. by rewrite resize_spec, take_ge. Qed.
Lemma resize_le l n x : n ≤ length l → resize n x l = take n l.
Proof.
intros. rewrite resize_spec, (proj2 (Nat.sub_0_le _ _)) by done.
simpl. by rewrite (right_id_L [] (++)).
Qed.
Lemma resize_all l x : resize (length l) x l = l.
Proof. intros. by rewrite resize_le, take_ge. Qed.
Lemma resize_all_alt l n x : n = length l → resize n x l = l.
Proof. intros ->. by rewrite resize_all. Qed.
Lemma resize_add l n m x :
resize (n + m) x l = resize n x l ++ resize m x (drop n l).
Proof.
revert n m. induction l; intros [|?] [|?]; f_equal/=; auto.
- by rewrite Nat.add_0_r, (right_id_L [] (++)).
- by rewrite replicate_add.
Qed.
Lemma resize_add_eq l n m x :
length l = n → resize (n + m) x l = l ++ replicate m x.
Proof. intros <-. by rewrite resize_add, resize_all, drop_all, resize_nil. Qed.
Lemma resize_app_le l1 l2 n x :
n ≤ length l1 → resize n x (l1 ++ l2) = resize n x l1.
Proof.
intros. by rewrite !resize_le, take_app_le by (rewrite ?length_app; lia).
Qed.
Lemma resize_app l1 l2 n x : n = length l1 → resize n x (l1 ++ l2) = l1.
Proof. intros ->. by rewrite resize_app_le, resize_all. Qed.
Lemma resize_app_ge l1 l2 n x :
length l1 ≤ n → resize n x (l1 ++ l2) = l1 ++ resize (n - length l1) x l2.
Proof.
intros. rewrite !resize_spec, take_app_ge, (assoc_L (++)) by done.
do 2 f_equal. rewrite length_app. lia.
Qed.
Lemma length_resize l n x : length (resize n x l) = n.
Proof. rewrite resize_spec, length_app, length_replicate, length_take. lia. Qed.
Lemma resize_replicate x n m : resize n x (replicate m x) = replicate n x.
Proof. revert m. induction n; intros [|?]; f_equal/=; auto. Qed.
Lemma resize_resize l n m x : n ≤ m → resize n x (resize m x l) = resize n x l.
Proof.
revert n m. induction l; simpl.
- intros. by rewrite !resize_nil, resize_replicate.
- intros [|?] [|?] ?; f_equal/=; auto with lia.
Qed.
Lemma resize_idemp l n x : resize n x (resize n x l) = resize n x l.
Proof. by rewrite resize_resize. Qed.
Lemma resize_take_le l n m x : n ≤ m → resize n x (take m l) = resize n x l.
Proof. revert n m. induction l; intros [|?][|?] ?; f_equal/=; auto with lia. Qed.
Lemma resize_take_eq l n x : resize n x (take n l) = resize n x l.
Proof. by rewrite resize_take_le. Qed.
Lemma take_resize l n m x : take n (resize m x l) = resize (min n m) x l.
Proof.
revert n m. induction l; intros [|?][|?]; f_equal/=; auto using take_replicate.
Qed.
Lemma take_resize_le l n m x : n ≤ m → take n (resize m x l) = resize n x l.
Proof. intros. by rewrite take_resize, Nat.min_l. Qed.
Lemma take_resize_eq l n x : take n (resize n x l) = resize n x l.
Proof. intros. by rewrite take_resize, Nat.min_l. Qed.
Lemma take_resize_add l n m x : take n (resize (n + m) x l) = resize n x l.
Proof. by rewrite take_resize, min_l by lia. Qed.
Lemma drop_resize_le l n m x :
n ≤ m → drop n (resize m x l) = resize (m - n) x (drop n l).
Proof.
revert n m. induction l; simpl.
- intros. by rewrite drop_nil, !resize_nil, drop_replicate.
- intros [|?] [|?] ?; simpl; try case_match; auto with lia.
Qed.
Lemma drop_resize_add l n m x :
drop n (resize (n + m) x l) = resize m x (drop n l).
Proof. rewrite drop_resize_le by lia. f_equal. lia. Qed.
