1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Certification of Imperative Programs / Jean-Christophe Fillitre *)
(* $Id: ptyping.ml,v 1.7.6.1 2004/07/16 19:30:06 herbelin Exp $ *)
open Pp
open Util
open Names
open Term
open Termops
open Environ
open Constrintern
open Himsg
open Proof_trees
open Topconstr
open Pmisc
open Putil
open Prename
open Ptype
open Past
open Penv
open Peffect
open Pcicenv
(* Ce module implante le jugement Gamma |-a e : kappa de la thse.
* Les annotations passent du type CoqAst.t au type Term.constr ici.
* Les post-conditions sont abstraites par rapport au rsultat. *)
let simplify_type_of env sigma t =
Reductionops.nf_betaiota (Typing.type_of env sigma t)
let just_reads e =
difference (get_reads e) (get_writes e)
let type_v_sup loc t1 t2 =
if t1 = t2 then
t1
else
Perror.if_branches loc
let typed_var ren env (phi,r) =
let sign = Pcicenv.before_after_sign_of ren env in
let a = simplify_type_of (Global.env_of_context sign) Evd.empty phi in
(phi,r,a)
(* Application de fonction *)
let rec convert = function
| (TypePure c1, TypePure c2) ->
Reductionops.is_conv (Global.env ()) Evd.empty c1 c2
| (Ref v1, Ref v2) ->
convert (v1,v2)
| (Array (s1,v1), Array (s2,v2)) ->
(Reductionops.is_conv (Global.env ()) Evd.empty s1 s2) && (convert (v1,v2))
| (v1,v2) -> v1 = v2
let effect_app ren env f args =
let n = List.length args in
let tf =
let ((_,v),_,_,_) = f.info.kappa in
match v with TypePure c -> v_of_constr c | _ -> v
in
let bl,c =
match tf with
Arrow (bl, c) ->
if List.length bl <> n then Perror.partial_app f.loc;
bl,c
| _ -> Perror.app_of_non_function f.loc
in
let check_type loc v t so =
let v' = type_v_rsubst so v in
if not (convert (v',t)) then Perror.expected_type loc (pp_type_v v')
in
let s,so,ok =
(* s est la substitution des rfrences, so celle des autres arg.
* ok nous dit si les arguments sont sans effet i.e. des expressions *)
List.fold_left
(fun (s,so,ok) (b,a) ->
match b,a with
(id,BindType (Ref _ | Array _ as v)), Refarg id' ->
let ta = type_in_env env id' in
check_type f.loc v ta so;
(id,id')::s, so, ok
| _, Refarg _ -> Perror.should_be_a_variable f.loc
| (id,BindType v), Term t ->
let ((_,ta),_,_,_) = t.info.kappa in
check_type t.loc v ta so;
(match t.desc with
Expression c -> s, (id,c)::so, ok
| _ -> s,so,false)
| (id,BindSet), Type v ->
let c = Pmonad.trad_ml_type_v ren env v in
s, (id,c)::so, ok
| (id,BindSet), Term t -> Perror.expects_a_type id t.loc
| (id,BindType _), Type _ -> Perror.expects_a_term id
| (_,Untyped), _ -> invalid_arg "effects_app")
([],[],true)
(List.combine bl args)
in
let (id,v),ef,pre,post = type_c_subst s c in
(bl,c), (s,so,ok), ((id,type_v_rsubst so v),ef,pre,post)
(* Execution of a Coq AST. Returns value and type.
