1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Certification of Imperative Programs / Jean-Christophe Fillitre *)
(* $Id: pmonad.ml,v 1.6.16.1 2004/07/16 19:30:02 herbelin Exp $ *)
open Util
open Names
open Term
open Termast
open Pmisc
open Putil
open Ptype
open Past
open Prename
open Penv
open Pcic
open Peffect
(* [product ren [y1,z1;...;yk,zk] q] constructs
* the (possibly dependent) tuple type
*
* z1 x ... x zk if no post-condition
* or \exists. y1:z1. ... yk:zk. (Q x1 ... xn) otherwise
*
* where the xi are given by the renaming [ren].
*)
let product_name = function
| 2 -> "prod"
| n -> check_product_n n; Printf.sprintf "tuple_%d" n
let dep_product_name = function
| 1 -> "sig"
| n -> check_dep_product_n n; Printf.sprintf "sig_%d" n
let product ren env before lo = function
| None -> (* non dependent case *)
begin match lo with
| [_,v] -> v
| _ ->
let s = product_name (List.length lo) in
Term.applist (constant s, List.map snd lo)
end
| Some q -> (* dependent case *)
let s = dep_product_name (List.length lo) in
let a' = apply_post ren env before q in
Term.applist (constant s, (List.map snd lo) @ [a'.a_value])
(* [arrow ren v pl] abstracts the term v over the pre-condition if any
* i.e. computes
*
* (P1 x1 ... xn) -> ... -> (Pk x1 ... xn) -> v
*
* where the xi are given by the renaming [ren].
*)
let arrow ren env v pl =
List.fold_left
(fun t p ->
if p.p_assert then t else Term.mkArrow (apply_pre ren env p).p_value t)
v pl
(* [abstract_post ren env (e,q) (res,v)] abstract a post-condition q
* over the write-variables of e *)
let rec abstract_post ren env (e,q) =
let after_id id = id_of_string ((string_of_id id) ^ "'") in
let (_,go) = Peffect.get_repr e in
let al = List.map (fun id -> (id,after_id id)) go in
let q = option_app (named_app (subst_in_constr al)) q in
let tgo = List.map (fun (id,aid) -> (aid, trad_type_in_env ren env id)) al in
option_app (named_app (abstract tgo)) q
(* Translation of effects types in cic types.
*
* [trad_ml_type_v] and [trad_ml_type_c] translate types with effects
* into cic types.
*)
and prod ren env g =
List.map
(fun id -> (current_var ren id, trad_type_in_env ren env id))
g
and input ren env e =
let i,_ = Peffect.get_repr e in
prod ren env i
and output ren env ((id,v),e) =
let tv = trad_ml_type_v ren env v in
let _,o = Peffect.get_repr e in
(prod ren env o) @ [id,tv]
and input_output ren env c =
let ((res,v),e,_,_) = c in
input ren env e, output ren env ((res,v),e)
(* The function t -> \barre{t} on V and C. *)
and trad_ml_type_c ren env c =
let ((res,v),e,p,q) = c in
let q = abstract_post ren env (e,q) in
let lo = output ren env ((res,v),e) in
let ty = product ren env (current_date ren) lo q in
let ty = arrow ren env ty p in
let li = input ren env e in
n_mkNamedProd ty li
and trad_ml_type_v ren env = function
| Ref _ | Array _ -> invalid_arg "Monad.trad_ml_type_v"
| Arrow (bl, c) ->
let bl',ren',env' =
List.fold_left
(fun (bl,ren,env) b -> match b with
| (id,BindType ((Ref _ | Array _) as v)) ->
let env' = add (id,v) env in
let ren' = initial_renaming env' in
(bl,ren',env')
| (id,BindType v) ->