Lemma lookup_resize l n x i : i < n → i < length l → resize n x l !! i = l !! i.
Proof.
intros ??. destruct (decide (n < length l)).
- by rewrite resize_le, lookup_take by lia.
- by rewrite resize_ge, lookup_app_l by lia.
Qed.
Lemma lookup_total_resize `{!Inhabited A} l n x i :
i < n → i < length l → resize n x l !!! i = l !!! i.
Proof. intros. by rewrite !list_lookup_total_alt, lookup_resize. Qed.
Lemma lookup_resize_new l n x i :
length l ≤ i → i < n → resize n x l !! i = Some x.
Proof.
intros ??. rewrite resize_ge by lia.
replace i with (length l + (i - length l)) by lia.
by rewrite lookup_app_r, lookup_replicate_2 by lia.
Qed.
Lemma lookup_total_resize_new `{!Inhabited A} l n x i :
length l ≤ i → i < n → resize n x l !!! i = x.
Proof. intros. by rewrite !list_lookup_total_alt, lookup_resize_new. Qed.
Lemma lookup_resize_old l n x i : n ≤ i → resize n x l !! i = None.
Proof. intros ?. apply lookup_ge_None_2. by rewrite length_resize. Qed.
Lemma lookup_total_resize_old `{!Inhabited A} l n x i :
n ≤ i → resize n x l !!! i = inhabitant.
Proof. intros. by rewrite !list_lookup_total_alt, lookup_resize_old. Qed.
Lemma Forall_resize P n x l : P x → Forall P l → Forall P (resize n x l).
Proof.
intros ? Hl. revert n.
induction Hl; intros [|?]; simpl; auto using Forall_replicate.
Qed.
Lemma fmap_resize {B} (f : A → B) n x l : f <$> resize n x l = resize n (f x) (f <$> l).
Proof.
revert n. induction l; intros [|?]; f_equal/=; auto using fmap_replicate.
Qed.
Lemma Forall_resize_inv P n x l :
length l ≤ n → Forall P (resize n x l) → Forall P l.
Proof. intros ?. rewrite resize_ge, Forall_app by done. by intros []. Qed.
(** ** Properties of the [rotate] function *)
Lemma rotate_replicate n1 n2 x:
rotate n1 (replicate n2 x) = replicate n2 x.
Proof.
unfold rotate. rewrite drop_replicate, take_replicate, <-replicate_add.
f_equal. lia.
Qed.
Lemma length_rotate l n:
length (rotate n l) = length l.
Proof. unfold rotate. rewrite length_app, length_drop, length_take. lia. Qed.
Lemma lookup_rotate_r l n i:
i < length l →
rotate n l !! i = l !! rotate_nat_add n i (length l).
Proof.
intros Hlen. pose proof (Nat.mod_upper_bound n (length l)) as ?.
unfold rotate. rewrite rotate_nat_add_add_mod, rotate_nat_add_alt by lia.
remember (n `mod` length l) as n'.
case_decide.
- by rewrite lookup_app_l, lookup_drop by (rewrite length_drop; lia).
- rewrite lookup_app_r, lookup_take, length_drop by (rewrite length_drop; lia).
f_equal. lia.
Qed.
Lemma lookup_rotate_r_Some l n i x:
rotate n l !! i = Some x ↔
l !! rotate_nat_add n i (length l) = Some x ∧ i < length l.
Proof.
split.
- intros Hl. pose proof (lookup_lt_Some _ _ _ Hl) as Hlen.
rewrite length_rotate in Hlen. by rewrite <-lookup_rotate_r.
- intros [??]. by rewrite lookup_rotate_r.
Qed.
Lemma lookup_rotate_l l n i:
i < length l → rotate n l !! rotate_nat_sub n i (length l) = l !! i.
Proof.
intros ?. rewrite lookup_rotate_r, rotate_nat_add_sub;[done..|].
apply rotate_nat_sub_lt. lia.
Qed.
Lemma elem_of_rotate l n x:
x ∈ rotate n l ↔ x ∈ l.
Proof.
unfold rotate. rewrite <-(take_drop (n `mod` length l) l) at 5.
rewrite !elem_of_app. naive_solver.