* Also returns its variables *)
let state_coq_ast sign a =
let env = Global.env_of_context sign in
let j =
reraise_with_loc (constr_loc a) (judgment_of_rawconstr Evd.empty env) a in
let ids = global_vars env j.uj_val in
j.uj_val, j.uj_type, ids
(* [is_pure p] tests wether the program p is an expression or not. *)
let type_of_expression ren env c =
let sign = now_sign_of ren env in
simplify_type_of (Global.env_of_context sign) Evd.empty c
let rec is_pure_type_v = function
TypePure _ -> true
| Arrow (bl,c) -> List.for_all is_pure_arg bl & is_pure_type_c c
| Ref _ | Array _ -> false
and is_pure_arg = function
(_,BindType v) -> is_pure_type_v v
| (_,BindSet) -> true
| (_,Untyped) -> false
and is_pure_type_c = function
(_,v),_,[],None -> is_pure_type_v v
| _ -> false
let rec is_pure_desc ren env = function
Variable id ->
not (is_in_env env id) or (is_pure_type_v (type_in_env env id))
| Expression c ->
(c = isevar) or (is_pure_cci (type_of_expression ren env c))
| Acc _ -> true
| TabAcc (_,_,p) -> is_pure ren env p
| Apply (p,args) ->
is_pure ren env p & List.for_all (is_pure_arg ren env) args
| SApp _ | Aff _ | TabAff _ | Seq _ | While _ | If _
| Lam _ | LetRef _ | Let _ | LetRec _ -> false
| Debug (_,p) -> is_pure ren env p
| PPoint (_,d) -> is_pure_desc ren env d
and is_pure ren env p =
p.pre = [] & p.post = None & is_pure_desc ren env p.desc
and is_pure_arg ren env = function
Term p -> is_pure ren env p
| Type _ -> true
| Refarg _ -> false
(* [state_var ren env (phi,r)] returns a tuple (e,(phi',r'))
* where e is the effect of the variant phi and phi',r' the corresponding
* constr of phi and r.
*)
let state_var ren env (phi,r) =
let sign = Pcicenv.before_after_sign_of ren env in
let phi',_,ids = state_coq_ast sign phi in
let ef = List.fold_left
(fun e id ->
if is_mutable_in_env env id then Peffect.add_read id e else e)
Peffect.bottom ids in
let r',_,_ = state_coq_ast (Global.named_context ()) r in
ef,(phi',r')
(* [state_pre ren env pl] returns a pair (e,c) where e is the effect of the
* pre-conditions list pl and cl the corresponding constrs not yet abstracted
* over the variables xi (i.e. c NOT [x1]...[xn]c !)
*)
let state_pre ren env pl =
let state e p =
let sign = Pcicenv.before_sign_of ren env in
let cc,_,ids = state_coq_ast sign p.p_value in
let ef = List.fold_left
(fun e id ->
if is_mutable_in_env env id then
Peffect.add_read id e
else if is_at id then
let uid,_ = un_at id in
if is_mutable_in_env env uid then
Peffect.add_read uid e
else
e
else
e)
e ids
in
ef,{ p_assert = p.p_assert; p_name = p.p_name; p_value = cc }
in
List.fold_left
(fun (e,cl) p -> let ef,c = state e p in (ef,c::cl))
(Peffect.bottom,[]) pl
let state_assert ren env a =
let p = pre_of_assert true a in
let e,l = state_pre ren env [p] in
e,assert_of_pre (List.hd l)
let state_inv ren env = function
None -> Peffect.bottom, None
| Some i -> let e,p = state_assert ren env i in e,Some p
(* [state_post ren env (id,v,ef) q] returns a pair (e,c)
* where e is the effect of the
* post-condition q and c the corresponding constr not yet abstracted
* over the variables xi, yi and result.
* Moreover the RW variables not appearing in ef have been replaced by
* RO variables, and (id,v) is the result
*)
let state_post ren env (id,v,ef) = function
None -> Peffect.bottom, None
| Some q ->
let v' = Pmonad.trad_ml_type_v ren env v in
let sign = Pcicenv.before_after_result_sign_of (Some (id,v')) ren env in
let cc,_,ids = state_coq_ast sign q.a_value in
let ef,c =
List.fold_left
(fun (e,c) id ->
if is_mutable_in_env env id then