let tt = trad_ml_type_v ren env v in
let env' = add (id,v) env in
let ren' = initial_renaming env' in
(id,tt)::bl,ren',env'
| (id, BindSet) ->
(id,mkSet) :: bl,ren,env
| _ -> failwith "Monad: trad_ml_type_v: not yet implemented"
)
([],ren,env) bl
in
n_mkNamedProd (trad_ml_type_c ren' env' c) bl'
| TypePure c ->
(apply_pre ren env (anonymous_pre false c)).p_value
and trad_imp_type ren env = function
| Ref v -> trad_ml_type_v ren env v
| Array (c,v) -> Term.applist (constant "array",
[c; trad_ml_type_v ren env v])
| _ -> invalid_arg "Monad.trad_imp_type"
and trad_type_in_env ren env id =
let v = type_in_env env id in trad_imp_type ren env v
(* bindings *)
let binding_of_alist ren env al =
List.map
(fun (id,id') -> (id', CC_typed_binder (trad_type_in_env ren env id)))
al
(* [make_abs bl t p] abstracts t w.r.t binding list bl., that is
* [x1:t1]...[xn:tn]t. Returns t if the binding is empty. *)
let make_abs bl t = match bl with
| [] -> t
| _ -> CC_lam (bl, t)
(* [result_tuple ren before env (res,v) (ef,q)] constructs the tuple
*
* (y1,...,yn,res,?::(q/ren y1 ... yn res))
*
* where the yi are the values of the output of ef.
* if there is no yi and no post-condition, it is simplified in res itself.
*)
let simple_constr_of_prog = function
| CC_expr c -> c
| CC_var id -> mkVar id
| _ -> assert false
let make_tuple l q ren env before = match l with
| [e,_] when q = None ->
e
| _ ->
let tl = List.map snd l in
let dep,h,th = match q with
| None -> false,[],[]
| Some c ->
let args = List.map (fun (e,_) -> simple_constr_of_prog e) l in
let c = apply_post ren env before c in
true,
[ CC_hole (Term.applist (c.a_value, args)) ], (* hole *)
[ c.a_value ] (* type of the hole *)
in
CC_tuple (dep, tl @ th, (List.map fst l) @ h)
let result_tuple ren before env (res,v) (ef,q) =
let ids = get_writes ef in
let lo =
(List.map (fun id ->
let id' = current_var ren id in
CC_var id', trad_type_in_env ren env id) ids)
@ [res,v]
in
let q = abstract_post ren env (ef,q) in
make_tuple lo q ren env before,
product ren env before lo q
(* [make_let_in ren env fe p (vo,q) (res,v) t] constructs the term
[ let h1 = ?:P1 in ... let hn = ?:Pm in ]
let y1,y2,...,yn, res [,q] = fe in
t
vo=[_,y1;...;_,ym] are list of renamings.
v is the type of res
*)
let let_in_pre ty p t =
let h = p.p_value in
CC_letin (false, ty, [pre_name p.p_name,CC_typed_binder h], CC_hole h, t)
let multiple_let_in_pre ty hl t =
List.fold_left (fun t h -> let_in_pre ty h t) t hl
let make_let_in ren env fe p (vo,q) (res,tyres) (t,ty) =
let b = [res, CC_typed_binder tyres] in
let b',dep = match q with
| None -> [],false
| Some q -> [post_name q.a_name, CC_untyped_binder],true
in
let bl = (binding_of_alist ren env vo) @ b @ b' in
let tyapp =
let n = succ (List.length vo) in
let name = match q with None -> product_name n | _ -> dep_product_name n in
constant name
in
let t = CC_letin (dep, ty, bl, fe, t) in
multiple_let_in_pre ty (List.map (apply_pre ren env) p) t
(* [abs_pre ren env (t,ty) pl] abstracts a term t with respect to the
* list of pre-conditions [pl]. Some of them are real pre-conditions
* and others are assertions, according to the boolean field p_assert,