Qed.
Lemma rotate_insert_l l n i x:
i < length l →
rotate n (<[rotate_nat_add n i (length l):=x]> l) = <[i:=x]> (rotate n l).
Proof.
intros Hlen. pose proof (Nat.mod_upper_bound n (length l)) as ?. unfold rotate.
rewrite length_insert, rotate_nat_add_add_mod, rotate_nat_add_alt by lia.
remember (n `mod` length l) as n'.
case_decide.
- rewrite take_insert, drop_insert_le, insert_app_l
by (rewrite ?length_drop; lia). do 2 f_equal. lia.
- rewrite take_insert_lt, drop_insert_gt, insert_app_r_alt, length_drop
by (rewrite ?length_drop; lia). do 2 f_equal. lia.
Qed.
Lemma rotate_insert_r l n i x:
i < length l →
rotate n (<[i:=x]> l) = <[rotate_nat_sub n i (length l):=x]> (rotate n l).
Proof.
intros ?. rewrite <-rotate_insert_l, rotate_nat_add_sub;[done..|].
apply rotate_nat_sub_lt. lia.
Qed.
(** ** Properties of the [rotate_take] function *)
Lemma rotate_take_insert l s e i x:
i < length l →
rotate_take s e (<[i:=x]>l) =
if decide (rotate_nat_sub s i (length l) < rotate_nat_sub s e (length l)) then
<[rotate_nat_sub s i (length l):=x]> (rotate_take s e l) else rotate_take s e l.
Proof.
intros ?. unfold rotate_take. rewrite rotate_insert_r, length_insert by done.
case_decide; [rewrite take_insert_lt | rewrite take_insert]; naive_solver lia.
Qed.
Lemma rotate_take_add l b i :
i < length l →
rotate_take b (rotate_nat_add b i (length l)) l = take i (rotate b l).
Proof. intros ?. unfold rotate_take. by rewrite rotate_nat_sub_add. Qed.
(** ** Properties of the [reshape] function *)
Lemma length_reshape szs l : length (reshape szs l) = length szs.
Proof. revert l. by induction szs; intros; f_equal/=. Qed.
Lemma Forall_reshape P l szs : Forall P l → Forall (Forall P) (reshape szs l).
Proof.
revert l. induction szs; simpl; auto using Forall_take, Forall_drop.
Qed.
(** ** Properties of [sublist_lookup] and [sublist_alter] *)
Lemma sublist_lookup_length l i n k :
sublist_lookup i n l = Some k → length k = n.
Proof.
unfold sublist_lookup; intros; simplify_option_eq.
rewrite length_take, length_drop; lia.
Qed.
Lemma sublist_lookup_all l n : length l = n → sublist_lookup 0 n l = Some l.
Proof.
intros. unfold sublist_lookup; case_guard; [|lia].
by rewrite take_ge by (rewrite length_drop; lia).
Qed.
Lemma sublist_lookup_Some l i n :
i + n ≤ length l → sublist_lookup i n l = Some (take n (drop i l)).
Proof. by unfold sublist_lookup; intros; simplify_option_eq. Qed.
Lemma sublist_lookup_Some' l i n l' :
sublist_lookup i n l = Some l' ↔ l' = take n (drop i l) ∧ i + n ≤ length l.
Proof. unfold sublist_lookup. case_guard; naive_solver lia. Qed.
Lemma sublist_lookup_None l i n :
length l < i + n → sublist_lookup i n l = None.
Proof. by unfold sublist_lookup; intros; simplify_option_eq by lia. Qed.
Lemma sublist_eq l k n :
(n | length l) → (n | length k) →
(∀ i, sublist_lookup (i * n) n l = sublist_lookup (i * n) n k) → l = k.
Proof.
revert l k. assert (∀ l i,
n ≠ 0 → (n | length l) → ¬n * i `div` n + n ≤ length l → length l ≤ i).
{ intros l i ? [j ->] Hjn. apply Nat.nlt_ge; contradict Hjn.
rewrite <-Nat.mul_succ_r, (Nat.mul_comm n).
apply Nat.mul_le_mono_r, Nat.le_succ_l, Nat.div_lt_upper_bound; lia. }
intros l k Hl Hk Hlookup. destruct (decide (n = 0)) as [->|].
