File: list_tactics.v

package info (click to toggle)
coq-stdpp 1.12.0-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 1,724 kB
  • sloc: makefile: 53; sh: 35; sed: 1
file content (301 lines) | stat: -rw-r--r-- 13,086 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
From Coq Require Export Permutation.
From stdpp Require Export numbers base option list_basics list_relations list_monad.
From stdpp Require Import options.

(** * Reflection over lists *)
(** We define a simple data structure [rlist] to capture a syntactic
representation of lists consisting of constants, applications and the nil list.
Note that we represent [(x ::.)] as [rapp (rnode [x])]. For now, we abstract
over the type of constants, but later we use [nat]s and a list representing
a corresponding environment. *)
Inductive rlist (A : Type) :=
  rnil : rlist A | rnode : A → rlist A | rapp : rlist A → rlist A → rlist A.
Global Arguments rnil {_} : assert.
Global Arguments rnode {_} _ : assert.
Global Arguments rapp {_} _ _ : assert.

Module rlist.
Fixpoint to_list {A} (t : rlist A) : list A :=
  match t with
  | rnil => [] | rnode l => [l] | rapp t1 t2 => to_list t1 ++ to_list t2
  end.
Notation env A := (list (list A)) (only parsing).
Definition eval {A} (E : env A) : rlist nat → list A :=
  fix go t :=
  match t with
  | rnil => []
  | rnode i => default [] (E !! i)
  | rapp t1 t2 => go t1 ++ go t2
  end.

(** A simple quoting mechanism using type classes. [QuoteLookup E1 E2 x i]
means: starting in environment [E1], look up the index [i] corresponding to the
constant [x]. In case [x] has a corresponding index [i] in [E1], the original
environment is given back as [E2]. Otherwise, the environment [E2] is extended
with a binding [i] for [x]. *)
Section quote_lookup.
  Context {A : Type}.
  Class QuoteLookup (E1 E2 : list A) (x : A) (i : nat) := {}.
  Global Instance quote_lookup_here E x : QuoteLookup (x :: E) (x :: E) x 0 := {}.
  Global Instance quote_lookup_end x : QuoteLookup [] [x] x 0 := {}.
  Global Instance quote_lookup_further E1 E2 x i y :
    QuoteLookup E1 E2 x i → QuoteLookup (y :: E1) (y :: E2) x (S i) | 1000 := {}.
End quote_lookup.

Section quote.
  Context {A : Type}.
  Class Quote (E1 E2 : env A) (l : list A) (t : rlist nat) := {}.
  Global Instance quote_nil E1 : Quote E1 E1 [] rnil := {}.
  Global Instance quote_node E1 E2 l i:
    QuoteLookup E1 E2 l i → Quote E1 E2 l (rnode i) | 1000 := {}.
  Global Instance quote_cons E1 E2 E3 x l i t :
    QuoteLookup E1 E2 [x] i →
    Quote E2 E3 l t → Quote E1 E3 (x :: l) (rapp (rnode i) t) := {}.
  Global Instance quote_app E1 E2 E3 l1 l2 t1 t2 :
    Quote E1 E2 l1 t1 → Quote E2 E3 l2 t2 → Quote E1 E3 (l1 ++ l2) (rapp t1 t2) := {}.
End quote.

Section eval.
  Context {A} (E : env A).

  Lemma eval_alt t : eval E t = to_list t ≫= default [] ∘ (E !!.).
  Proof.
    induction t; csimpl.
    - done.
    - by rewrite (right_id_L [] (++)).
    - rewrite bind_app. by f_equal.
  Qed.
  Lemma eval_eq t1 t2 : to_list t1 = to_list t2 → eval E t1 = eval E t2.
  Proof. intros Ht. by rewrite !eval_alt, Ht. Qed.
  Lemma eval_Permutation t1 t2 :
    to_list t1 ≡ₚ to_list t2 → eval E t1 ≡ₚ eval E t2.
  Proof. intros Ht. by rewrite !eval_alt, Ht. Qed.
  Lemma eval_submseteq t1 t2 :
    to_list t1 ⊆+ to_list t2 → eval E t1 ⊆+ eval E t2.
  Proof. intros Ht. by rewrite !eval_alt, Ht. Qed.
End eval.
End rlist.

(** * Tactics *)
Ltac quote_Permutation :=
  match goal with
  | |- ?l1 ≡ₚ ?l2 =>
    match type of (_ : rlist.Quote [] _ l1 _) with rlist.Quote _ ?E2 _ ?t1 =>
    match type of (_ : rlist.Quote E2 _ l2 _) with rlist.Quote _ ?E3 _ ?t2 =>
      change (rlist.eval E3 t1 ≡ₚ rlist.eval E3 t2)
    end end
  end.
Ltac solve_Permutation :=
  quote_Permutation; apply rlist.eval_Permutation;
  compute_done.

