File: list_misc.v

package info (click to toggle)
coq-stdpp 1.12.0-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 1,724 kB
  • sloc: makefile: 53; sh: 35; sed: 1
file content (894 lines) | stat: -rw-r--r-- 37,787 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
From Coq Require Export Permutation.
From stdpp Require Export numbers base option list_basics list_relations list_monad.
From stdpp Require Import options.

(** The function [list_find P l] returns the first index [i] whose element
satisfies the predicate [P]. *)
Definition list_find {A} P `{∀ x, Decision (P x)} : list A → option (nat * A) :=
  fix go l :=
  match l with
  | [] => None
  | x :: l => if decide (P x) then Some (0,x) else prod_map S id <$> go l
  end.
Global Instance: Params (@list_find) 3 := {}.

(** The function [resize n y l] takes the first [n] elements of [l] in case
[length l ≤ n], and otherwise appends elements with value [x] to [l] to obtain
a list of length [n]. *)
Fixpoint resize {A} (n : nat) (y : A) (l : list A) : list A :=
  match l with
  | [] => replicate n y
  | x :: l => match n with 0 => [] | S n => x :: resize n y l end
  end.
Global Arguments resize {_} !_ _ !_ : assert.
Global Instance: Params (@resize) 2 := {}.

(** The function [rotate n l] rotates the list [l] by [n], e.g., [rotate 1
[x0; x1; ...; xm]] becomes [x1; ...; xm; x0]. Rotating by a multiple of
[length l] is the identity function. **)
Definition rotate {A} (n : nat) (l : list A) : list A :=
  drop (n `mod` length l) l ++ take (n `mod` length l) l.
Global Instance: Params (@rotate) 2 := {}.

(** The function [rotate_take s e l] returns the range between the
indices [s] (inclusive) and [e] (exclusive) of [l]. If [e ≤ s], all
elements after [s] and before [e] are returned. *)
Definition rotate_take {A} (s e : nat) (l : list A) : list A :=
  take (rotate_nat_sub s e (length l)) (rotate s l).
Global Instance: Params (@rotate_take) 3 := {}.

(** The function [reshape k l] transforms [l] into a list of lists whose sizes
are specified by [k]. In case [l] is too short, the resulting list will be
padded with empty lists. In case [l] is too long, it will be truncated. *)
Fixpoint reshape {A} (szs : list nat) (l : list A) : list (list A) :=
  match szs with
  | [] => [] | sz :: szs => take sz l :: reshape szs (drop sz l)
  end.
Global Instance: Params (@reshape) 2 := {}.

Definition sublist_lookup {A} (i n : nat) (l : list A) : option (list A) :=
  guard (i + n ≤ length l);; Some (take n (drop i l)).
Definition sublist_alter {A} (f : list A → list A)
    (i n : nat) (l : list A) : list A :=
  take i l ++ f (take n (drop i l)) ++ drop (i + n) l.

(** The function [mask f βs l] applies the function [f] to elements in [l] at
positions that are [true] in [βs]. *)
Fixpoint mask {A} (f : A → A) (βs : list bool) (l : list A) : list A :=
  match βs, l with
  | β :: βs, x :: l => (if β then f x else x) :: mask f βs l
  | _, _ => l
  end.

(** These next functions allow to efficiently encode lists of positives (bit
strings) into a single positive and go in the other direction as well. This is
for example used for the countable instance of lists and in namespaces.
 The main functions are [positives_flatten] and [positives_unflatten]. *)
Fixpoint positives_flatten_go (xs : list positive) (acc : positive) : positive :=
  match xs with
  | [] => acc
  | x :: xs => positives_flatten_go xs (acc~1~0 ++ Pos.reverse (Pos.dup x))
  end.

(** Flatten a list of positives into a single positive by duplicating the bits
of each element, so that:

- [0 -> 00]
- [1 -> 11]

and then separating each element with [10]. *)
Definition positives_flatten (xs : list positive) : positive :=
  positives_flatten_go xs 1.

Fixpoint positives_unflatten_go
        (p : positive)
        (acc_xs : list positive)
        (acc_elm : positive)
  : option (list positive) :=
  match p with
  | 1 => Some acc_xs
  | p'~0~0 => positives_unflatten_go p' acc_xs (acc_elm~0)
  | p'~1~1 => positives_unflatten_go p' acc_xs (acc_elm~1)
  | p'~1~0 => positives_unflatten_go p' (acc_elm :: acc_xs) 1
  | _ => None
  end%positive.

(** Unflatten a positive into a list of positives, assuming the encoding
used by [positives_flatten]. *)
Definition positives_unflatten (p : positive) : option (list positive) :=
  positives_unflatten_go p [] 1.

Section general_properties.
Context {A : Type}.
Implicit Types x y z : A.
Implicit Types l k : list A.

(** * Properties of the [find] function *)
Section find.
  Context (P : A → Prop) `{!∀ x, Decision (P x)}.

  Lemma list_find_Some l i x  :
    list_find P l = Some (i,x) ↔
      l !! i = Some x ∧ P x ∧ ∀ j y, l !! j = Some y → j < i → ¬P y.
  Proof.
    revert i. induction l as [|y l IH]; intros i; csimpl; [naive_solver|].
    case_decide.
    - split; [naive_solver lia|]. intros (Hi&HP&Hlt).
      destruct i as [|i]; simplify_eq/=; [done|].
      destruct (Hlt 0 y); naive_solver lia.
    - split.
      + intros ([i' x']&Hl&?)%fmap_Some; simplify_eq/=.
        apply IH in Hl as (?&?&Hlt). split_and!; [done..|].
        intros [|j] ?; naive_solver lia.
      + intros (?&?&Hlt). destruct i as [|i]; simplify_eq/=; [done|].
        rewrite (proj2 (IH i)); [done|]. split_and!; [done..|].
        intros j z ???. destruct (Hlt (S j) z); naive_solver lia.
  Qed.