{ by rewrite (nil_length_inv l),
(nil_length_inv k) by eauto using Nat.divide_0_l. }
apply list_eq; intros i. specialize (Hlookup (i `div` n)).
rewrite (Nat.mul_comm _ n) in Hlookup.
unfold sublist_lookup in *; simplify_option_eq;
[|by rewrite !lookup_ge_None_2 by auto].
apply (f_equal (.!! i `mod` n)) in Hlookup.
by rewrite !lookup_take, !lookup_drop, <-!Nat.div_mod in Hlookup
by (auto using Nat.mod_upper_bound with lia).
Qed.
Lemma sublist_eq_same_length l k j n :
length l = j * n → length k = j * n →
(∀ i,i < j → sublist_lookup (i * n) n l = sublist_lookup (i * n) n k) → l = k.
Proof.
intros Hl Hk ?. destruct (decide (n = 0)) as [->|].
{ by rewrite (nil_length_inv l), (nil_length_inv k) by lia. }
apply sublist_eq with n; [by exists j|by exists j|].
intros i. destruct (decide (i < j)); [by auto|].
assert (∀ m, m = j * n → m < i * n + n).
{ intros ? ->. replace (i * n + n) with (S i * n) by lia.
apply Nat.mul_lt_mono_pos_r; lia. }
by rewrite !sublist_lookup_None by auto.
Qed.
Lemma sublist_lookup_reshape l i n m :
0 < n → length l = m * n →
reshape (replicate m n) l !! i = sublist_lookup (i * n) n l.
Proof.
intros Hn Hl. unfold sublist_lookup. apply option_eq; intros x; split.
- intros Hx. case_guard as Hi; simplify_eq/=.
{ f_equal. clear Hi. revert i l Hl Hx.
induction m as [|m IH]; intros [|i] l ??; simplify_eq/=; auto.
rewrite <-drop_drop. apply IH; rewrite ?length_drop; auto with lia. }
destruct Hi. rewrite Hl, <-Nat.mul_succ_l.
apply Nat.mul_le_mono_r, Nat.le_succ_l. apply lookup_lt_Some in Hx.
by rewrite length_reshape, length_replicate in Hx.
- intros Hx. case_guard as Hi; simplify_eq/=.
revert i l Hl Hi. induction m as [|m IH]; [auto with lia|].
intros [|i] l ??; simpl; [done|]. rewrite <-drop_drop.
rewrite IH; rewrite ?length_drop; auto with lia.
Qed.
Lemma sublist_lookup_compose l1 l2 l3 i n j m :
sublist_lookup i n l1 = Some l2 → sublist_lookup j m l2 = Some l3 →
sublist_lookup (i + j) m l1 = Some l3.
Proof.
unfold sublist_lookup; intros; simplify_option_eq;
repeat match goal with
| H : _ ≤ length _ |- _ => rewrite length_take, length_drop in H
end; rewrite ?take_drop_commute, ?drop_drop, ?take_take,
?Nat.min_l, Nat.add_assoc by lia; auto with lia.
Qed.
Lemma length_sublist_alter f l i n k :
sublist_lookup i n l = Some k → length (f k) = n →
length (sublist_alter f i n l) = length l.
Proof.
unfold sublist_alter, sublist_lookup. intros Hk ?; simplify_option_eq.
rewrite !length_app, Hk, !length_take, !length_drop; lia.
Qed.
Lemma sublist_lookup_alter f l i n k :
sublist_lookup i n l = Some k → length (f k) = n →
sublist_lookup i n (sublist_alter f i n l) = f <$> sublist_lookup i n l.
Proof.
unfold sublist_lookup. intros Hk ?. erewrite length_sublist_alter by eauto.
unfold sublist_alter; simplify_option_eq.
by rewrite Hk, drop_app_length', take_app_length' by (rewrite ?length_take; lia).
Qed.
Lemma sublist_lookup_alter_ne f l i j n k :
sublist_lookup j n l = Some k → length (f k) = n → i + n ≤ j ∨ j + n ≤ i →
sublist_lookup i n (sublist_alter f j n l) = sublist_lookup i n l.