* so we construct the term
* [h1:P1]...[hn:Pn]let h'1 = ?:P'1 in ... let H'm = ?:P'm in t
*)
let abs_pre ren env (t,ty) pl =
List.fold_left
(fun t p ->
if p.p_assert then
let_in_pre ty (apply_pre ren env p) t
else
let h = pre_name p.p_name in
CC_lam ([h,CC_typed_binder (apply_pre ren env p).p_value],t))
t pl
(* [make_block ren env finish bl] builds the translation of a block
* finish is the function that is applied to the result at the end of the
* block. *)
let make_block ren env finish bl =
let rec rec_block ren result = function
| [] ->
finish ren result
| (Assert c) :: block ->
let t,ty = rec_block ren result block in
let c = apply_assert ren env c in
let p = { p_assert = true; p_name = c.a_name; p_value = c.a_value } in
let_in_pre ty p t, ty
| (Label s) :: block ->
let ren' = push_date ren s in
rec_block ren' result block
| (Statement (te,info)) :: block ->
let (_,tye),efe,pe,qe = info in
let w = get_writes efe in
let ren' = next ren w in
let id = result_id in
let tye = trad_ml_type_v ren env tye in
let t = rec_block ren' (Some (id,tye)) block in
make_let_in ren env te pe (current_vars ren' w,qe) (id,tye) t,
snd t
in
let t,_ = rec_block ren None bl in
t
(* [make_app env ren args ren' (tf,cf) (cb,s,capp) c]
* constructs the application of [tf] to [args].
* capp is the effect of application, after substitution (s) and cb before
*)
let eq ty e1 e2 =
Term.applist (constant "eq", [ty; e1; e2])
let lt r e1 e2 =
Term.applist (r, [e1; e2])
let is_recursive env = function
| CC_var x ->
(try let _ = find_recursion x env in true with Not_found -> false)
| _ -> false
let if_recursion env f = function
| CC_var x ->
(try let v = find_recursion x env in (f v x) with Not_found -> [])
| _ -> []
let dec_phi ren env s svi =
if_recursion env
(fun (phi0,(cphi,r,_)) f ->
let phi = subst_in_constr svi (subst_in_constr s cphi) in
let phi = (apply_pre ren env (anonymous_pre true phi)).p_value in
[CC_expr phi; CC_hole (lt r phi (mkVar phi0))])
let eq_phi ren env s svi =
if_recursion env
(fun (phi0,(cphi,_,a)) f ->
let phi = subst_in_constr svi (subst_in_constr s cphi) in
let phi = (apply_pre ren env (anonymous_pre true phi)).p_value in
[CC_hole (eq a phi phi)])
let is_ref_binder = function
| (_,BindType (Ref _ | Array _)) -> true
| _ -> false
let make_app env ren args ren' (tf,cf) ((bl,cb),s,capp) c =
let ((_,tvf),ef,pf,qf) = cf in
let (_,eapp,papp,qapp) = capp in
let ((_,v),e,p,q) = c in
let bl = List.filter (fun b -> not (is_ref_binder b)) bl in
let recur = is_recursive env tf in
let before = current_date ren in
let ren'' = next ren' (get_writes ef) in
let ren''' = next ren'' (get_writes eapp) in
let res = result_id in
let vi,svi =
let ids = List.map fst bl in
let s = fresh (avoid ren ids) ids in
List.map snd s, s
in
let tyres = subst_in_constr svi (trad_ml_type_v ren env v) in
let t,ty = result_tuple ren''' before env (CC_var res, tyres) (e,q) in
let res_f = id_of_string "vf" in
let inf,outf =
let i,o = let _,e,_,_ = cb in get_reads e, get_writes e in
let apply_s = List.map (fun id -> try List.assoc id s with _ -> id) in