  Lemma list_find_elem_of l x : x ∈ l → P x → is_Some (list_find P l).
  Proof.
    induction 1 as [|x y l ? IH]; intros; simplify_option_eq; eauto.
    by destruct IH as [[i x'] ->]; [|exists (S i, x')].
  Qed.

  Lemma list_find_None l :
    list_find P l = None ↔ Forall (λ x, ¬P x) l.
  Proof.
    rewrite eq_None_not_Some, Forall_forall. split.
    - intros Hl x Hx HP. destruct Hl. eauto using list_find_elem_of.
    - intros HP [[i x] (?%elem_of_list_lookup_2&?&?)%list_find_Some]; naive_solver.
  Qed.

  Lemma list_find_app_None l1 l2 :
    list_find P (l1 ++ l2) = None ↔ list_find P l1 = None ∧ list_find P l2 = None.
  Proof. by rewrite !list_find_None, Forall_app. Qed.

  Lemma list_find_app_Some l1 l2 i x :
    list_find P (l1 ++ l2) = Some (i,x) ↔
      list_find P l1 = Some (i,x) ∨
      length l1 ≤ i ∧ list_find P l1 = None ∧ list_find P l2 = Some (i - length l1,x).
  Proof.
    split.
    - intros ([?|[??]]%lookup_app_Some&?&Hleast)%list_find_Some.
      + left. apply list_find_Some; eauto using lookup_app_l_Some.
      + right. split; [lia|]. split.
        { apply list_find_None, Forall_lookup. intros j z ??.
          assert (j < length l1) by eauto using lookup_lt_Some.
          naive_solver eauto using lookup_app_l_Some with lia. }
        apply list_find_Some. split_and!; [done..|].
        intros j z ??. eapply (Hleast (length l1 + j)); [|lia].
        by rewrite lookup_app_r, Nat.add_sub' by lia.
    - intros [(?&?&Hleast)%list_find_Some|(?&Hl1&(?&?&Hleast)%list_find_Some)].
      + apply list_find_Some. split_and!; [by auto using lookup_app_l_Some..|].
        assert (i < length l1) by eauto using lookup_lt_Some.
        intros j y ?%lookup_app_Some; naive_solver eauto with lia.
      + rewrite list_find_Some, lookup_app_Some. split_and!; [by auto..|].
        intros j y [?|?]%lookup_app_Some ?; [|naive_solver auto with lia].
        by eapply (Forall_lookup_1 (not ∘ P) l1); [by apply list_find_None|..].
  Qed.
  Lemma list_find_app_l l1 l2 i x:
    list_find P l1 = Some (i, x) → list_find P (l1 ++ l2) = Some (i, x).
  Proof. rewrite list_find_app_Some. auto. Qed.
  Lemma list_find_app_r l1 l2:
    list_find P l1 = None →
    list_find P (l1 ++ l2) = prod_map (λ n, n + length l1) id <$> list_find P l2.
  Proof.
    intros. apply option_eq; intros [j y]. rewrite list_find_app_Some. split.
    - intros [?|(?&?&->)]; naive_solver auto with f_equal lia.
    - intros ([??]&->&?)%fmap_Some; naive_solver auto with f_equal lia.
  Qed.

  Lemma list_find_insert_Some l i j x y :
    list_find P (<[i:=x]> l) = Some (j,y) ↔
      (j < i ∧ list_find P l = Some (j,y)) ∨
      (i = j ∧ x = y ∧ j < length l ∧ P x ∧ ∀ i' z, l !! i' = Some z → i' < i → ¬P z) ∨
      (i < j ∧ ¬P x ∧ list_find P l = Some (j,y) ∧ ∀ z, l !! i = Some z → ¬P z) ∨
      (∃ z, i < j ∧ ¬P x ∧ P y ∧ P z ∧ l !! i = Some z ∧ l !! j = Some y ∧
            ∀ i' z, l !! i' = Some z → i' ≠ i → i' < j → ¬P z).
   Proof.
     split.
     - intros ([(->&->&?)|[??]]%list_lookup_insert_Some&?&Hleast)%list_find_Some.
       { right; left. split_and!; [done..|]. intros k z ??.
         apply (Hleast k); [|lia]. by rewrite list_lookup_insert_ne by lia. }
       assert (j < i ∨ i < j) as [?|?] by lia.
       { left. rewrite list_find_Some. split_and!; [by auto..|]. intros k z ??.
         apply (Hleast k); [|lia]. by rewrite list_lookup_insert_ne by lia. }
       right; right. assert (j < length l) by eauto using lookup_lt_Some.
       destruct (lookup_lt_is_Some_2 l i) as [z ?]; [lia|].
       destruct (decide (P z)).
       { right. exists z. split_and!; [done| |done..|].
         + apply (Hleast i); [|done]. by rewrite list_lookup_insert by lia.
         + intros k z' ???.
           apply (Hleast k); [|lia]. by rewrite list_lookup_insert_ne by lia. }
       left. split_and!; [done|..|naive_solver].
       + apply (Hleast i); [|done]. by rewrite list_lookup_insert by lia.
       + apply list_find_Some. split_and!; [by auto..|]. intros k z' ??.
         destruct (decide (k = i)) as [->|]; [naive_solver|].
         apply (Hleast k); [|lia]. by rewrite list_lookup_insert_ne by lia.
     - intros [[? Hl]|[(->&->&?&?&Hleast)|[(?&?&Hl&Hnot)|(z&?&?&?&?&?&?&?Hleast)]]];
         apply list_find_Some.
       + apply list_find_Some in Hl as (?&?&Hleast).
         rewrite list_lookup_insert_ne by lia. split_and!; [done..|].
         intros k z [(->&->&?)|[??]]%list_lookup_insert_Some; eauto with lia.
       + rewrite list_lookup_insert by done. split_and!; [by auto..|].
         intros k z [(->&->&?)|[??]]%list_lookup_insert_Some; eauto with lia.
       + apply list_find_Some in Hl as (?&?&Hleast).
         rewrite list_lookup_insert_ne by lia. split_and!; [done..|].
         intros k z [(->&->&?)|[??]]%list_lookup_insert_Some; eauto with lia.
       + rewrite list_lookup_insert_ne by lia. split_and!; [done..|].
         intros k z' [(->&->&?)|[??]]%list_lookup_insert_Some; eauto with lia.
  Qed.