Proof.
unfold sublist_lookup. intros Hk Hi ?. erewrite length_sublist_alter by eauto.
unfold sublist_alter; simplify_option_eq; f_equal; rewrite Hk.
apply list_eq; intros ii.
destruct (decide (ii < length (f k))); [|by rewrite !lookup_take_ge by lia].
rewrite !lookup_take, !lookup_drop by done. destruct (decide (i + ii < j)).
{ by rewrite lookup_app_l, lookup_take by (rewrite ?length_take; lia). }
rewrite lookup_app_r by (rewrite length_take; lia).
rewrite length_take_le, lookup_app_r, lookup_drop by lia. f_equal; lia.
Qed.
Lemma sublist_alter_all f l n : length l = n → sublist_alter f 0 n l = f l.
Proof.
intros <-. unfold sublist_alter; simpl.
by rewrite drop_all, (right_id_L [] (++)), take_ge.
Qed.
Lemma sublist_alter_compose f g l i n k :
sublist_lookup i n l = Some k → length (f k) = n → length (g k) = n →
sublist_alter (f ∘ g) i n l = sublist_alter f i n (sublist_alter g i n l).
Proof.
unfold sublist_alter, sublist_lookup. intros Hk ??; simplify_option_eq.
by rewrite !take_app_length', drop_app_length', !(assoc_L (++)), drop_app_length',
take_app_length' by (rewrite ?length_app, ?length_take, ?Hk; lia).
Qed.
Lemma Forall_sublist_lookup P l i n k :
sublist_lookup i n l = Some k → Forall P l → Forall P k.
Proof.
unfold sublist_lookup. intros; simplify_option_eq.
auto using Forall_take, Forall_drop.
Qed.
Lemma Forall_sublist_alter P f l i n k :
Forall P l → sublist_lookup i n l = Some k → Forall P (f k) →
Forall P (sublist_alter f i n l).
Proof.
unfold sublist_alter, sublist_lookup. intros; simplify_option_eq.
auto using Forall_app_2, Forall_drop, Forall_take.
Qed.
Lemma Forall_sublist_alter_inv P f l i n k :
sublist_lookup i n l = Some k →
Forall P (sublist_alter f i n l) → Forall P (f k).
Proof.
unfold sublist_alter, sublist_lookup. intros ?; simplify_option_eq.
rewrite !Forall_app; tauto.
Qed.
End general_properties.
Lemma zip_with_sublist_alter {A B} (f : A → B → A) g l k i n l' k' :
length l = length k →
sublist_lookup i n l = Some l' → sublist_lookup i n k = Some k' →
length (g l') = length k' → zip_with f (g l') k' = g (zip_with f l' k') →
zip_with f (sublist_alter g i n l) k = sublist_alter g i n (zip_with f l k).
Proof.
unfold sublist_lookup, sublist_alter. intros Hlen; rewrite Hlen.
intros ?? Hl' Hk'. simplify_option_eq.
by rewrite !zip_with_app_l, !zip_with_drop, Hl', drop_drop, !zip_with_take,
!length_take_le, Hk' by (rewrite ?length_drop; auto with lia).
Qed.
(** Interaction of [Forall2] with the above operations (needs to be outside the
section since the operations are used at different types). *)
Section Forall2.
Context {A B} (P : A → B → Prop).
Implicit Types x : A.
Implicit Types y : B.
Implicit Types l : list A.
Implicit Types k : list B.
Lemma Forall2_resize l (k : list B) x (y : B) n :
P x y → Forall2 P l k → Forall2 P (resize n x l) (resize n y k).
Proof.
intros. rewrite !resize_spec, (Forall2_length P l k) by done.
auto using Forall2_app, Forall2_take, Forall2_replicate.
Qed.
Lemma Forall2_resize_l l k x y n m :
P x y → Forall (flip P y) l →
Forall2 P (resize n x l) k → Forall2 P (resize m x l) (resize m y k).
Proof.
intros. destruct (decide (m ≤ n)).
{ rewrite <-(resize_resize l m n) by done. by apply Forall2_resize. }
intros. assert (n = length k); subst.
