1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: extraction.ml,v 1.136.2.1 2004/07/16 19:30:07 herbelin Exp $ i*)
(*i*)
open Util
open Names
open Term
open Declarations
open Environ
open Reduction
open Reductionops
open Inductive
open Termops
open Inductiveops
open Recordops
open Nameops
open Summary
open Libnames
open Nametab
open Miniml
open Table
open Mlutil
(*i*)
exception I of inductive_info
(* A set of all inductive currently being computed,
to avoid loops in [extract_inductive] *)
let internal_call = ref KNset.empty
let none = Evd.empty
let type_of env c = Retyping.get_type_of env none (strip_outer_cast c)
let sort_of env c = Retyping.get_sort_family_of env none (strip_outer_cast c)
let is_axiom env kn = (Environ.lookup_constant kn env).const_body = None
(*S Generation of flags and signatures. *)
(* The type [flag] gives us information about any Coq term:
\begin{itemize}
\item [TypeScheme] denotes a type scheme, that is
something that will become a type after enough applications.
More formally, a type scheme has type $(x_1:X_1)\ldots(x_n:X_n)s$ with
[s = Set], [Prop] or [Type]
\item [Default] denotes the other cases. It may be inexact after
instanciation. For example [(X:Type)X] is [Default] and may give [Set]
after instanciation, which is rather [TypeScheme]
\item [Logic] denotes a term of sort [Prop], or a type scheme on sort [Prop]
\item [Info] is the opposite. The same example [(X:Type)X] shows
that an [Info] term might in fact be [Logic] later on.
\end{itemize} *)
type info = Logic | Info
type scheme = TypeScheme | Default
type flag = info * scheme
(*s [flag_of_type] transforms a type [t] into a [flag].
Really important function. *)
let rec flag_of_type env t =
let t = whd_betadeltaiota env none t in
match kind_of_term t with
| Prod (x,t,c) -> flag_of_type (push_rel (x,None,t) env) c
| Sort (Prop Null) -> (Logic,TypeScheme)
| Sort _ -> (Info,TypeScheme)
| _ -> if (sort_of env t) = InProp then (Logic,Default) else (Info,Default)
(*s Two particular cases of [flag_of_type]. *)
let is_default env t = (flag_of_type env t = (Info, Default))
let is_info_scheme env t = (flag_of_type env t = (Info, TypeScheme))
(*s [type_sign] gernerates a signature aimed at treating a type application. *)
let rec type_sign env c =
match kind_of_term (whd_betadeltaiota env none c) with
| Prod (n,t,d) ->
(is_info_scheme env t)::(type_sign (push_rel_assum (n,t) env) d)
| _ -> []
let rec type_scheme_nb_args env c =
match kind_of_term (whd_betadeltaiota env none c) with
| Prod (n,t,d) ->
let n = type_scheme_nb_args (push_rel_assum (n,t) env) d in
if is_info_scheme env t then n+1 else n
| _ -> 0
let _ = register_type_scheme_nb_args type_scheme_nb_args
(*s [type_sign_vl] does the same, plus a type var list. *)
let rec type_sign_vl env c =
match kind_of_term (whd_betadeltaiota env none c) with
| Prod (n,t,d) ->
let s,vl = type_sign_vl (push_rel_assum (n,t) env) d in
if not (is_info_scheme env t) then false::s, vl
else true::s, (next_ident_away (id_of_name n) vl) :: vl
| _ -> [],[]
let rec nb_default_params env c =
match kind_of_term (whd_betadeltaiota env none c) with
| Prod (n,t,d) ->
let n = nb_default_params (push_rel_assum (n,t) env) d in
if is_default env t then n+1 else n
| _ -> 0
(*S Management of type variable contexts. *)
(* A De Bruijn variable context (db) is a context for translating Coq [Rel]
into ML type [Tvar]. *)
(*s From a type signature toward a type variable context (db). *)
let db_from_sign s =
let rec make i acc = function
| [] -> acc
| true :: l -> make (i+1) (i::acc) l
| false :: l -> make i (0::acc) l
in make 1 [] s
(*s Create a type variable context from indications taken from
an inductive type (see just below). *)
let rec db_from_ind dbmap i =
if i = 0 then []
else (try Intmap.find i dbmap with Not_found -> 0)::(db_from_ind dbmap (i-1))