Ltac quote_submseteq :=
  match goal with
  | |- ?l1 ⊆+ ?l2 =>
    match type of (_ : rlist.Quote [] _ l1 _) with rlist.Quote _ ?E2 _ ?t1 =>
    match type of (_ : rlist.Quote E2 _ l2 _) with rlist.Quote _ ?E3 _ ?t2 =>
      change (rlist.eval E3 t1 ⊆+ rlist.eval E3 t2)
    end end
  end.
Ltac solve_submseteq :=
  quote_submseteq; apply rlist.eval_submseteq;
  compute_done.

Ltac decompose_elem_of_list := repeat
  match goal with
  | H : ?x ∈ [] |- _ => by destruct (not_elem_of_nil x)
  | H : _ ∈ _ :: _ |- _ => apply elem_of_cons in H; destruct H
  | H : _ ∈ _ ++ _ |- _ => apply elem_of_app in H; destruct H
  end.
Ltac solve_length :=
  simplify_eq/=;
  repeat (rewrite length_fmap || rewrite length_app);
  repeat match goal with
  | H : _ =@{list _} _ |- _ => apply (f_equal length) in H
  | H : Forall2 _ _ _ |- _ => apply Forall2_length in H
  | H : context[length (_ <$> _)] |- _ => rewrite length_fmap in H
  end; done || congruence.
Ltac simplify_list_eq ::= repeat
  match goal with
  | _ => progress simplify_eq/=
  | H : [?x] !! ?i = Some ?y |- _ =>
    destruct i; [change (Some x = Some y) in H | discriminate]
  | H : _ <$> _ = [] |- _ => apply fmap_nil_inv in H
  | H : [] = _ <$> _ |- _ => symmetry in H; apply fmap_nil_inv in H
  | H : zip_with _ _ _ = [] |- _ => apply zip_with_nil_inv in H; destruct H
  | H : [] = zip_with _ _ _ |- _ => symmetry in H
  | |- context [(_ ++ _) ++ _] => rewrite <-(assoc_L (++))
  | H : context [(_ ++ _) ++ _] |- _ => rewrite <-(assoc_L (++)) in H
  | H : context [_ <$> (_ ++ _)] |- _ => rewrite fmap_app in H
  | |- context [_ <$> (_ ++ _)]  => rewrite fmap_app
  | |- context [_ ++ []] => rewrite (right_id_L [] (++))
  | H : context [_ ++ []] |- _ => rewrite (right_id_L [] (++)) in H
  | |- context [take _ (_ <$> _)] => rewrite <-fmap_take
  | H : context [take _ (_ <$> _)] |- _ => rewrite <-fmap_take in H
  | |- context [drop _ (_ <$> _)] => rewrite <-fmap_drop
  | H : context [drop _ (_ <$> _)] |- _ => rewrite <-fmap_drop in H
  | H : _ ++ _ = _ ++ _ |- _ =>
    repeat (rewrite <-app_comm_cons in H || rewrite <-(assoc_L (++)) in H);
    apply app_inj_1 in H; [destruct H|solve_length]
  | H : _ ++ _ = _ ++ _ |- _ =>
    repeat (rewrite app_comm_cons in H || rewrite (assoc_L (++)) in H);
    apply app_inj_2 in H; [destruct H|solve_length]
  | |- context [zip_with _ (_ ++ _) (_ ++ _)] =>
    rewrite zip_with_app by solve_length
  | |- context [take _ (_ ++ _)] => rewrite take_app_length' by solve_length
  | |- context [drop _ (_ ++ _)] => rewrite drop_app_length' by solve_length
  | H : context [zip_with _ (_ ++ _) (_ ++ _)] |- _ =>
    rewrite zip_with_app in H by solve_length
  | H : context [take _ (_ ++ _)] |- _ =>
    rewrite take_app_length' in H by solve_length
  | H : context [drop _ (_ ++ _)] |- _ =>
    rewrite drop_app_length' in H by solve_length
  | H : ?l !! ?i = _, H2 : context [(_ <$> ?l) !! ?i] |- _ =>
     rewrite list_lookup_fmap, H in H2
  end.
Ltac decompose_Forall_hyps :=
  repeat match goal with
  | H : Forall _ [] |- _ => clear H
  | H : Forall _ (_ :: _) |- _ => rewrite Forall_cons in H; destruct H
  | H : Forall _ (_ ++ _) |- _ => rewrite Forall_app in H; destruct H
  | H : Forall2 _ [] [] |- _ => clear H
  | H : Forall2 _ (_ :: _) [] |- _ => destruct (Forall2_cons_nil_inv _ _ _ H)
  | H : Forall2 _ [] (_ :: _) |- _ => destruct (Forall2_nil_cons_inv _ _ _ H)
  | H : Forall2 _ [] ?k |- _ => apply Forall2_nil_inv_l in H
  | H : Forall2 _ ?l [] |- _ => apply Forall2_nil_inv_r in H
  | H : Forall2 _ (_ :: _) (_ :: _) |- _ =>
    apply Forall2_cons_1 in H; destruct H
  | H : Forall2 _ (_ :: _) ?k |- _ =>
    let k_hd := fresh k "_hd" in let k_tl := fresh k "_tl" in
    apply Forall2_cons_inv_l in H; destruct H as (k_hd&k_tl&?&?&->);
    rename k_tl into k
  | H : Forall2 _ ?l (_ :: _) |- _ =>
    let l_hd := fresh l "_hd" in let l_tl := fresh l "_tl" in
    apply Forall2_cons_inv_r in H; destruct H as (l_hd&l_tl&?&?&->);
    rename l_tl into l
  | H : Forall2 _ (_ ++ _) ?k |- _ =>
    let k1 := fresh k "_1" in let k2 := fresh k "_2" in
    apply Forall2_app_inv_l in H; destruct H as (k1&k2&?&?&->)
  | H : Forall2 _ ?l (_ ++ _) |- _ =>