apply_s i, apply_s o
in
let fe =
let xi = List.rev (List.map snd (current_vars ren'' inf)) in
let holes = List.map (fun x -> (apply_pre ren'' env x).p_value)
(List.map (pre_app (subst_in_constr svi)) papp) in
CC_app ((if recur then tf else CC_var res_f),
(dec_phi ren'' env s svi tf)
@(List.map (fun id -> CC_var id) (vi @ xi))
@(eq_phi ren'' env s svi tf)
@(List.map (fun c -> CC_hole c) holes))
in
let qapp' = option_app (named_app (subst_in_constr svi)) qapp in
let t =
make_let_in ren'' env fe [] (current_vars ren''' outf,qapp')
(res,tyres) (t,ty)
in
let t =
if recur then
t
else
make_let_in ren' env tf pf
(current_vars ren'' (get_writes ef),qf)
(res_f,trad_ml_type_v ren env tvf) (t,ty)
in
let rec eval_args ren = function
| [] -> t
| (vx,(ta,((_,tva),ea,pa,qa)))::args ->
let w = get_writes ea in
let ren' = next ren w in
let t' = eval_args ren' args in
make_let_in ren env ta pa (current_vars ren' (get_writes ea),qa)
(vx,trad_ml_type_v ren env tva) (t',ty)
in
eval_args ren (List.combine vi args)
(* [make_if ren env (tb,cb) ren' (t1,c1) (t2,c2)]
* constructs the term corresponding to a if expression, i.e
*
* [p] let o1, b [,q1] = m1 [?::p1] in
* Cases b of
* R => let o2, v2 [,q2] = t1 [?::p2] in
* (proj (o1,o2)), v2 [,?::q]
* | S => let o2, v2 [,q2] = t2 [?::p2] in
* (proj (o1,o2)), v2 [,?::q]
*)
let make_if_case ren env ty (b,qb) (br1,br2) =
let id_b,ty',ty1,ty2 = match qb with
| Some q ->
let q = apply_post ren env (current_date ren) q in
let (name,t1,t2) = Term.destLambda q.a_value in
q.a_name,
Term.mkLambda (name, t1, mkArrow t2 ty),
Term.mkApp (q.a_value, [| coq_true |]),
Term.mkApp (q.a_value, [| coq_false |])
| None -> assert false
in
let n = test_name Anonymous in
CC_app (CC_case (ty', b, [CC_lam ([n,CC_typed_binder ty1], br1);
CC_lam ([n,CC_typed_binder ty2], br2)]),
[CC_var (post_name id_b)])
let make_if ren env (tb,cb) ren' (t1,c1) (t2,c2) c =
let ((_,tvb),eb,pb,qb) = cb in
let ((_,tv1),e1,p1,q1) = c1 in
let ((_,tv2),e2,p2,q2) = c2 in
let ((_,t),e,p,q) = c in
let wb = get_writes eb in
let resb = id_of_string "resultb" in
let res = result_id in
let tyb = trad_ml_type_v ren' env tvb in
let tt = trad_ml_type_v ren env t in
(* une branche de if *)
let branch (tv_br,e_br,p_br,q_br) f_br =
let w_br = get_writes e_br in
let ren'' = next ren' w_br in
let t,ty = result_tuple ren'' (current_date ren') env
(CC_var res,tt) (e,q) in
make_let_in ren' env f_br p_br (current_vars ren'' w_br,q_br)
(res,tt) (t,ty),
ty
in
let t1,ty1 = branch c1 t1 in
let t2,ty2 = branch c2 t2 in
let ty = ty1 in
let qb = force_bool_name qb in
let t = make_if_case ren env ty (CC_var resb,qb) (t1,t2) in
make_let_in ren env tb pb (current_vars ren' wb,qb) (resb,tyb) (t,ty)
(* [make_while ren env (cphi,r,a) (tb,cb) (te,ce) c]
* constructs the term corresponding to the while, i.e.
*
* [h:(I x)](well_founded_induction
* A R ?::(well_founded A R)
* [Phi:A] (x) Phi=phi(x)->(I x)-> \exists x'.res.(I x')/\(S x')
* [Phi_0:A][w:(Phi:A)(Phi<Phi_0)-> ...]
* [x][eq:Phi_0=phi(x)][h:(I x)]
* Cases (b x) of
* (left HH) => (x,?::(IS x))
* | (right HH) => let x1,_,_ = (e x ?) in
* (w phi(x1) ? x1 ? ?)