{ by rewrite <-(Forall2_length P (resize n x l) k), length_resize. }
rewrite (Nat.le_add_sub (length k) m), !resize_add,
resize_all, drop_all, resize_nil by lia.
auto using Forall2_app, Forall2_replicate_r,
Forall_resize, Forall_drop, length_resize.
Qed.
Lemma Forall2_resize_r l k x y n m :
P x y → Forall (P x) k →
Forall2 P l (resize n y k) → Forall2 P (resize m x l) (resize m y k).
Proof.
intros. destruct (decide (m ≤ n)).
{ rewrite <-(resize_resize k m n) by done. by apply Forall2_resize. }
assert (n = length l); subst.
{ by rewrite (Forall2_length P l (resize n y k)), length_resize. }
rewrite (Nat.le_add_sub (length l) m), !resize_add,
resize_all, drop_all, resize_nil by lia.
auto using Forall2_app, Forall2_replicate_l,
Forall_resize, Forall_drop, length_resize.
Qed.
Lemma Forall2_resize_r_flip l k x y n m :
P x y → Forall (P x) k →
length k = m → Forall2 P l (resize n y k) → Forall2 P (resize m x l) k.
Proof.
intros ?? <- ?. rewrite <-(resize_all k y) at 2.
apply Forall2_resize_r with n; auto using Forall_true.
Qed.
Lemma Forall2_rotate n l k :
Forall2 P l k → Forall2 P (rotate n l) (rotate n k).
Proof.
intros HAll. unfold rotate. rewrite (Forall2_length _ _ _ HAll).
eauto using Forall2_app, Forall2_take, Forall2_drop.
Qed.
Lemma Forall2_rotate_take s e l k :
Forall2 P l k → Forall2 P (rotate_take s e l) (rotate_take s e k).
Proof.
intros HAll. unfold rotate_take. rewrite (Forall2_length _ _ _ HAll).
eauto using Forall2_take, Forall2_rotate.
Qed.
Lemma Forall2_sublist_lookup_l l k n i l' :
Forall2 P l k → sublist_lookup n i l = Some l' →
∃ k', sublist_lookup n i k = Some k' ∧ Forall2 P l' k'.
Proof.
unfold sublist_lookup. intros Hlk Hl.
exists (take i (drop n k)); simplify_option_eq.
- auto using Forall2_take, Forall2_drop.
- apply Forall2_length in Hlk; lia.
Qed.
Lemma Forall2_sublist_lookup_r l k n i k' :
Forall2 P l k → sublist_lookup n i k = Some k' →
∃ l', sublist_lookup n i l = Some l' ∧ Forall2 P l' k'.
Proof.
intro. unfold sublist_lookup.
erewrite (Forall2_length P) by eauto; intros; simplify_option_eq.
eauto using Forall2_take, Forall2_drop.
Qed.
Lemma Forall2_sublist_alter f g l k i n l' k' :
Forall2 P l k → sublist_lookup i n l = Some l' →
sublist_lookup i n k = Some k' → Forall2 P (f l') (g k') →
Forall2 P (sublist_alter f i n l) (sublist_alter g i n k).
Proof.
intro. unfold sublist_alter, sublist_lookup.
erewrite Forall2_length by eauto; intros; simplify_option_eq.
auto using Forall2_app, Forall2_drop, Forall2_take.
Qed.
Lemma Forall2_sublist_alter_l f l k i n l' k' :
Forall2 P l k → sublist_lookup i n l = Some l' →
sublist_lookup i n k = Some k' → Forall2 P (f l') k' →
Forall2 P (sublist_alter f i n l) k.
Proof.
intro. unfold sublist_lookup, sublist_alter.
erewrite <-(Forall2_length P) by eauto; intros; simplify_option_eq.
apply Forall2_app_l;
rewrite ?length_take_le by lia; auto using Forall2_take.
apply Forall2_app_l; erewrite Forall2_length, length_take,
length_drop, <-Forall2_length, Nat.min_l by eauto with lia; [done|].
rewrite drop_drop; auto using Forall2_drop.
Qed.
End Forall2.
Section Forall2_proper.