  Lemma list_find_ext (Q : A → Prop) `{∀ x, Decision (Q x)} l :
    (∀ x, P x ↔ Q x) →
    list_find P l = list_find Q l.
  Proof.
    intros HPQ. induction l as [|x l IH]; simpl; [done|].
    by rewrite (decide_ext (P x) (Q x)), IH by done.
  Qed.
End find.

Lemma list_find_fmap {B} (f : A → B) (P : B → Prop)
    `{!∀ y : B, Decision (P y)} (l : list A) :
  list_find P (f <$> l) = prod_map id f <$> list_find (P ∘ f) l.
Proof.
  induction l as [|x l IH]; [done|]; csimpl. (* csimpl re-folds fmap *)
  case_decide; [done|].
  rewrite IH. by destruct (list_find (P ∘ f) l).
Qed.

(** ** Properties of the [resize] function *)
Lemma resize_spec l n x : resize n x l = take n l ++ replicate (n - length l) x.
Proof. revert n. induction l; intros [|?]; f_equal/=; auto. Qed.
Lemma resize_0 l x : resize 0 x l = [].
Proof. by destruct l. Qed.
Lemma resize_nil n x : resize n x [] = replicate n x.
Proof. rewrite resize_spec. rewrite take_nil. f_equal/=. lia. Qed.
Lemma resize_ge l n x :
  length l ≤ n → resize n x l = l ++ replicate (n - length l) x.
Proof. intros. by rewrite resize_spec, take_ge. Qed.
Lemma resize_le l n x : n ≤ length l → resize n x l = take n l.
Proof.
  intros. rewrite resize_spec, (proj2 (Nat.sub_0_le _ _)) by done.
  simpl. by rewrite (right_id_L [] (++)).
Qed.
Lemma resize_all l x : resize (length l) x l = l.
Proof. intros. by rewrite resize_le, take_ge. Qed.
Lemma resize_all_alt l n x : n = length l → resize n x l = l.
Proof. intros ->. by rewrite resize_all. Qed.
Lemma resize_add l n m x :
  resize (n + m) x l = resize n x l ++ resize m x (drop n l).
Proof.
  revert n m. induction l; intros [|?] [|?]; f_equal/=; auto.
  - by rewrite Nat.add_0_r, (right_id_L [] (++)).
  - by rewrite replicate_add.
Qed.
Lemma resize_add_eq l n m x :
  length l = n → resize (n + m) x l = l ++ replicate m x.
Proof. intros <-. by rewrite resize_add, resize_all, drop_all, resize_nil. Qed.
Lemma resize_app_le l1 l2 n x :
  n ≤ length l1 → resize n x (l1 ++ l2) = resize n x l1.
Proof.
  intros. by rewrite !resize_le, take_app_le by (rewrite ?length_app; lia).
Qed.
Lemma resize_app l1 l2 n x : n = length l1 → resize n x (l1 ++ l2) = l1.
Proof. intros ->. by rewrite resize_app_le, resize_all. Qed.
Lemma resize_app_ge l1 l2 n x :
  length l1 ≤ n → resize n x (l1 ++ l2) = l1 ++ resize (n - length l1) x l2.
Proof.
  intros. rewrite !resize_spec, take_app_ge, (assoc_L (++)) by done.
  do 2 f_equal. rewrite length_app. lia.
Qed.
Lemma length_resize l n x : length (resize n x l) = n.
Proof. rewrite resize_spec, length_app, length_replicate, length_take. lia. Qed.
Lemma resize_replicate x n m : resize n x (replicate m x) = replicate n x.
Proof. revert m. induction n; intros [|?]; f_equal/=; auto. Qed.
Lemma resize_resize l n m x : n ≤ m → resize n x (resize m x l) = resize n x l.
Proof.
  revert n m. induction l; simpl.
  - intros. by rewrite !resize_nil, resize_replicate.
  - intros [|?] [|?] ?; f_equal/=; auto with lia.
Qed.
Lemma resize_idemp l n x : resize n x (resize n x l) = resize n x l.
Proof. by rewrite resize_resize. Qed.
Lemma resize_take_le l n m x : n ≤ m → resize n x (take m l) = resize n x l.
Proof. revert n m. induction l; intros [|?][|?] ?; f_equal/=; auto with lia. Qed.
Lemma resize_take_eq l n x : resize n x (take n l) = resize n x l.
Proof. by rewrite resize_take_le. Qed.
Lemma take_resize l n m x : take n (resize m x l) = resize (min n m) x l.
Proof.
  revert n m. induction l; intros [|?][|?]; f_equal/=; auto using take_replicate.
Qed.
Lemma take_resize_le l n m x : n ≤ m → take n (resize m x l) = resize n x l.
Proof. intros. by rewrite take_resize, Nat.min_l. Qed.
Lemma take_resize_eq l n x : take n (resize n x l) = resize n x l.
Proof. intros. by rewrite take_resize, Nat.min_l. Qed.
Lemma take_resize_add l n m x : take n (resize (n + m) x l) = resize n x l.
Proof. by rewrite take_resize, min_l by lia. Qed.
Lemma drop_resize_le l n m x :
  n ≤ m → drop n (resize m x l) = resize (m - n) x (drop n l).
Proof.
  revert n m. induction l; simpl.
  - intros. by rewrite drop_nil, !resize_nil, drop_replicate.
  - intros [|?] [|?] ?; simpl; try case_match; auto with lia.
Qed.
Lemma drop_resize_add l n m x :
  drop n (resize (n + m) x l) = resize m x (drop n l).
Proof. rewrite drop_resize_le by lia. f_equal. lia. Qed.
Lemma lookup_resize l n x i : i < n → i < length l → resize n x l !! i = l !! i.
Proof.
  intros ??. destruct (decide (n < length l)).
  - by rewrite resize_le, lookup_take by lia.
  - by rewrite resize_ge, lookup_app_l by lia.
Qed.
Lemma lookup_total_resize `{!Inhabited A} l n x i :
  i < n → i < length l → resize n x l !!! i = l !!! i.
Proof. intros. by rewrite !list_lookup_total_alt, lookup_resize. Qed.
Lemma lookup_resize_new l n x i :
  length l ≤ i → i < n → resize n x l !! i = Some x.
Proof.
  intros ??. rewrite resize_ge by lia.
  replace i with (length l + (i - length l)) by lia.
  by rewrite lookup_app_r, lookup_replicate_2 by lia.
Qed.
Lemma lookup_total_resize_new `{!Inhabited A} l n x i :
  length l ≤ i → i < n → resize n x l !!! i = x.
Proof. intros. by rewrite !list_lookup_total_alt, lookup_resize_new. Qed.
Lemma lookup_resize_old l n x i : n ≤ i → resize n x l !! i = None.
Proof. intros ?. apply lookup_ge_None_2. by rewrite length_resize. Qed.
Lemma lookup_total_resize_old `{!Inhabited A} l n x i :
  n ≤ i → resize n x l !!! i = inhabitant.
Proof. intros. by rewrite !list_lookup_total_alt, lookup_resize_old. Qed.
Lemma Forall_resize P n x l : P x → Forall P l → Forall P (resize n x l).
Proof.
  intros ? Hl. revert n.
  induction Hl; intros [|?]; simpl; auto using Forall_replicate.
Qed.
Lemma fmap_resize {B} (f : A → B) n x l : f <$> resize n x l = resize n (f x) (f <$> l).
Proof.
  revert n. induction l; intros [|?]; f_equal/=; auto using fmap_replicate.
Qed.
Lemma Forall_resize_inv P n x l :
  length l ≤ n → Forall P (resize n x l) → Forall P l.
Proof. intros ?. rewrite resize_ge, Forall_app by done. by intros []. Qed.