    let l1 := fresh l "_1" in let l2 := fresh l "_2" in
    apply Forall2_app_inv_r in H; destruct H as (l1&l2&?&?&->)
  | _ => progress simplify_eq/=
  | H : Forall3 _ _ (_ :: _) _ |- _ =>
    apply Forall3_cons_inv_m in H; destruct H as (?&?&?&?&?&?&?&?)
  | H : Forall2 _ (_ :: _) ?k |- _ =>
    apply Forall2_cons_inv_l in H; destruct H as (?&?&?&?&?)
  | H : Forall2 _ ?l (_ :: _) |- _ =>
    apply Forall2_cons_inv_r in H; destruct H as (?&?&?&?&?)
  | H : Forall2 _ (_ ++ _) (_ ++ _) |- _ =>
    apply Forall2_app_inv in H; [destruct H|solve_length]
  | H : Forall2 _ ?l (_ ++ _) |- _ =>
    apply Forall2_app_inv_r in H; destruct H as (?&?&?&?&?)
  | H : Forall2 _ (_ ++ _) ?k |- _ =>
    apply Forall2_app_inv_l in H; destruct H as (?&?&?&?&?)
  | H : Forall3 _ _ (_ ++ _) _ |- _ =>
    apply Forall3_app_inv_m in H; destruct H as (?&?&?&?&?&?&?&?)
  | H : Forall ?P ?l, H1 : ?l !! _ = Some ?x |- _ =>
    (* to avoid some stupid loops, not fool proof *)
    unless (P x) by auto using Forall_app_2, Forall_nil_2;
    let E := fresh in
    assert (P x) as E by (apply (Forall_lookup_1 P _ _ _ H H1)); lazy beta in E
  | H : Forall2 ?P ?l ?k |- _ =>
    match goal with
    | H1 : l !! ?i = Some ?x, H2 : k !! ?i = Some ?y |- _ =>
      unless (P x y) by done; let E := fresh in
      assert (P x y) as E by (by apply (Forall2_lookup_lr P l k i x y));
      lazy beta in E
    | H1 : l !! ?i = Some ?x |- _ =>
      try (match goal with _ : k !! i = Some _ |- _ => fail 2 end);
      destruct (Forall2_lookup_l P _ _ _ _ H H1) as (?&?&?)
    | H2 : k !! ?i = Some ?y |- _ =>
      try (match goal with _ : l !! i = Some _ |- _ => fail 2 end);
      destruct (Forall2_lookup_r P _ _ _ _ H H2) as (?&?&?)
    end
  | H : Forall3 ?P ?l ?l' ?k |- _ =>
    lazymatch goal with
    | H1:l !! ?i = Some ?x, H2:l' !! ?i = Some ?y, H3:k !! ?i = Some ?z |- _ =>
      unless (P x y z) by done; let E := fresh in
      assert (P x y z) as E by (by apply (Forall3_lookup_lmr P l l' k i x y z));
      lazy beta in E
    | H1 : l !! _ = Some ?x |- _ =>
      destruct (Forall3_lookup_l P _ _ _ _ _ H H1) as (?&?&?&?&?)
    | H2 : l' !! _ = Some ?y |- _ =>
      destruct (Forall3_lookup_m P _ _ _ _ _ H H2) as (?&?&?&?&?)
    | H3 : k !! _ = Some ?z |- _ =>
      destruct (Forall3_lookup_r P _ _ _ _ _ H H3) as (?&?&?&?&?)
    end
  end.
Ltac list_simplifier :=
  simplify_eq/=;
  repeat match goal with
  | _ => progress decompose_Forall_hyps
  | _ => progress simplify_list_eq
  | H : _ <$> _ = _ :: _ |- _ =>
    apply fmap_cons_inv in H; destruct H as (?&?&?&?&?)
  | H : _ :: _ = _ <$> _ |- _ => symmetry in H
  | H : _ <$> _ = _ ++ _ |- _ =>
    apply fmap_app_inv in H; destruct H as (?&?&?&?&?)
  | H : _ ++ _ = _ <$> _ |- _ => symmetry in H
  | H : zip_with _ _ _ = _ :: _ |- _ =>
    apply zip_with_cons_inv in H; destruct H as (?&?&?&?&?&?&?&?)
  | H : _ :: _ = zip_with _ _ _ |- _ => symmetry in H
  | H : zip_with _ _ _ = _ ++ _ |- _ =>
    apply zip_with_app_inv in H; destruct H as (?&?&?&?&?&?&?&?&?)
  | H : _ ++ _ = zip_with _ _ _ |- _ => symmetry in H
  end.
Ltac decompose_Forall := repeat
  match goal with
  | |- Forall _ _ => by apply Forall_true
  | |- Forall _ [] => constructor
  | |- Forall _ (_ :: _) => constructor
  | |- Forall _ (_ ++ _) => apply Forall_app_2
  | |- Forall _ (_ <$> _) => apply Forall_fmap
  | |- Forall _ (_ ≫= _) => apply Forall_bind
  | |- Forall2 _ _ _ => apply Forall_Forall2_diag
  | |- Forall2 _ [] [] => constructor
  | |- Forall2 _ (_ :: _) (_ :: _) => constructor
  | |- Forall2 _ (_ ++ _) (_ ++ _) => first
    [ apply Forall2_app; [by decompose_Forall |]
    | apply Forall2_app; [| by decompose_Forall]]
  | |- Forall2 _ (_ <$> _) _ => apply Forall2_fmap_l
  | |- Forall2 _ _ (_ <$> _) => apply Forall2_fmap_r
  | _ => progress decompose_Forall_hyps
  | H : Forall _ (_ <$> _) |- _ => rewrite Forall_fmap in H
  | H : Forall _ (_ ≫= _) |- _ => rewrite Forall_bind in H
  | |- Forall _ _ =>
    apply Forall_lookup_2; intros ???; progress decompose_Forall_hyps
  | |- Forall2 _ _ _ =>
    apply Forall2_same_length_lookup_2; [solve_length|];
    intros ?????; progress decompose_Forall_hyps
  end.