if is_write ef id then
Peffect.add_write id e, c
else
Peffect.add_read id e,
subst_in_constr [id,at_id id ""] c
else if is_at id then
let uid,_ = un_at id in
if is_mutable_in_env env uid then
Peffect.add_read uid e, c
else
e,c
else
e,c)
(Peffect.bottom,cc) ids
in
let c = abstract [id,v'] c in
ef, Some { a_name = q.a_name; a_value = c }
(* transformation of AST into constr in types V and C *)
let rec cic_type_v env ren = function
| Ref v -> Ref (cic_type_v env ren v)
| Array (com,v) ->
let sign = Pcicenv.now_sign_of ren env in
let c = interp_constr Evd.empty (Global.env_of_context sign) com in
Array (c, cic_type_v env ren v)
| Arrow (bl,c) ->
let bl',ren',env' =
List.fold_left
(fun (bl,ren,env) b ->
let b' = cic_binder env ren b in
let env' = traverse_binders env [b'] in
let ren' = initial_renaming env' in
b'::bl,ren',env')
([],ren,env) bl
in
let c' = cic_type_c env' ren' c in
Arrow (List.rev bl',c')
| TypePure com ->
let sign = Pcicenv.cci_sign_of ren env in
let c = interp_constr Evd.empty (Global.env_of_context sign) com in
TypePure c
and cic_type_c env ren ((id,v),e,p,q) =
let v' = cic_type_v env ren v in
let cv = Pmonad.trad_ml_type_v ren env v' in
let efp,p' = state_pre ren env p in
let efq,q' = state_post ren env (id,v',e) q in
let ef = Peffect.union e (Peffect.union efp efq) in
((id,v'),ef,p',q')
and cic_binder env ren = function
| (id,BindType v) ->
let v' = cic_type_v env ren v in
let env' = add (id,v') env in
let ren' = initial_renaming env' in
(id, BindType v')
| (id,BindSet) -> (id,BindSet)
| (id,Untyped) -> (id,Untyped)
and cic_binders env ren = function
[] -> []
| b::bl ->
let b' = cic_binder env ren b in
let env' = traverse_binders env [b'] in
let ren' = initial_renaming env' in
b' :: (cic_binders env' ren' bl)
(* The case of expressions.
*
* Expressions are programs without neither effects nor pre/post conditions.
* But access to variables are allowed.
*
* Here we transform an expression into the corresponding constr,
* the variables still appearing as VAR (they will be abstracted in
* Mlise.trad)
* We collect the pre-conditions (e<N for t[e]) as we traverse the term.
* We also return the effect, which does contain only *read* variables.
*)
let states_expression ren env expr =
let rec effect pl = function
| Variable id ->
(if is_global id then constant (string_of_id id) else mkVar id),
pl, Peffect.bottom
| Expression c -> c, pl, Peffect.bottom
| Acc id -> mkVar id, pl, Peffect.add_read id Peffect.bottom
| TabAcc (_,id,p) ->
let c,pl,ef = effect pl p.desc in
let pre = Pmonad.make_pre_access ren env id c in
Pmonad.make_raw_access ren env (id,id) c,
(anonymous_pre true pre)::pl, Peffect.add_read id ef
| Apply (p,args) ->
let a,pl,e = effect pl p.desc in
let args,pl,e =
List.fold_right
(fun arg (l,pl,e) ->
match arg with
Term p ->
let carg,pl,earg = effect pl p.desc in
carg::l,pl,Peffect.union e earg
| Type v ->
let v' = cic_type_v env ren v in
(Pmonad.trad_ml_type_v ren env v')::l,pl,e
| Refarg _ -> assert false)
args ([],pl,e)
in
Term.applist (a,args),pl,e
| _ -> invalid_arg "Ptyping.states_expression"
in
let e0,pl0 = state_pre ren env expr.pre in
let c,pl,e = effect [] expr.desc in
let sign = Pcicenv.before_sign_of ren env in
(*i WAS
let c = (Trad.ise_resolve true empty_evd [] (gLOB sign) c)._VAL in
i*)
let ty = simplify_type_of (Global.env_of_context sign) Evd.empty c in
let v = TypePure ty in
let ef = Peffect.union e0 e in
Expression c, (v,ef), pl0@pl
(* We infer here the type with effects.
* The type of types with effects (ml_type_c) is defined in the module ProgAst.