(** ** Properties of the [rotate] function *)
Lemma rotate_replicate n1 n2 x:
  rotate n1 (replicate n2 x) = replicate n2 x.
Proof.
  unfold rotate. rewrite drop_replicate, take_replicate, <-replicate_add.
  f_equal. lia.
Qed.

Lemma length_rotate l n:
  length (rotate n l) = length l.
Proof. unfold rotate. rewrite length_app, length_drop, length_take. lia. Qed.

Lemma lookup_rotate_r l n i:
  i < length l →
  rotate n l !! i = l !! rotate_nat_add n i (length l).
Proof.
  intros Hlen. pose proof (Nat.mod_upper_bound n (length l)) as ?.
  unfold rotate. rewrite rotate_nat_add_add_mod, rotate_nat_add_alt by lia.
  remember (n `mod` length l) as n'.
  case_decide.
  - by rewrite lookup_app_l, lookup_drop by (rewrite length_drop; lia).
  - rewrite lookup_app_r, lookup_take, length_drop by (rewrite length_drop; lia).
    f_equal. lia.
Qed.

Lemma lookup_rotate_r_Some l n i x:
  rotate n l !! i = Some x ↔
  l !! rotate_nat_add n i (length l) = Some x ∧ i < length l.
Proof.
  split.
  - intros Hl. pose proof (lookup_lt_Some _ _ _ Hl) as Hlen.
    rewrite length_rotate in Hlen. by rewrite <-lookup_rotate_r.
  - intros [??]. by rewrite lookup_rotate_r.
Qed.

Lemma lookup_rotate_l l n i:
  i < length l → rotate n l !! rotate_nat_sub n i (length l) = l !! i.
Proof.
  intros ?. rewrite lookup_rotate_r, rotate_nat_add_sub;[done..|].
  apply rotate_nat_sub_lt. lia.
Qed.

Lemma elem_of_rotate l n x:
  x ∈ rotate n l ↔ x ∈ l.
Proof.
  unfold rotate. rewrite <-(take_drop (n `mod` length l) l) at 5.
  rewrite !elem_of_app. naive_solver.
Qed.

Lemma rotate_insert_l l n i x:
  i < length l →
  rotate n (<[rotate_nat_add n i (length l):=x]> l) = <[i:=x]> (rotate n l).
Proof.
  intros Hlen. pose proof (Nat.mod_upper_bound n (length l)) as ?. unfold rotate.
  rewrite length_insert, rotate_nat_add_add_mod, rotate_nat_add_alt by lia.
  remember (n `mod` length l) as n'.
  case_decide.
  - rewrite take_insert, drop_insert_le, insert_app_l
      by (rewrite ?length_drop; lia). do 2 f_equal. lia.
  - rewrite take_insert_lt, drop_insert_gt, insert_app_r_alt, length_drop
      by (rewrite ?length_drop; lia). do 2 f_equal. lia.
Qed.

Lemma rotate_insert_r l n i x:
  i < length l →
  rotate n (<[i:=x]> l) = <[rotate_nat_sub n i (length l):=x]> (rotate n l).
Proof.
  intros ?. rewrite <-rotate_insert_l, rotate_nat_add_sub;[done..|].
  apply rotate_nat_sub_lt. lia.
Qed.

(** ** Properties of the [rotate_take] function *)
Lemma rotate_take_insert l s e i x:
  i < length l →
  rotate_take s e (<[i:=x]>l) =
  if decide (rotate_nat_sub s i (length l) < rotate_nat_sub s e (length l)) then
    <[rotate_nat_sub s i (length l):=x]> (rotate_take s e l) else rotate_take s e l.
Proof.
  intros ?. unfold rotate_take. rewrite rotate_insert_r, length_insert by done.
  case_decide; [rewrite take_insert_lt | rewrite take_insert]; naive_solver lia.
Qed.

