1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Library about sorted (sub-)arrays / Nicolas Magaud, July 1998 *)
(* $Id: Sorted.v,v 1.7.2.1 2004/07/16 19:30:00 herbelin Exp $ *)
Require Export Arrays.
Require Import ArrayPermut.
Require Import ZArithRing.
Require Import Omega.
Open Local Scope Z_scope.
Set Implicit Arguments.
(* Definition *)
Definition sorted_array (N:Z) (A:array N Z) (deb fin:Z) :=
deb <= fin -> forall x:Z, x >= deb -> x < fin -> #A [x] <= #A [x + 1].
(* Elements of a sorted sub-array are in increasing order *)
(* one element and the next one *)
Lemma sorted_elements_1 :
forall (N:Z) (A:array N Z) (n m:Z),
sorted_array A n m ->
forall k:Z,
k >= n -> forall i:Z, 0 <= i -> k + i <= m -> #A [k] <= #A [k + i].
Proof.
intros N A n m H_sorted k H_k i H_i.
pattern i in |- *. apply natlike_ind.
intro.
replace (k + 0) with k; omega. (*** Ring `k+0` => BUG ***)
intros.
apply Zle_trans with (m := #A [k + x]).
apply H0; omega.
unfold Zsucc in |- *.
replace (k + (x + 1)) with (k + x + 1).
unfold sorted_array in H_sorted.
apply H_sorted; omega.
omega.
assumption.
Qed.
(* one element and any of the following *)
Lemma sorted_elements :
forall (N:Z) (A:array N Z) (n m k l:Z),
sorted_array A n m ->
k >= n -> l < N -> k <= l -> l <= m -> #A [k] <= #A [l].
Proof.
intros.
replace l with (k + (l - k)).
apply sorted_elements_1 with (n := n) (m := m);
[ assumption | omega | omega | omega ].
omega.
Qed.
Hint Resolve sorted_elements: datatypes v62.
(* A sub-array of a sorted array is sorted *)
Lemma sub_sorted_array :
forall (N:Z) (A:array N Z) (deb fin i j:Z),
sorted_array A deb fin ->
i >= deb -> j <= fin -> i <= j -> sorted_array A i j.
Proof.
unfold sorted_array in |- *.
intros.
apply H; omega.
Qed.
Hint Resolve sub_sorted_array: datatypes v62.
(* Extension on the left of the property of being sorted *)
Lemma left_extension :
forall (N:Z) (A:array N Z) (i j:Z),
i > 0 ->
j < N ->
sorted_array A i j -> #A [i - 1] <= #A [i] -> sorted_array A (i - 1) j.
Proof.
intros; unfold sorted_array in |- *; intros.
elim (Z_ge_lt_dec x i). (* (`x >= i`) + (`x < i`) *)
intro Hcut.
apply H1; omega.
intro Hcut.
replace x with (i - 1).
replace (i - 1 + 1) with i; [ assumption | omega ].
omega.
Qed.
(* Extension on the right *)
Lemma right_extension :
forall (N:Z) (A:array N Z) (i j:Z),
i >= 0 ->
j < N - 1 ->
sorted_array A i j -> #A [j] <= #A [j + 1] -> sorted_array A i (j + 1).
Proof.
intros; unfold sorted_array in |- *; intros.
elim (Z_lt_ge_dec x j).
intro Hcut.
apply H1; omega.
intro HCut.
replace x with j; [ assumption | omega ].
Qed.
(* Substitution of the leftmost value by a smaller value *)
Lemma left_substitution :
forall (N:Z) (A:array N Z) (i j v:Z),
i >= 0 ->
j < N ->
sorted_array A i j -> v <= #A [i] -> sorted_array (store A i v) i j.
Proof.
intros N A i j v H_i H_j H_sorted H_v.
unfold sorted_array in |- *; intros.
cut (x = i \/ x > i).
intro Hcut; elim Hcut; clear Hcut; intro.
rewrite H2.
rewrite store_def_1; try omega.
rewrite store_def_2; try omega.
apply Zle_trans with (m := #A [i]); [ assumption | apply H_sorted; omega ].
rewrite store_def_2; try omega.
rewrite store_def_2; try omega.
apply H_sorted; omega.
omega.
Qed.
(* Substitution of the rightmost value by a larger value *)
Lemma right_substitution :
forall (N:Z) (A:array N Z) (i j v:Z),
i >= 0 ->
j < N ->
sorted_array A i j -> #A [j] <= v -> sorted_array (store A j v) i j.
Proof.
intros N A i j v H_i H_j H_sorted H_v.
unfold sorted_array in |- *; intros.
cut (x = j - 1 \/ x < j - 1).
intro Hcut; elim Hcut; clear Hcut; intro.
rewrite H2.
replace (j - 1 + 1) with j; [ idtac | omega ]. (*** Ring `j-1+1`. => BUG ***)
rewrite store_def_2; try omega.
rewrite store_def_1; try omega.
apply Zle_trans with (m := #A [j]).
apply sorted_elements with (n := i) (m := j); try omega; assumption.
assumption.
rewrite store_def_2; try omega.
rewrite store_def_2; try omega.
apply H_sorted; omega.
omega.
Qed.
(* Affectation outside of the sorted region *)
Lemma no_effect :
forall (N:Z) (A:array N Z) (i j k v:Z),
i >= 0 ->
j < N ->
sorted_array A i j ->
0 <= k < i \/ j < k < N -> sorted_array (store A k v) i j.
Proof.
intros.
unfold sorted_array in |- *; intros.
rewrite store_def_2; try omega.
rewrite store_def_2; try omega.
apply H1; assumption.
Qed.
Lemma sorted_array_id :
forall (N:Z) (t1 t2:array N Z) (g d:Z),
sorted_array t1 g d -> array_id t1 t2 g d -> sorted_array t2 g d.
Proof.
intros N t1 t2 g d Hsorted Hid.
unfold array_id in Hid.
unfold sorted_array in Hsorted. unfold sorted_array in |- *.
intros Hgd x H1x H2x.
rewrite <- (Hid x); [ idtac | omega ].
rewrite <- (Hid (x + 1)); [ idtac | omega ].
apply Hsorted; assumption.
Qed.
|