*
* A program of the shape {P} e {Q} has a type
*
* V, E, {None|Some P}, {None|Some Q}
*
* where - V is the type of e
* - E = (I,O) is the effect; the input I contains
* all the input variables appearing in P,e and Q;
* the output O contains variables possibly modified in e
* - P is NOT abstracted
* - Q = [y'1]...[y'k][result]Q where O = {y'j}
* i.e. Q is only abstracted over the output and the result
* the other variables now refer to value BEFORE
*)
let verbose_fix = ref false
let rec states_desc ren env loc = function
Expression c ->
let ty = type_of_expression ren env c in
let v = v_of_constr ty in
Expression c, (v,Peffect.bottom)
| Acc _ ->
failwith "Ptyping.states: term is supposed not to be pure"
| Variable id ->
let v = type_in_env env id in
let ef = Peffect.bottom in
Variable id, (v,ef)
| Aff (x, e1) ->
Perror.check_for_reference loc x (type_in_env env x);
let s_e1 = states ren env e1 in
let _,e,_,_ = s_e1.info.kappa in
let ef = add_write x e in
let v = constant_unit () in
Aff (x, s_e1), (v, ef)
| TabAcc (check, x, e) ->
let s_e = states ren env e in
let _,efe,_,_ = s_e.info.kappa in
let ef = Peffect.add_read x efe in
let _,ty = dearray_type (type_in_env env x) in
TabAcc (check, x, s_e), (ty, ef)
| TabAff (check, x, e1, e2) ->
let s_e1 = states ren env e1 in
let s_e2 = states ren env e2 in
let _,ef1,_,_ = s_e1.info.kappa in
let _,ef2,_,_ = s_e2.info.kappa in
let ef = Peffect.add_write x (Peffect.union ef1 ef2) in
let v = constant_unit () in
TabAff (check, x, s_e1, s_e2), (v,ef)
| Seq bl ->
let bl,v,ef,_ = states_block ren env bl in
Seq bl, (v,ef)
| While(b, invopt, var, bl) ->
let efphi,(cvar,r') = state_var ren env var in
let ren' = next ren [] in
let s_b = states ren' env b in
let s_bl,_,ef_bl,_ = states_block ren' env bl in
let cb = s_b.info.kappa in
let efinv,inv = state_inv ren env invopt in
let _,efb,_,_ = s_b.info.kappa in
let ef =
Peffect.union (Peffect.union ef_bl efb) (Peffect.union efinv efphi)
in
let v = constant_unit () in
let cvar =
let al = List.map (fun id -> (id,at_id id "")) (just_reads ef) in
subst_in_constr al cvar
in
While (s_b,inv,(cvar,r'),s_bl), (v,ef)
| Lam ([],_) ->
failwith "Ptyping.states: abs. should have almost one binder"
| Lam (bl, e) ->
let bl' = cic_binders env ren bl in
let env' = traverse_binders env bl' in
let ren' = initial_renaming env' in
let s_e = states ren' env' e in
let v = make_arrow bl' s_e.info.kappa in
let ef = Peffect.bottom in
Lam(bl',s_e), (v,ef)
(* Connectives AND and OR *)
| SApp ([Variable id], [e1;e2]) ->
let s_e1 = states ren env e1
and s_e2 = states ren env e2 in
let (_,ef1,_,_) = s_e1.info.kappa
and (_,ef2,_,_) = s_e2.info.kappa in
let ef = Peffect.union ef1 ef2 in
SApp ([Variable id], [s_e1; s_e2]),
(TypePure (constant "bool"), ef)
(* Connective NOT *)
| SApp ([Variable id], [e]) ->
let s_e = states ren env e in
let (_,ef,_,_) = s_e.info.kappa in
SApp ([Variable id], [s_e]),
(TypePure (constant "bool"), ef)
| SApp _ -> invalid_arg "Ptyping.states (SApp)"
(* ATTENTION:
Si un argument rel de type ref. correspond une ref. globale
modifie par la fonction alors la traduction ne sera pas correcte.