Lemma rotate_take_add l b i :
  i < length l →
  rotate_take b (rotate_nat_add b i (length l)) l = take i (rotate b l).
Proof. intros ?. unfold rotate_take. by rewrite rotate_nat_sub_add. Qed.

(** ** Properties of the [reshape] function *)
Lemma length_reshape szs l : length (reshape szs l) = length szs.
Proof. revert l. by induction szs; intros; f_equal/=. Qed.
Lemma Forall_reshape P l szs : Forall P l → Forall (Forall P) (reshape szs l).
Proof.
  revert l. induction szs; simpl; auto using Forall_take, Forall_drop.
Qed.

(** ** Properties of [sublist_lookup] and [sublist_alter] *)
Lemma sublist_lookup_length l i n k :
  sublist_lookup i n l = Some k → length k = n.
Proof.
  unfold sublist_lookup; intros; simplify_option_eq.
  rewrite length_take, length_drop; lia.
Qed.
Lemma sublist_lookup_all l n : length l = n → sublist_lookup 0 n l = Some l.
Proof.
  intros. unfold sublist_lookup; case_guard; [|lia].
  by rewrite take_ge by (rewrite length_drop; lia).
Qed.
Lemma sublist_lookup_Some l i n :
  i + n ≤ length l → sublist_lookup i n l = Some (take n (drop i l)).
Proof. by unfold sublist_lookup; intros; simplify_option_eq. Qed.
Lemma sublist_lookup_Some' l i n l' :
  sublist_lookup i n l = Some l' ↔ l' = take n (drop i l) ∧ i + n ≤ length l.
Proof. unfold sublist_lookup. case_guard; naive_solver lia. Qed.
Lemma sublist_lookup_None l i n :
  length l < i + n → sublist_lookup i n l = None.
Proof. by unfold sublist_lookup; intros; simplify_option_eq by lia. Qed.
Lemma sublist_eq l k n :
  (n | length l) → (n | length k) →
  (∀ i, sublist_lookup (i * n) n l = sublist_lookup (i * n) n k) → l = k.
Proof.
  revert l k. assert (∀ l i,
    n ≠ 0 → (n | length l) → ¬n * i `div` n + n ≤ length l → length l ≤ i).
  { intros l i ? [j ->] Hjn. apply Nat.nlt_ge; contradict Hjn.
    rewrite <-Nat.mul_succ_r, (Nat.mul_comm n).
    apply Nat.mul_le_mono_r, Nat.le_succ_l, Nat.div_lt_upper_bound; lia. }
  intros l k Hl Hk Hlookup. destruct (decide (n = 0)) as [->|].
  { by rewrite (nil_length_inv l),
      (nil_length_inv k) by eauto using Nat.divide_0_l. }
  apply list_eq; intros i. specialize (Hlookup (i `div` n)).
  rewrite (Nat.mul_comm _ n) in Hlookup.
  unfold sublist_lookup in *; simplify_option_eq;
    [|by rewrite !lookup_ge_None_2 by auto].
  apply (f_equal (.!! i `mod` n)) in Hlookup.
  by rewrite !lookup_take, !lookup_drop, <-!Nat.div_mod in Hlookup
    by (auto using Nat.mod_upper_bound with lia).
Qed.
Lemma sublist_eq_same_length l k j n :
  length l = j * n → length k = j * n →
  (∀ i,i < j → sublist_lookup (i * n) n l = sublist_lookup (i * n) n k) → l = k.
Proof.
  intros Hl Hk ?. destruct (decide (n = 0)) as [->|].
  { by rewrite (nil_length_inv l), (nil_length_inv k) by lia. }
  apply sublist_eq with n; [by exists j|by exists j|].
  intros i. destruct (decide (i < j)); [by auto|].
  assert (∀ m, m = j * n → m < i * n + n).
  { intros ? ->. replace (i * n + n) with (S i * n) by lia.
    apply Nat.mul_lt_mono_pos_r; lia. }
  by rewrite !sublist_lookup_None by auto.
Qed.
Lemma sublist_lookup_reshape l i n m :
  0 < n → length l = m * n →
  reshape (replicate m n) l !! i = sublist_lookup (i * n) n l.
Proof.
  intros Hn Hl. unfold sublist_lookup.  apply option_eq; intros x; split.
  - intros Hx. case_guard as Hi; simplify_eq/=.
    { f_equal. clear Hi. revert i l Hl Hx.
      induction m as [|m IH]; intros [|i] l ??; simplify_eq/=; auto.
      rewrite <-drop_drop. apply IH; rewrite ?length_drop; auto with lia. }
    destruct Hi. rewrite Hl, <-Nat.mul_succ_l.
    apply Nat.mul_le_mono_r, Nat.le_succ_l. apply lookup_lt_Some in Hx.
    by rewrite length_reshape, length_replicate in Hx.
  - intros Hx. case_guard as Hi; simplify_eq/=.
    revert i l Hl Hi. induction m as [|m IH]; [auto with lia|].
    intros [|i] l ??; simpl; [done|]. rewrite <-drop_drop.
    rewrite IH; rewrite ?length_drop; auto with lia.
Qed.
Lemma sublist_lookup_compose l1 l2 l3 i n j m :
  sublist_lookup i n l1 = Some l2 → sublist_lookup j m l2 = Some l3 →
  sublist_lookup (i + j) m l1 = Some l3.
Proof.
  unfold sublist_lookup; intros; simplify_option_eq;
    repeat match goal with
    | H : _ ≤ length _ |- _ => rewrite length_take, length_drop in H
    end; rewrite ?take_drop_commute, ?drop_drop, ?take_take,
      ?Nat.min_l, Nat.add_assoc by lia; auto with lia.
Qed.
Lemma length_sublist_alter f l i n k :
  sublist_lookup i n l = Some k → length (f k) = n →
  length (sublist_alter f i n l) = length l.
Proof.
  unfold sublist_alter, sublist_lookup. intros Hk ?; simplify_option_eq.
  rewrite !length_app, Hk, !length_take, !length_drop; lia.
Qed.
Lemma sublist_lookup_alter f l i n k :
  sublist_lookup i n l = Some k → length (f k) = n →
  sublist_lookup i n (sublist_alter f i n l) = f <$> sublist_lookup i n l.
Proof.
  unfold sublist_lookup. intros Hk ?. erewrite length_sublist_alter by eauto.
  unfold sublist_alter; simplify_option_eq.
  by rewrite Hk, drop_app_length', take_app_length' by (rewrite ?length_take; lia).
Qed.
Lemma sublist_lookup_alter_ne f l i j n k :
  sublist_lookup j n l = Some k → length (f k) = n → i + n ≤ j ∨ j + n ≤ i →
  sublist_lookup i n (sublist_alter f j n l) = sublist_lookup i n l.
Proof.
  unfold sublist_lookup. intros Hk Hi ?. erewrite length_sublist_alter by eauto.
  unfold sublist_alter; simplify_option_eq; f_equal; rewrite Hk.
  apply list_eq; intros ii.
  destruct (decide (ii < length (f k))); [|by rewrite !lookup_take_ge by lia].
  rewrite !lookup_take, !lookup_drop by done. destruct (decide (i + ii < j)).
  { by rewrite lookup_app_l, lookup_take by (rewrite ?length_take; lia). }
  rewrite lookup_app_r by (rewrite length_take; lia).
  rewrite length_take_le, lookup_app_r, lookup_drop by lia. f_equal; lia.
Qed.
Lemma sublist_alter_all f l n : length l = n → sublist_alter f 0 n l = f l.
Proof.
  intros <-. unfold sublist_alter; simpl.
  by rewrite drop_all, (right_id_L [] (++)), take_ge.
Qed.
Lemma sublist_alter_compose f g l i n k :
  sublist_lookup i n l = Some k → length (f k) = n → length (g k) = n →
  sublist_alter (f ∘ g) i n l = sublist_alter f i n (sublist_alter g i n l).
Proof.
  unfold sublist_alter, sublist_lookup. intros Hk ??; simplify_option_eq.
  by rewrite !take_app_length', drop_app_length', !(assoc_L (++)), drop_app_length',
    take_app_length' by (rewrite ?length_app, ?length_take, ?Hk; lia).
Qed.
Lemma Forall_sublist_lookup P l i n k :
  sublist_lookup i n l = Some k → Forall P l → Forall P k.
Proof.
  unfold sublist_lookup. intros; simplify_option_eq.
  auto using Forall_take, Forall_drop.
Qed.
Lemma Forall_sublist_alter P f l i n k :
  Forall P l → sublist_lookup i n l = Some k → Forall P (f k) →
  Forall P (sublist_alter f i n l).
Proof.
  unfold sublist_alter, sublist_lookup. intros; simplify_option_eq.
  auto using Forall_app_2, Forall_drop, Forall_take.
Qed.
Lemma Forall_sublist_alter_inv P f l i n k :
  sublist_lookup i n l = Some k →
  Forall P (sublist_alter f i n l) → Forall P (f k).
Proof.
  unfold sublist_alter, sublist_lookup. intros ?; simplify_option_eq.
  rewrite !Forall_app; tauto.
Qed.
End general_properties.