(*s [parse_ind_args] builds a map: [i->j] iff the i-th Coq argument
of a constructor corresponds to the j-th type var of the ML inductive. *)
(* \begin{itemize}
\item [si] : signature of the inductive
\item [i] : counter of Coq args for [(I args)]
\item [j] : counter of ML type vars
\item [relmax] : total args number of the constructor
\end{itemize} *)
let parse_ind_args si args relmax =
let rec parse i j = function
| [] -> Intmap.empty
| false :: s -> parse (i+1) j s
| true :: s ->
(match kind_of_term args.(i-1) with
| Rel k -> Intmap.add (relmax+1-k) j (parse (i+1) (j+1) s)
| _ -> parse (i+1) (j+1) s)
in parse 1 1 si
(*S Extraction of a type. *)
(* [extract_type env db c args] is used to produce an ML type from the
coq term [(c args)], which is supposed to be a Coq type. *)
(* [db] is a context for translating Coq [Rel] into ML type [Tvar]. *)
(* [j] stands for the next ML type var. [j=0] means we do not
generate ML type var anymore (in subterms for example). *)
let rec extract_type env db j c args =
match kind_of_term (whd_betaiotazeta c) with
| App (d, args') ->
(* We just accumulate the arguments. *)
extract_type env db j d (Array.to_list args' @ args)
| Lambda (_,_,d) ->
(match args with
| [] -> assert false (* otherwise the lambda would be reductible. *)
| a :: args -> extract_type env db j (subst1 a d) args)
| Prod (n,t,d) ->
assert (args = []);
let env' = push_rel_assum (n,t) env in
(match flag_of_type env t with
| (Info, Default) ->
(* Standard case: two [extract_type] ... *)
let mld = extract_type env' (0::db) j d [] in
if mld = Tdummy then Tdummy
else Tarr (extract_type env db 0 t [], mld)
| (Info, TypeScheme) when j > 0 ->
(* A new type var. *)
let mld = extract_type env' (j::db) (j+1) d [] in
if mld = Tdummy then Tdummy else Tarr (Tdummy, mld)
| _ ->
let mld = extract_type env' (0::db) j d [] in
if mld = Tdummy then Tdummy else Tarr (Tdummy, mld))
| Sort _ -> Tdummy (* The two logical cases. *)
| _ when sort_of env (applist (c, args)) = InProp -> Tdummy
| Rel n ->
(match lookup_rel n env with
| (_,Some t,_) -> extract_type env db j (lift n t) args
| _ ->
(* Asks [db] a translation for [n]. *)
if n > List.length db then Tunknown
else let n' = List.nth db (n-1) in
if n' = 0 then Tunknown else Tvar n')
| Const kn ->
let r = ConstRef kn in
let cb = lookup_constant kn env in
let typ = cb.const_type in
(match flag_of_type env typ with
| (Info, TypeScheme) ->
let mlt = extract_type_app env db (r, type_sign env typ) args in
(match cb.const_body with
| None -> mlt
| Some _ when is_custom r -> mlt
| Some lbody ->
let newc = applist (Declarations.force lbody, args) in
let mlt' = extract_type env db j newc [] in
(* ML type abbreviations interact badly with Coq *)
(* reduction, so [mlt] and [mlt'] might be different: *)
(* The more precise is [mlt'], extracted after reduction *)
(* The shortest is [mlt], which use abbreviations *)
(* If possible, we take [mlt], otherwise [mlt']. *)
if type_eq (mlt_env env) mlt mlt' then mlt else mlt')
| _ -> (* only other case here: Info, Default, i.e. not an ML type *)
(match cb.const_body with
| None -> Tunknown (* Brutal approximation ... *)
| Some lbody ->
(* We try to reduce. *)
let newc = applist (Declarations.force lbody, args) in
extract_type env db j newc []))
| Ind ((kn,i) as ip) ->
let s = (extract_ind env kn).ind_packets.(i).ip_sign in
extract_type_app env db (IndRef (kn,i),s) args
| Case _ | Fix _ | CoFix _ -> Tunknown
| _ -> assert false
(* [extract_maybe_type] calls [extract_type] when used on a Coq type,
and otherwise returns [Tdummy] or [Tunknown] *)
and extract_maybe_type env db c =
let t = whd_betadeltaiota env none (type_of env c) in
if isSort t then extract_type env db 0 c []
else if sort_of env t = InProp then Tdummy else Tunknown
(*s Auxiliary function dealing with type application.