Exemple:
f=[x:ref Int]( r := !r+1 ; x := !x+1) modifie r et son argument x
donc si on l'applique r justement, elle ne modifiera que r
mais le squencement ne sera pas correct. *)
| Apply (f, args) ->
let s_f = states ren env f in
let _,eff,_,_ = s_f.info.kappa in
let s_args = List.map (states_arg ren env) args in
let ef_args =
List.map
(function Term t -> let (_,e,_,_) = t.info.kappa in e
| _ -> Peffect.bottom)
s_args
in
let _,_,((_,tapp),efapp,_,_) = effect_app ren env s_f s_args in
let ef =
Peffect.compose (List.fold_left Peffect.compose eff ef_args) efapp
in
Apply (s_f, s_args), (tapp, ef)
| LetRef (x, e1, e2) ->
let s_e1 = states ren env e1 in
let (_,v1),ef1,_,_ = s_e1.info.kappa in
let env' = add (x,Ref v1) env in
let ren' = next ren [x] in
let s_e2 = states ren' env' e2 in
let (_,v2),ef2,_,_ = s_e2.info.kappa in
Perror.check_for_let_ref loc v2;
let ef = Peffect.compose ef1 (Peffect.remove ef2 x) in
LetRef (x, s_e1, s_e2), (v2,ef)
| Let (x, e1, e2) ->
let s_e1 = states ren env e1 in
let (_,v1),ef1,_,_ = s_e1.info.kappa in
Perror.check_for_not_mutable e1.loc v1;
let env' = add (x,v1) env in
let s_e2 = states ren env' e2 in
let (_,v2),ef2,_,_ = s_e2.info.kappa in
let ef = Peffect.compose ef1 ef2 in
Let (x, s_e1, s_e2), (v2,ef)
| If (b, e1, e2) ->
let s_b = states ren env b in
let s_e1 = states ren env e1
and s_e2 = states ren env e2 in
let (_,tb),efb,_,_ = s_b.info.kappa in
let (_,t1),ef1,_,_ = s_e1.info.kappa in
let (_,t2),ef2,_,_ = s_e2.info.kappa in
let ef = Peffect.compose efb (disj ef1 ef2) in
let v = type_v_sup loc t1 t2 in
If (s_b, s_e1, s_e2), (v,ef)
| LetRec (f,bl,v,var,e) ->
let bl' = cic_binders env ren bl in
let env' = traverse_binders env bl' in
let ren' = initial_renaming env' in
let v' = cic_type_v env' ren' v in
let efvar,var' = state_var ren' env' var in
let phi0 = phi_name () in
let tvar = typed_var ren env' var' in
(* effect for a let/rec construct is computed as a fixpoint *)
let rec state_rec c =
let tf = make_arrow bl' c in
let env'' = add_recursion (f,(phi0,tvar)) (add (f,tf) env') in
let s_e = states ren' env'' e in
if s_e.info.kappa = c then
s_e
else begin
if !verbose_fix then begin msgnl (pp_type_c s_e.info.kappa) end ;
state_rec s_e.info.kappa
end
in
let s_e = state_rec ((result_id,v'),efvar,[],None) in
let tf = make_arrow bl' s_e.info.kappa in
LetRec (f,bl',v',var',s_e), (tf,Peffect.bottom)
| PPoint (s,d) ->
let ren' = push_date ren s in
states_desc ren' env loc d
| Debug _ -> failwith "Ptyping.states: Debug: TODO"
and states_arg ren env = function
Term a -> let s_a = states ren env a in Term s_a
| Refarg id -> Refarg id
| Type v -> let v' = cic_type_v env ren v in Type v'
and states ren env expr =
(* Here we deal with the pre- and post- conditions:
* we add their effects to the effects of the program *)
let (d,(v,e),p1) =
if is_pure_desc ren env expr.desc then
states_expression ren env expr
else
let (d,ve) = states_desc ren env expr.loc expr.desc in (d,ve,[])
in
let (ep,p) = state_pre ren env expr.pre in
let (eq,q) = state_post ren env (result_id,v,e) expr.post in
let e' = Peffect.union e (Peffect.union ep eq) in
let p' = p1 @ p in
let tinfo = { env = env; kappa = ((result_id,v),e',p',q) } in
{ desc = d;
loc = expr.loc;
pre = p'; post = q; (* on les conserve aussi ici pour prog_wp *)
info = tinfo }
and states_block ren env bl =
let rec ef_block ren tyres = function
[] ->
begin match tyres with
Some ty -> [],ty,Peffect.bottom,ren
| None -> failwith "a block should contain at least one statement"
end
| (Assert p)::block ->
let ep,c = state_assert ren env p in
let bl,t,ef,ren' = ef_block ren tyres block in
(Assert c)::bl,t,Peffect.union ep ef,ren'
| (Label s)::block ->
let ren' = push_date ren s in
let bl,t,ef,ren'' = ef_block ren' tyres block in
(Label s)::bl,t,ef,ren''
| (Statement e)::block ->
let s_e = states ren env e in
let (_,t),efe,_,_ = s_e.info.kappa in
let ren' = next ren (get_writes efe) in
let bl,t,ef,ren'' = ef_block ren' (Some t) block in
(Statement s_e)::bl,t,Peffect.compose efe ef,ren''
in
ef_block ren None bl
|