Lemma zip_with_sublist_alter {A B} (f : A → B → A) g l k i n l' k' :
  length l = length k →
  sublist_lookup i n l = Some l' → sublist_lookup i n k = Some k' →
  length (g l') = length k' → zip_with f (g l') k' = g (zip_with f l' k') →
  zip_with f (sublist_alter g i n l) k = sublist_alter g i n (zip_with f l k).
Proof.
  unfold sublist_lookup, sublist_alter. intros Hlen; rewrite Hlen.
  intros ?? Hl' Hk'. simplify_option_eq.
  by rewrite !zip_with_app_l, !zip_with_drop, Hl', drop_drop, !zip_with_take,
    !length_take_le, Hk' by (rewrite ?length_drop; auto with lia).
Qed.

(** Interaction of [Forall2] with the above operations (needs to be outside the
section since the operations are used at different types). *)
Section Forall2.
  Context {A B} (P : A → B → Prop).
  Implicit Types x : A.
  Implicit Types y : B.
  Implicit Types l : list A.
  Implicit Types k : list B.

  Lemma Forall2_resize l (k : list B) x (y : B) n :
    P x y → Forall2 P l k → Forall2 P (resize n x l) (resize n y k).
  Proof.
    intros. rewrite !resize_spec, (Forall2_length P l k) by done.
    auto using Forall2_app, Forall2_take, Forall2_replicate.
  Qed.
  Lemma Forall2_resize_l l k x y n m :
    P x y → Forall (flip P y) l →
    Forall2 P (resize n x l) k → Forall2 P (resize m x l) (resize m y k).
  Proof.
    intros. destruct (decide (m ≤ n)).
    { rewrite <-(resize_resize l m n) by done. by apply Forall2_resize. }
    intros. assert (n = length k); subst.
    { by rewrite <-(Forall2_length P (resize n x l) k), length_resize. }
    rewrite (Nat.le_add_sub (length k) m), !resize_add,
      resize_all, drop_all, resize_nil by lia.
    auto using Forall2_app, Forall2_replicate_r,
      Forall_resize, Forall_drop, length_resize.
  Qed.
  Lemma Forall2_resize_r l k x y n m :
    P x y → Forall (P x) k →
    Forall2 P l (resize n y k) → Forall2 P (resize m x l) (resize m y k).
  Proof.
    intros. destruct (decide (m ≤ n)).
    { rewrite <-(resize_resize k m n) by done. by apply Forall2_resize. }
    assert (n = length l); subst.
    { by rewrite (Forall2_length P l (resize n y k)), length_resize. }
    rewrite (Nat.le_add_sub (length l) m), !resize_add,
      resize_all, drop_all, resize_nil by lia.
    auto using Forall2_app, Forall2_replicate_l,
      Forall_resize, Forall_drop, length_resize.
  Qed.
  Lemma Forall2_resize_r_flip l k x y n m :
    P x y → Forall (P x) k →
    length k = m → Forall2 P l (resize n y k) → Forall2 P (resize m x l) k.
  Proof.
    intros ?? <- ?. rewrite <-(resize_all k y) at 2.
    apply Forall2_resize_r with n; auto using Forall_true.
  Qed.