Context {A} (R : relation A).
Global Instance: ∀ n, Proper (R ==> Forall2 R ==> Forall2 R) (resize n).
Proof. repeat intro. eauto using Forall2_resize. Qed.
Global Instance resize_proper `{!Equiv A} n : Proper ((≡) ==> (≡) ==> (≡@{list A})) (resize n).
Proof.
induction n; destruct 2; simpl; repeat (constructor || f_equiv); auto.
Qed.
Global Instance : ∀ n, Proper (Forall2 R ==> Forall2 R) (rotate n).
Proof. repeat intro. eauto using Forall2_rotate. Qed.
Global Instance rotate_proper `{!Equiv A} n : Proper ((≡@{list A}) ==> (≡)) (rotate n).
Proof. intros ??. rewrite !list_equiv_Forall2. by apply Forall2_rotate. Qed.
Global Instance: ∀ s e, Proper (Forall2 R ==> Forall2 R) (rotate_take s e).
Proof. repeat intro. eauto using Forall2_rotate_take. Qed.
Global Instance rotate_take_proper `{!Equiv A} s e : Proper ((≡@{list A}) ==> (≡)) (rotate_take s e).
Proof. intros ??. rewrite !list_equiv_Forall2. by apply Forall2_rotate_take. Qed.
End Forall2_proper.
Section more_general_properties.
Context {A : Type}.
Implicit Types x y z : A.
Implicit Types l k : list A.
(** ** Properties of the [mask] function *)
Lemma mask_nil f βs : mask f βs [] =@{list A} [].
Proof. by destruct βs. Qed.
Lemma length_mask f βs l : length (mask f βs l) = length l.
Proof. revert βs. induction l; intros [|??]; f_equal/=; auto. Qed.
Lemma mask_true f l n : length l ≤ n → mask f (replicate n true) l = f <$> l.
Proof. revert n. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
Lemma mask_false f l n : mask f (replicate n false) l = l.
Proof. revert l. induction n; intros [|??]; f_equal/=; auto. Qed.
Lemma mask_app f βs1 βs2 l :
mask f (βs1 ++ βs2) l
= mask f βs1 (take (length βs1) l) ++ mask f βs2 (drop (length βs1) l).
Proof. revert l. induction βs1;intros [|??]; f_equal/=; auto using mask_nil. Qed.
Lemma mask_app_2 f βs l1 l2 :
mask f βs (l1 ++ l2)
= mask f (take (length l1) βs) l1 ++ mask f (drop (length l1) βs) l2.
Proof. revert βs. induction l1; intros [|??]; f_equal/=; auto. Qed.
Lemma take_mask f βs l n : take n (mask f βs l) = mask f (take n βs) (take n l).
Proof. revert n βs. induction l; intros [|?] [|[] ?]; f_equal/=; auto. Qed.
Lemma drop_mask f βs l n : drop n (mask f βs l) = mask f (drop n βs) (drop n l).
Proof.
revert n βs. induction l; intros [|?] [|[] ?]; f_equal/=; auto using mask_nil.
Qed.
Lemma sublist_lookup_mask f βs l i n :
sublist_lookup i n (mask f βs l)
= mask f (take n (drop i βs)) <$> sublist_lookup i n l.
Proof.
unfold sublist_lookup; rewrite length_mask; simplify_option_eq; auto.
by rewrite drop_mask, take_mask.
Qed.
Lemma mask_mask f g βs1 βs2 l :
(∀ x, f (g x) = f x) → βs1 =.>* βs2 →
mask f βs2 (mask g βs1 l) = mask f βs2 l.
Proof.
intros ? Hβs. revert l. by induction Hβs as [|[] []]; intros [|??]; f_equal/=.
Qed.
Lemma lookup_mask f βs l i :
βs !! i = Some true → mask f βs l !! i = f <$> l !! i.
Proof.
revert i βs. induction l; intros [] [] ?; simplify_eq/=; f_equal; auto.
Qed.
Lemma lookup_mask_notin f βs l i :
βs !! i ≠ Some true → mask f βs l !! i = l !! i.
Proof.
revert i βs. induction l; intros [] [|[]] ?; simplify_eq/=; auto.