Precondition: [r] is a type scheme represented by the signature [s],
and is completely applied: [List.length args = List.length s]. *)
and extract_type_app env db (r,s) args =
let ml_args =
List.fold_right
(fun (b,c) a -> if b then
let p = List.length (fst (splay_prod env none (type_of env c))) in
let db = iterate (fun l -> 0 :: l) p db in
(extract_type_scheme env db c p) :: a
else a)
(List.combine s args) []
in Tglob (r, ml_args)
(*S Extraction of a type scheme. *)
(* [extract_type_scheme env db c p] works on a Coq term [c] which is
an informative type scheme. It means that [c] is not a Coq type, but will
be when applied to sufficiently many arguments ([p] in fact).
This function decomposes p lambdas, with eta-expansion if needed. *)
(* [db] is a context for translating Coq [Rel] into ML type [Tvar]. *)
and extract_type_scheme env db c p =
if p=0 then extract_type env db 0 c []
else
let c = whd_betaiotazeta c in
match kind_of_term c with
| Lambda (n,t,d) ->
extract_type_scheme (push_rel_assum (n,t) env) db d (p-1)
| _ ->
let rels = fst (splay_prod env none (type_of env c)) in
let env = push_rels_assum rels env in
let eta_args = List.rev_map mkRel (interval 1 p) in
extract_type env db 0 (lift p c) eta_args
(*S Extraction of an inductive type. *)
and extract_ind env kn = (* kn is supposed to be in long form *)
try
if KNset.mem kn !internal_call then lookup_ind kn (* Already started. *)
else if visible_kn kn then lookup_ind kn (* Standard situation. *)
else raise Not_found (* Never trust the table for a internal kn. *)
with Not_found ->
internal_call := KNset.add kn !internal_call;
let mib = Environ.lookup_mind kn env in
(* Everything concerning parameters. *)
(* We do that first, since they are common to all the [mib]. *)
let mip0 = mib.mind_packets.(0) in
let npar = mip0.mind_nparams in
let epar = push_rel_context mip0.mind_params_ctxt env in
(* First pass: we store inductive signatures together with *)
(* their type var list. *)
let packets =
Array.map
(fun mip ->
let b = mip.mind_sort <> (Prop Null) in
let s,v = if b then type_sign_vl env mip.mind_nf_arity else [],[] in
let t = Array.make (Array.length mip.mind_nf_lc) [] in
{ ip_typename = mip.mind_typename;
ip_consnames = mip.mind_consnames;
ip_logical = (not b);
ip_sign = s;
ip_vars = v;
ip_types = t })
mib.mind_packets
in
add_ind kn {ind_info = Standard; ind_nparams = npar; ind_packets = packets};
(* Second pass: we extract constructors *)
for i = 0 to mib.mind_ntypes - 1 do
let p = packets.(i) in
if not p.ip_logical then
let types = arities_of_constructors env (kn,i) in
for j = 0 to Array.length types - 1 do
let t = snd (decompose_prod_n npar types.(j)) in
let prods,head = dest_prod epar t in
let nprods = List.length prods in
let args = match kind_of_term head with
| App (f,args) -> args (* [kind_of_term f = Ind ip] *)
| _ -> [||]
in
let dbmap = parse_ind_args p.ip_sign args (nprods + npar) in
let db = db_from_ind dbmap npar in
p.ip_types.(j) <- extract_type_cons epar db dbmap t (npar+1)
done
done;
(* Third pass: we determine special cases. *)