  Lemma Forall2_rotate n l k :
    Forall2 P l k → Forall2 P (rotate n l) (rotate n k).
  Proof.
    intros HAll. unfold rotate. rewrite (Forall2_length _ _ _ HAll).
    eauto using Forall2_app, Forall2_take, Forall2_drop.
  Qed.

  Lemma Forall2_rotate_take s e l k :
    Forall2 P l k → Forall2 P (rotate_take s e l) (rotate_take s e k).
  Proof.
    intros HAll. unfold rotate_take. rewrite (Forall2_length _ _ _ HAll).
    eauto using Forall2_take, Forall2_rotate.
  Qed.

  Lemma Forall2_sublist_lookup_l l k n i l' :
    Forall2 P l k → sublist_lookup n i l = Some l' →
    ∃ k', sublist_lookup n i k = Some k' ∧ Forall2 P l' k'.
  Proof.
    unfold sublist_lookup. intros Hlk Hl.
    exists (take i (drop n k)); simplify_option_eq.
    - auto using Forall2_take, Forall2_drop.
    - apply Forall2_length in Hlk; lia.
  Qed.
  Lemma Forall2_sublist_lookup_r l k n i k' :
    Forall2 P l k → sublist_lookup n i k = Some k' →
    ∃ l', sublist_lookup n i l = Some l' ∧ Forall2 P l' k'.
  Proof.
    intro. unfold sublist_lookup.
    erewrite (Forall2_length P) by eauto; intros; simplify_option_eq.
    eauto using Forall2_take, Forall2_drop.
  Qed.
  Lemma Forall2_sublist_alter f g l k i n l' k' :
    Forall2 P l k → sublist_lookup i n l = Some l' →
    sublist_lookup i n k = Some k' → Forall2 P (f l') (g k') →
    Forall2 P (sublist_alter f i n l) (sublist_alter g i n k).
  Proof.
    intro. unfold sublist_alter, sublist_lookup.
    erewrite Forall2_length by eauto; intros; simplify_option_eq.
    auto using Forall2_app, Forall2_drop, Forall2_take.
  Qed.
  Lemma Forall2_sublist_alter_l f l k i n l' k' :
    Forall2 P l k → sublist_lookup i n l = Some l' →
    sublist_lookup i n k = Some k' → Forall2 P (f l') k' →
    Forall2 P (sublist_alter f i n l) k.
  Proof.
    intro. unfold sublist_lookup, sublist_alter.
    erewrite <-(Forall2_length P) by eauto; intros; simplify_option_eq.
    apply Forall2_app_l;
      rewrite ?length_take_le by lia; auto using Forall2_take.
    apply Forall2_app_l; erewrite Forall2_length, length_take,
      length_drop, <-Forall2_length, Nat.min_l by eauto with lia; [done|].
    rewrite drop_drop; auto using Forall2_drop.
  Qed.

End Forall2.

Section Forall2_proper.
  Context {A} (R : relation A).

  Global Instance: ∀ n, Proper (R ==> Forall2 R ==> Forall2 R) (resize n).
  Proof. repeat intro. eauto using Forall2_resize. Qed.
  Global Instance resize_proper `{!Equiv A} n : Proper ((≡) ==> (≡) ==> (≡@{list A})) (resize n).
  Proof.
    induction n; destruct 2; simpl; repeat (constructor || f_equiv); auto.
  Qed.

  Global Instance : ∀ n, Proper (Forall2 R ==> Forall2 R) (rotate n).
  Proof. repeat intro. eauto using Forall2_rotate. Qed.
  Global Instance rotate_proper `{!Equiv A} n : Proper ((≡@{list A}) ==> (≡)) (rotate n).
  Proof. intros ??. rewrite !list_equiv_Forall2. by apply Forall2_rotate. Qed.

  Global Instance: ∀ s e, Proper (Forall2 R ==> Forall2 R) (rotate_take s e).
  Proof. repeat intro. eauto using Forall2_rotate_take. Qed.
  Global Instance rotate_take_proper `{!Equiv A} s e : Proper ((≡@{list A}) ==> (≡)) (rotate_take s e).
  Proof. intros ??. rewrite !list_equiv_Forall2. by apply Forall2_rotate_take. Qed.
End Forall2_proper.

Section more_general_properties.
Context {A : Type}.
Implicit Types x y z : A.
Implicit Types l k : list A.