* phi(x) x ? ?)
*)
let id_phi = id_of_string "phi"
let id_phi0 = id_of_string "phi0"
let make_body_while ren env phi_of a r id_phi0 id_w (tb,cb) tbl (i,c) =
let ((_,tvb),eb,pb,qb) = cb in
let (_,ef,_,is) = c in
let ren' = next ren (get_writes ef) in
let before = current_date ren in
let ty =
let is = abstract_post ren' env (ef,is) in
let _,lo = input_output ren env c in
product ren env before lo is
in
let resb = id_of_string "resultb" in
let tyb = trad_ml_type_v ren' env tvb in
let wb = get_writes eb in
(* premire branche: le test est vrai => e;w *)
let t1 =
make_block ren' env
(fun ren'' result -> match result with
| Some (id,_) ->
let v = List.rev (current_vars ren'' (get_writes ef)) in
CC_app (CC_var id_w,
[CC_expr (phi_of ren'');
CC_hole (lt r (phi_of ren'') (mkVar id_phi0))]
@(List.map (fun (_,id) -> CC_var id) v)
@(CC_hole (eq a (phi_of ren'') (phi_of ren'')))
::(match i with
| None -> []
| Some c ->
[CC_hole (apply_assert ren'' env c).a_value])),
ty
| None -> failwith "a block should contain at least one statement")
tbl
in
(* deuxime branche: le test est faux => on sort de la boucle *)
let t2,_ =
result_tuple ren' before env
(CC_expr (constant "tt"),constant "unit") (ef,is)
in
let b_al = current_vars ren' (get_reads eb) in
let qb = force_bool_name qb in
let t = make_if_case ren' env ty (CC_var resb,qb) (t1,t2) in
let t =
make_let_in ren' env tb pb (current_vars ren' wb,qb) (resb,tyb) (t,ty)
in
let t =
let pl = List.map (pre_of_assert false) (list_of_some i) in
abs_pre ren' env (t,ty) pl
in
let t =
CC_lam ([var_name Anonymous,
CC_typed_binder (eq a (mkVar id_phi0) (phi_of ren'))],t)
in
let bl = binding_of_alist ren env (current_vars ren' (get_writes ef)) in
make_abs (List.rev bl) t
let make_while ren env (cphi,r,a) (tb,cb) tbl (i,c) =
let (_,ef,_,is) = c in
let phi_of ren = (apply_pre ren env (anonymous_pre true cphi)).p_value in
let wf_a_r = Term.applist (constant "well_founded", [a; r]) in
let before = current_date ren in
let ren' = next ren (get_writes ef) in
let al = current_vars ren' (get_writes ef) in
let v =
let _,lo = input_output ren env c in
let is = abstract_post ren' env (ef,is) in
match i with
| None -> product ren' env before lo is
| Some ci ->
Term.mkArrow (apply_assert ren' env ci).a_value
(product ren' env before lo is)
in
let v = Term.mkArrow (eq a (mkVar id_phi) (phi_of ren')) v in
let v =
n_mkNamedProd v
(List.map (fun (id,id') -> (id',trad_type_in_env ren env id)) al)
in
let tw =
Term.mkNamedProd id_phi a
(Term.mkArrow (lt r (mkVar id_phi) (mkVar id_phi0)) v)
in
let id_w = id_of_string "loop" in
let vars = List.rev (current_vars ren (get_writes ef)) in
let body =
make_body_while ren env phi_of a r id_phi0 id_w (tb,cb) tbl (i,c)
in
CC_app (CC_expr (constant "well_founded_induction"),
[CC_expr a; CC_expr r;
CC_hole wf_a_r;
CC_expr (Term.mkNamedLambda id_phi a v);
CC_lam ([id_phi0, CC_typed_binder a;
id_w, CC_typed_binder tw],
body);
CC_expr (phi_of ren)]
@(List.map (fun (_,id) -> CC_var id) vars)
@(CC_hole (eq a (phi_of ren) (phi_of ren)))
::(match i with
| None -> []
| Some c -> [CC_hole (apply_assert ren env c).a_value]))
(* [make_letrec ren env (phi0,(cphi,r,a)) bl (te,ce) c]
* constructs the term corresponding to the let rec i.e.