let ind_info =
try
if not mib.mind_finite then raise (I Coinductive);
if mib.mind_ntypes <> 1 then raise (I Standard);
let p = packets.(0) in
if p.ip_logical then raise (I Standard);
if Array.length p.ip_types <> 1 then raise (I Standard);
let typ = p.ip_types.(0) in
let l = List.filter (type_neq (mlt_env env) Tdummy) typ in
if List.length l = 1 && not (type_mem_kn kn (List.hd l))
then raise (I Singleton);
if l = [] then raise (I Standard);
let ip = (kn, 0) in
if is_custom (IndRef ip) then raise (I Standard);
let projs =
try (find_structure ip).s_PROJ
with Not_found -> raise (I Standard);
in
let n = nb_default_params env mip0.mind_nf_arity in
let projs = try List.map out_some projs with _ -> raise (I Standard) in
let is_true_proj kn =
let (_,body) = Sign.decompose_lam_assum (constant_value env kn) in
match kind_of_term body with
| Rel _ -> false
| Case _ -> true
| _ -> assert false
in
let projs = List.filter is_true_proj projs in
let rec check = function
| [] -> [],[]
| (typ, kn) :: l ->
let l1,l2 = check l in
if type_eq (mlt_env env) Tdummy typ then l1,l2
else
let r = ConstRef kn in
if List.mem false (type_to_sign (mlt_env env) typ)
then r :: l1, l2
else r :: l1, r :: l2
in
add_record kn n (check (List.combine typ projs));
raise (I Record)
with (I info) -> info
in
let i = {ind_info = ind_info; ind_nparams = npar; ind_packets = packets} in
add_ind kn i;
internal_call := KNset.remove kn !internal_call;
i
(*s [extract_type_cons] extracts the type of an inductive
constructor toward the corresponding list of ML types. *)
(* \begin{itemize}
\item [db] is a context for translating Coq [Rel] into ML type [Tvar]
\item [dbmap] is a translation map (produced by a call to [parse_in_args])
\item [i] is the rank of the current product (initially [params_nb+1])
\end{itemize} *)
and extract_type_cons env db dbmap c i =
match kind_of_term (whd_betadeltaiota env none c) with
| Prod (n,t,d) ->
let env' = push_rel_assum (n,t) env in
let db' = (try Intmap.find i dbmap with Not_found -> 0) :: db in
let l = extract_type_cons env' db' dbmap d (i+1) in
(extract_type env db 0 t []) :: l
| _ -> []
(*s Recording the ML type abbreviation of a Coq type scheme constant. *)
and mlt_env env r = match r with
| ConstRef kn ->
(try
if not (visible_kn kn) then raise Not_found;
match lookup_term kn with
| Dtype (_,vl,mlt) -> Some mlt
| _ -> None
with Not_found ->
let cb = Environ.lookup_constant kn env in
let typ = cb.const_type in
match cb.const_body with
| None -> None
| Some l_body ->
(match flag_of_type env typ with
| Info,TypeScheme ->
let body = Declarations.force l_body in
let s,vl = type_sign_vl env typ in
let db = db_from_sign s in
let t = extract_type_scheme env db body (List.length s)
in add_term kn (Dtype (r, vl, t)); Some t
| _ -> None))
| _ -> None
let type_expand env = type_expand (mlt_env env)
let type_neq env = type_neq (mlt_env env)
let type_to_sign env = type_to_sign (mlt_env env)
let type_expunge env = type_expunge (mlt_env env)
(*s Extraction of the type of a constant. *)
let record_constant_type env kn opt_typ =