(** ** Properties of the [mask] function *)
Lemma mask_nil f βs : mask f βs [] =@{list A} [].
Proof. by destruct βs. Qed.
Lemma length_mask f βs l : length (mask f βs l) = length l.
Proof. revert βs. induction l; intros [|??]; f_equal/=; auto. Qed.
Lemma mask_true f l n : length l ≤ n → mask f (replicate n true) l = f <$> l.
Proof. revert n. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
Lemma mask_false f l n : mask f (replicate n false) l = l.
Proof. revert l. induction n; intros [|??]; f_equal/=; auto. Qed.
Lemma mask_app f βs1 βs2 l :
  mask f (βs1 ++ βs2) l
  = mask f βs1 (take (length βs1) l) ++ mask f βs2 (drop (length βs1) l).
Proof. revert l. induction βs1;intros [|??]; f_equal/=; auto using mask_nil. Qed.
Lemma mask_app_2 f βs l1 l2 :
  mask f βs (l1 ++ l2)
  = mask f (take (length l1) βs) l1 ++ mask f (drop (length l1) βs) l2.
Proof. revert βs. induction l1; intros [|??]; f_equal/=; auto. Qed.
Lemma take_mask f βs l n : take n (mask f βs l) = mask f (take n βs) (take n l).
Proof. revert n βs. induction l; intros [|?] [|[] ?]; f_equal/=; auto. Qed.
Lemma drop_mask f βs l n : drop n (mask f βs l) = mask f (drop n βs) (drop n l).
Proof.
  revert n βs. induction l; intros [|?] [|[] ?]; f_equal/=; auto using mask_nil.
Qed.
Lemma sublist_lookup_mask f βs l i n :
  sublist_lookup i n (mask f βs l)
  = mask f (take n (drop i βs)) <$> sublist_lookup i n l.
Proof.
  unfold sublist_lookup; rewrite length_mask; simplify_option_eq; auto.
  by rewrite drop_mask, take_mask.
Qed.
Lemma mask_mask f g βs1 βs2 l :
  (∀ x, f (g x) = f x) → βs1 =.>* βs2 →
  mask f βs2 (mask g βs1 l) = mask f βs2 l.
Proof.
  intros ? Hβs. revert l. by induction Hβs as [|[] []]; intros [|??]; f_equal/=.
Qed.
Lemma lookup_mask f βs l i :
  βs !! i = Some true → mask f βs l !! i = f <$> l !! i.
Proof.
  revert i βs. induction l; intros [] [] ?; simplify_eq/=; f_equal; auto.
Qed.
Lemma lookup_mask_notin f βs l i :
  βs !! i ≠ Some true → mask f βs l !! i = l !! i.
Proof.
  revert i βs. induction l; intros [] [|[]] ?; simplify_eq/=; auto.
Qed.
End more_general_properties.

(** Lemmas about [positives_flatten] and [positives_unflatten]. *)
Section positives_flatten_unflatten.
  Local Open Scope positive_scope.

  Lemma positives_flatten_go_app xs acc :
    positives_flatten_go xs acc = acc ++ positives_flatten_go xs 1.
  Proof.
    revert acc.
    induction xs as [|x xs IH]; intros acc; simpl.
    - reflexivity.
    - rewrite IH.
      rewrite (IH (6 ++ _)).
      rewrite 2!(assoc_L (++)).
      reflexivity.
  Qed.

  Lemma positives_unflatten_go_app p suffix xs acc :
    positives_unflatten_go (suffix ++ Pos.reverse (Pos.dup p)) xs acc =
    positives_unflatten_go suffix xs (acc ++ p).
  Proof.
    revert suffix acc.
    induction p as [p IH|p IH|]; intros acc suffix; simpl.
    - rewrite 2!Pos.reverse_xI.
      rewrite 2!(assoc_L (++)).
      rewrite IH.
      reflexivity.
    - rewrite 2!Pos.reverse_xO.
      rewrite 2!(assoc_L (++)).
      rewrite IH.
      reflexivity.
    - reflexivity.
  Qed.

  Lemma positives_unflatten_flatten_go suffix xs acc :
    positives_unflatten_go (suffix ++ positives_flatten_go xs 1) acc 1 =
    positives_unflatten_go suffix (xs ++ acc) 1.
  Proof.
    revert suffix acc.
    induction xs as [|x xs IH]; intros suffix acc; simpl.
    - reflexivity.
    - rewrite positives_flatten_go_app.
      rewrite (assoc_L (++)).
      rewrite IH.
      rewrite (assoc_L (++)).
      rewrite positives_unflatten_go_app.
      simpl.
      rewrite (left_id_L 1 (++)).
      reflexivity.
  Qed.

  Lemma positives_unflatten_flatten xs :
    positives_unflatten (positives_flatten xs) = Some xs.
  Proof.
    unfold positives_flatten, positives_unflatten.
    replace (positives_flatten_go xs 1)
      with (1 ++ positives_flatten_go xs 1)
      by apply (left_id_L 1 (++)).
    rewrite positives_unflatten_flatten_go.
    simpl.
    rewrite (right_id_L [] (++)%list).
    reflexivity.
  Qed.

  Lemma positives_flatten_app xs ys :
    positives_flatten (xs ++ ys) = positives_flatten xs ++ positives_flatten ys.
  Proof.
    unfold positives_flatten.
    revert ys.
    induction xs as [|x xs IH]; intros ys; simpl.
    - rewrite (left_id_L 1 (++)).
      reflexivity.
    - rewrite positives_flatten_go_app, (positives_flatten_go_app xs).
      rewrite IH.
      rewrite (assoc_L (++)).
      reflexivity.
  Qed.

  Lemma positives_flatten_cons x xs :
    positives_flatten (x :: xs)
    = 1~1~0 ++ Pos.reverse (Pos.dup x) ++ positives_flatten xs.
  Proof.
    change (x :: xs) with ([x] ++ xs)%list.
    rewrite positives_flatten_app.
    rewrite (assoc_L (++)).
    reflexivity.
  Qed.

  Lemma positives_flatten_suffix (l k : list positive) :
    l `suffix_of` k → ∃ q, positives_flatten k = q ++ positives_flatten l.
  Proof.
    intros [l' ->].
    exists (positives_flatten l').
    apply positives_flatten_app.
  Qed.

  Lemma positives_flatten_suffix_eq p1 p2 (xs ys : list positive) :
    length xs = length ys →
    p1 ++ positives_flatten xs = p2 ++ positives_flatten ys →
    xs = ys.
  Proof.
    revert p1 p2 ys; induction xs as [|x xs IH];
      intros p1 p2 [|y ys] ?; simplify_eq/=; auto.
    rewrite !positives_flatten_cons, !(assoc _); intros Hl.
    assert (xs = ys) as <- by eauto; clear IH; f_equal.
    apply (inj (.++ positives_flatten xs)) in Hl.
    rewrite 2!Pos.reverse_dup in Hl.
    apply (Pos.dup_suffix_eq _ _ p1 p2) in Hl.
    by apply (inj Pos.reverse).
  Qed.
End positives_flatten_unflatten.