*
* [x][h:P(x)](well_founded_induction
* A R ?::(well_founded A R)
* [Phi:A] (bl) (x) Phi=phi(x)->(P x)-> \exists x'.res.(Q x x')
* [Phi_0:A][w:(Phi:A)(Phi<Phi_0)-> ...]
* [bl][x][eq:Phi_0=phi(x)][h:(P x)]te
* phi(x) bl x ? ?)
*)
let make_letrec ren env (id_phi0,(cphi,r,a)) idf bl (te,ce) c =
let (_,ef,p,q) = c in
let phi_of ren = (apply_pre ren env (anonymous_pre true cphi)).p_value in
let wf_a_r = Term.applist (constant "well_founded", [a; r]) in
let before = current_date ren in
let al = current_vars ren (get_reads ef) in
let v =
let _,lo = input_output ren env c in
let q = abstract_post ren env (ef,q) in
arrow ren env (product ren env (current_date ren) lo q) p
in
let v = Term.mkArrow (eq a (mkVar id_phi) (phi_of ren)) v in
let v =
n_mkNamedProd v
(List.map (fun (id,id') -> (id',trad_type_in_env ren env id)) al)
in
let v =
n_mkNamedProd v
(List.map (function (id,CC_typed_binder c) -> (id,c)
| _ -> assert false) (List.rev bl))
in
let tw =
Term.mkNamedProd id_phi a
(Term.mkArrow (lt r (mkVar id_phi) (mkVar id_phi0)) v)
in
let vars = List.rev (current_vars ren (get_reads ef)) in
let body =
let al = current_vars ren (get_reads ef) in
let bod = abs_pre ren env (te,v) p in
let bod = CC_lam ([var_name Anonymous,
CC_typed_binder (eq a (mkVar id_phi0) (phi_of ren))],
bod)
in
let bl' = binding_of_alist ren env al in
make_abs (bl@(List.rev bl')) bod
in
let t =
CC_app (CC_expr (constant "well_founded_induction"),
[CC_expr a; CC_expr r;
CC_hole wf_a_r;
CC_expr (Term.mkNamedLambda id_phi a v);
CC_lam ([id_phi0, CC_typed_binder a;
idf, CC_typed_binder tw],
body);
CC_expr (phi_of ren)]
@(List.map (fun (id,_) -> CC_var id) bl)
@(List.map (fun (_,id) -> CC_var id) vars)
@[CC_hole (eq a (phi_of ren) (phi_of ren))]
)
in
(* on abstrait juste par rapport aux variables de ef *)
let al = current_vars ren (get_reads ef) in
let bl = binding_of_alist ren env al in
make_abs (List.rev bl) t
(* [make_access env id c] Access in array id.
*
* Constructs [t:(array s T)](access_g s T t c ?::(lt c s)).
*)
let array_info ren env id =
let ty = type_in_env env id in
let size,v = dearray_type ty in
let ty_elem = trad_ml_type_v ren env v in
let ty_array = trad_imp_type ren env ty in
size,ty_elem,ty_array
let make_raw_access ren env (id,id') c =
let size,ty_elem,_ = array_info ren env id in
Term.applist (constant "access", [size; ty_elem; mkVar id'; c])
let make_pre_access ren env id c =
let size,_,_ = array_info ren env id in
conj (lt (constant "Zle") (constant "ZERO") c)
(lt (constant "Zlt") c size)
let make_raw_store ren env (id,id') c1 c2 =
let size,ty_elem,_ = array_info ren env id in
Term.applist (constant "store", [size; ty_elem; mkVar id'; c1; c2])
|