1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
|
(***********************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
(* \VV/ *************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
(* Certification of Imperative Programs / Jean-Christophe Fillitre *)
(* $Id: Handbook.v,v 1.3 2001/04/11 07:56:19 filliatr Exp $ *)
(* This file contains proofs of programs taken from the
* "Handbook of Theoretical Computer Science", volume B,
* chapter "Methods and Logics for Proving Programs", by P. Cousot,
* pp 841--993, Edited by J. van Leeuwen (c) Elsevier Science Publishers B.V.
* 1990.
*
* Programs are refered to by numbers and pages.
*)
Require Correctness.
Require Sumbool.
Require Omega.
Require Zcomplements.
Require Zpower.
(****************************************************************************)
(* program (2) page 853 to compute x^y (annotated version is (25) page 860) *)
(* en attendant... *)
Parameter Zdiv2 : Z->Z.
Parameter Zeven_odd_dec : (x:Z){`x=2*(Zdiv2 x)`}+{`x=2*(Zdiv2 x)+1`}.
Definition Zodd_dec := [z:Z](sumbool_not ? ? (Zeven_odd_dec z)).
Definition Zodd_bool := [z:Z](bool_of_sumbool ? ? (Zodd_dec z)).
Axiom axiom1 : (x,y:Z) `y>0` -> `x*(Zpower x (Zpred y)) = (Zpower x y)`.
Axiom axiom2 : (x:Z)`x>0` -> `(Zdiv2 x)<x`.
Axiom axiom3 : (x,y:Z) `y>=0` -> `(Zpower (x*x) (Zdiv2 y)) = (Zpower x y)`.
Global Variable X : Z ref.
Global Variable Y : Z ref.
Global Variable Z_ : Z ref.
Correctness pgm25
{ `Y >= 0` }
begin
Z_ := 1;
while !Y <> 0 do
{ invariant `Y >= 0` /\ `Z_ * (Zpower X Y) = (Zpower X@0 Y@0)`
variant Y }
if (Zodd_bool !Y) then begin
Y := (Zpred !Y);
Z_ := (Zmult !Z_ !X)
end else begin
Y := (Zdiv2 !Y);
X := (Zmult !X !X)
end
done
end
{ Z_ = (Zpower X@ Y@) }.
Proof.
Split.
Unfold Zpred; Unfold Zwf; Omega.
Split.
Unfold Zpred; Omega.
Decompose [and] Pre2.
Rewrite <- H0.
Replace `Z_1*X0*(Zpower X0 (Zpred Y0))` with `Z_1*(X0*(Zpower X0 (Zpred Y0)))`.
Apply f_equal with f := (Zmult Z_1).
Apply axiom1.
Omega.
Auto.
Symmetry.
Apply Zmult_assoc_r.
Split.
Unfold Zwf.
Repeat (Apply conj).
Omega.
Omega.
Apply axiom2. Omega.
Split.
Omega.
Decompose [and] Pre2.
Rewrite <- H0.
Apply f_equal with f:=(Zmult Z_1).
Apply axiom3. Omega.
Omega.
Decompose [and] Post6.
Rewrite <- H2.
Rewrite H0.
Simpl.
Omega.
Save.
(****************************************************************************)
(* program (178) page 934 to compute the factorial using global variables
* annotated version is (185) page 939
*)
Parameter Zfact : Z -> Z.
Axiom axiom4 : `(Zfact 0) = 1`.
Axiom axiom5 : (x:Z) `x>0` -> `(Zfact (x-1))*x=(Zfact x)`.
Correctness pgm178
let rec F (u:unit) : unit { variant X } =
{ `X>=0` }
(if !X = 0 then
Y := 1
else begin
label L;
X := (Zpred !X);
(F tt);
X := (Zs !X);
Y := (Zmult !Y !X)
end)
{ `X=X@` /\ `Y=(Zfact X@)` }.
Proof.
Rewrite Test1. Rewrite axiom4. Auto.
Unfold Zwf. Unfold Zpred. Omega.
Unfold Zpred. Omega.
Unfold Zs. Unfold Zpred in Post3. Split.
Omega.
Decompose [and] Post3.
Rewrite H.
Replace `X0+(-1)+1` with X0.
Rewrite H0.
Replace `X0+(-1)` with `X0-1`.
Apply axiom5.
Omega.
Omega.
Omega.
Save.
(****************************************************************************)
(* program (186) page 939 "showing the usefulness of auxiliary variables" ! *)
Global Variable N : Z ref.
Global Variable S : Z ref.
Correctness pgm186
let rec F (u:unit) : unit { variant N } =
{ `N>=0` }
(if !N > 0 then begin
label L;
N := (Zpred !N);
(F tt);
S := (Zs !S);
(F tt);
N := (Zs !N)
end)
{ `N=N@` /\ `S=S@+(Zpower 2 N@)-1` }.
Proof.
Unfold Zwf. Unfold Zpred. Omega.
Unfold Zpred. Omega.
Decompose [and] Post5. Rewrite H. Unfold Zwf. Unfold Zpred. Omega.
Decompose [and] Post5. Rewrite H. Unfold Zpred. Omega.
Split.
Unfold Zpred in Post5. Omega.
Decompose [and] Post4. Rewrite H0.
Decompose [and] Post5. Rewrite H2. Rewrite H1.
Replace `(Zpower 2 N0)` with `2*(Zpower 2 (Zpred N0))`. Omega.
Symmetry.
Replace `(Zpower 2 N0)` with `(Zpower 2 (1+(Zpred N0)))`.
Replace `2*(Zpower 2 (Zpred N0))` with `(Zpower 2 1)*(Zpower 2 (Zpred N0))`.
Apply Zpower_exp.
Omega.
Unfold Zpred. Omega.
Auto.
Replace `(1+(Zpred N0))` with N0; [ Auto | Unfold Zpred; Omega ].
Split.
Auto.
Replace N0 with `0`; Simpl; Omega.
Save.
(****************************************************************************)
(* program (196) page 944 (recursive factorial procedure with value-result
* parameters)
*)
Correctness pgm196
let rec F (U:Z) (V:Z ref) : unit { variant U } =
{ `U >= 0` }
(if U = 0 then
V := 1
else begin
(F (Zpred U) V);
V := (Zmult !V U)
end)
{ `V = (Zfact U)` }.
Proof.
Symmetry. Rewrite Test1. Apply axiom4.
Unfold Zwf. Unfold Zpred. Omega.
Unfold Zpred. Omega.
Rewrite Post3.
Unfold Zpred. Replace `U0+(-1)` with `U0-1`. Apply axiom5.
Omega.
Omega.
Save.
(****************************************************************************)
(* program (197) page 945 (L_4 subset of Pascal) *)
(*
procedure P(X:Z; procedure Q(Z:Z));
procedure L(X:Z); begin Q(X-1) end;
begin if X>0 then P(X-1,L) else Q(X) end;
procedure M(N:Z);
procedure R(X:Z); begin writeln(X) (* => RES := !X *) end;
begin P(N,R) end.
*)
|