Qed.
End more_general_properties.
(** Lemmas about [positives_flatten] and [positives_unflatten]. *)
Section positives_flatten_unflatten.
Local Open Scope positive_scope.
Lemma positives_flatten_go_app xs acc :
positives_flatten_go xs acc = acc ++ positives_flatten_go xs 1.
Proof.
revert acc.
induction xs as [|x xs IH]; intros acc; simpl.
- reflexivity.
- rewrite IH.
rewrite (IH (6 ++ _)).
rewrite 2!(assoc_L (++)).
reflexivity.
Qed.
Lemma positives_unflatten_go_app p suffix xs acc :
positives_unflatten_go (suffix ++ Pos.reverse (Pos.dup p)) xs acc =
positives_unflatten_go suffix xs (acc ++ p).
Proof.
revert suffix acc.
induction p as [p IH|p IH|]; intros acc suffix; simpl.
- rewrite 2!Pos.reverse_xI.
rewrite 2!(assoc_L (++)).
rewrite IH.
reflexivity.
- rewrite 2!Pos.reverse_xO.
rewrite 2!(assoc_L (++)).
rewrite IH.
reflexivity.
- reflexivity.
Qed.
Lemma positives_unflatten_flatten_go suffix xs acc :
positives_unflatten_go (suffix ++ positives_flatten_go xs 1) acc 1 =
positives_unflatten_go suffix (xs ++ acc) 1.
Proof.
revert suffix acc.
induction xs as [|x xs IH]; intros suffix acc; simpl.
- reflexivity.
- rewrite positives_flatten_go_app.
rewrite (assoc_L (++)).
rewrite IH.
rewrite (assoc_L (++)).
rewrite positives_unflatten_go_app.
simpl.
rewrite (left_id_L 1 (++)).
reflexivity.
Qed.
Lemma positives_unflatten_flatten xs :
positives_unflatten (positives_flatten xs) = Some xs.
Proof.
unfold positives_flatten, positives_unflatten.
replace (positives_flatten_go xs 1)
with (1 ++ positives_flatten_go xs 1)
by apply (left_id_L 1 (++)).
rewrite positives_unflatten_flatten_go.
simpl.
rewrite (right_id_L [] (++)%list).
reflexivity.
Qed.
Lemma positives_flatten_app xs ys :
positives_flatten (xs ++ ys) = positives_flatten xs ++ positives_flatten ys.
Proof.
unfold positives_flatten.
revert ys.
induction xs as [|x xs IH]; intros ys; simpl.
- rewrite (left_id_L 1 (++)).
reflexivity.
- rewrite positives_flatten_go_app, (positives_flatten_go_app xs).
rewrite IH.
rewrite (assoc_L (++)).
reflexivity.
Qed.
Lemma positives_flatten_cons x xs :
positives_flatten (x :: xs)
= 1~1~0 ++ Pos.reverse (Pos.dup x) ++ positives_flatten xs.
Proof.
change (x :: xs) with ([x] ++ xs)%list.
rewrite positives_flatten_app.
rewrite (assoc_L (++)).
reflexivity.
Qed.
Lemma positives_flatten_suffix (l k : list positive) :
l `suffix_of` k → ∃ q, positives_flatten k = q ++ positives_flatten l.
Proof.
intros [l' ->].
exists (positives_flatten l').
apply positives_flatten_app.
Qed.
Lemma positives_flatten_suffix_eq p1 p2 (xs ys : list positive) :
length xs = length ys →
p1 ++ positives_flatten xs = p2 ++ positives_flatten ys →
xs = ys.
Proof.
revert p1 p2 ys; induction xs as [|x xs IH];
intros p1 p2 [|y ys] ?; simplify_eq/=; auto.
rewrite !positives_flatten_cons, !(assoc _); intros Hl.
assert (xs = ys) as <- by eauto; clear IH; f_equal.
apply (inj (.++ positives_flatten xs)) in Hl.
rewrite 2!Pos.reverse_dup in Hl.
apply (Pos.dup_suffix_eq _ _ p1 p2) in Hl.
by apply (inj Pos.reverse).
Qed.
End positives_flatten_unflatten.
|