(** The [simplify_suffix] tactic removes [suffix] hypotheses that are
tautologies, and simplifies [suffix] hypotheses involving [(::)] and
[(++)]. *)
Ltac simplify_suffix := repeat
  match goal with
  | H : suffix (_ :: _) _ |- _ => destruct (suffix_cons_not _ _ H)
  | H : suffix (_ :: _) [] |- _ => apply suffix_nil_inv in H
  | H : suffix (_ ++ _) (_ ++ _) |- _ => apply suffix_app_inv in H
  | H : suffix (_ :: _) (_ :: _) |- _ =>
    destruct (suffix_cons_inv _ _ _ _ H); clear H
  | H : suffix ?x ?x |- _ => clear H
  | H : suffix ?x (_ :: ?x) |- _ => clear H
  | H : suffix ?x (_ ++ ?x) |- _ => clear H
  | _ => progress simplify_eq/=
  end.

(** The [solve_suffix] tactic tries to solve goals involving [suffix]. It
uses [simplify_suffix] to simplify hypotheses and tries to solve [suffix]
conclusions. This tactic either fails or proves the goal. *)
Ltac solve_suffix := by intuition (repeat
  match goal with
  | _ => done
  | _ => progress simplify_suffix
  | |- suffix [] _ => apply suffix_nil
  | |- suffix _ _ => reflexivity
  | |- suffix _ (_ :: _) => apply suffix_cons_r
  | |- suffix _ (_ ++ _) => apply suffix_app_r
  | H : suffix _ _ → False |- _ => destruct H
  end).