1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Certification of Imperative Programs / Jean-Christophe Fillitre *)
(* $Id: Exchange.v,v 1.4.2.1 2004/07/16 19:30:00 herbelin Exp $ *)
(****************************************************************************)
(* Exchange of two elements in an array *)
(* Definition and properties *)
(****************************************************************************)
Require Import ProgInt.
Require Import Arrays.
Set Implicit Arguments.
(* Definition *)
Inductive exchange (n:Z) (A:Set) (t t':array n A) (i j:Z) : Prop :=
exchange_c :
(0 <= i < n)%Z ->
(0 <= j < n)%Z ->
#t [i] = #t' [j] ->
#t [j] = #t' [i] ->
(forall k:Z, (0 <= k < n)%Z -> k <> i -> k <> j -> #t [k] = #t' [k]) ->
exchange t t' i j.
(* Properties about exchanges *)
Lemma exchange_1 :
forall (n:Z) (A:Set) (t:array n A) (i j:Z),
(0 <= i < n)%Z ->
(0 <= j < n)%Z -> #(store (store t i #t [j]) j #t [i]) [i] = #t [j].
Proof.
intros n A t i j H_i H_j.
case (dec_eq j i).
intro eq_i_j. rewrite eq_i_j.
auto with datatypes.
intro not_j_i.
rewrite (store_def_2 (store t i #t [j]) #t [i] H_j H_i not_j_i).
auto with datatypes.
Qed.
Hint Resolve exchange_1: v62 datatypes.
Lemma exchange_proof :
forall (n:Z) (A:Set) (t:array n A) (i j:Z),
(0 <= i < n)%Z ->
(0 <= j < n)%Z -> exchange (store (store t i #t [j]) j #t [i]) t i j.
Proof.
intros n A t i j H_i H_j.
apply exchange_c; auto with datatypes.
intros k H_k not_k_i not_k_j.
cut (j <> k); auto with datatypes. intro not_j_k.
rewrite (store_def_2 (store t i #t [j]) #t [i] H_j H_k not_j_k).
auto with datatypes.
Qed.
Hint Resolve exchange_proof: v62 datatypes.
Lemma exchange_sym :
forall (n:Z) (A:Set) (t t':array n A) (i j:Z),
exchange t t' i j -> exchange t' t i j.
Proof.
intros n A t t' i j H1.
elim H1. clear H1. intros.
constructor 1; auto with datatypes.
intros. rewrite (H3 k); auto with datatypes.
Qed.
Hint Resolve exchange_sym: v62 datatypes.
Lemma exchange_id :
forall (n:Z) (A:Set) (t t':array n A) (i j:Z),
exchange t t' i j ->
i = j -> forall k:Z, (0 <= k < n)%Z -> #t [k] = #t' [k].
Proof.
intros n A t t' i j Hex Heq k Hk.
elim Hex. clear Hex. intros.
rewrite Heq in H1. rewrite Heq in H2.
case (Z_eq_dec k j).
intro Heq'. rewrite Heq'. assumption.
intro Hnoteq. apply (H3 k); auto with datatypes. rewrite Heq. assumption.
Qed.
Hint Resolve exchange_id: v62 datatypes.
|