try
if not (visible_kn kn) then raise Not_found;
lookup_type kn
with Not_found ->
let typ = match opt_typ with
| None -> constant_type env kn
| Some typ -> typ
in let mlt = extract_type env [] 1 typ []
in let schema = (type_maxvar mlt, mlt)
in add_type kn schema; schema
(*S Extraction of a term. *)
(* Precondition: [(c args)] is not a type scheme, and is informative. *)
(* [mle] is a ML environment [Mlenv.t]. *)
(* [mlt] is the ML type we want our extraction of [(c args)] to have. *)
let rec extract_term env mle mlt c args =
match kind_of_term c with
| App (f,a) ->
extract_term env mle mlt f (Array.to_list a @ args)
| Lambda (n, t, d) ->
let id = id_of_name n in
(match args with
| a :: l ->
(* We make as many [LetIn] as possible. *)
let d' = mkLetIn (Name id,a,t,applistc d (List.map (lift 1) l))
in extract_term env mle mlt d' []
| [] ->
let env' = push_rel_assum (Name id, t) env in
let id, a =
if is_default env t
then id, new_meta ()
else dummy_name, Tdummy in
let b = new_meta () in
(* If [mlt] cannot be unified with an arrow type, then magic! *)
let magic = needs_magic (mlt, Tarr (a, b)) in
let d' = extract_term env' (Mlenv.push_type mle a) b d [] in
put_magic_if magic (MLlam (id, d')))
| LetIn (n, c1, t1, c2) ->
let id = id_of_name n in
let env' = push_rel (Name id, Some c1, t1) env in
let args' = List.map (lift 1) args in
if is_default env t1 then
let a = new_meta () in
let c1' = extract_term env mle a c1 [] in
(* The type of [c1'] is generalized and stored in [mle]. *)
let mle' = Mlenv.push_gen mle a in
MLletin (id, c1', extract_term env' mle' mlt c2 args')
else
let mle' = Mlenv.push_std_type mle Tdummy in
ast_pop (extract_term env' mle' mlt c2 args')
| Const kn ->
extract_cst_app env mle mlt kn args
| Construct cp ->
extract_cons_app env mle mlt cp args
| Rel n ->
(* As soon as the expected [mlt] for the head is known, *)
(* we unify it with an fresh copy of the stored type of [Rel n]. *)
let extract_rel mlt = put_magic (mlt, Mlenv.get mle n) (MLrel n)
in extract_app env mle mlt extract_rel args
| Case ({ci_ind=ip},_,c0,br) ->
extract_app env mle mlt (extract_case env mle (ip,c0,br)) args
| Fix ((_,i),recd) ->
extract_app env mle mlt (extract_fix env mle i recd) args
| CoFix (i,recd) ->
extract_app env mle mlt (extract_fix env mle i recd) args
| Cast (c, _) -> extract_term env mle mlt c args
| Ind _ | Prod _ | Sort _ | Meta _ | Evar _ | Var _ -> assert false
(*s [extract_maybe_term] is [extract_term] for usual terms, else [MLdummy] *)
and extract_maybe_term env mle mlt c =
if is_default env (type_of env c) then extract_term env mle mlt c []
else put_magic (mlt, Tdummy) MLdummy
(*s Generic way to deal with an application. *)
(* We first type all arguments starting with unknown meta types.
This gives us the expected type of the head. Then we use the
[mk_head] to produce the ML head from this type. *)
and extract_app env mle mlt mk_head args =
let metas = List.map new_meta args in
let type_head = type_recomp (metas, mlt) in
let mlargs = List.map2 (extract_maybe_term env mle) metas args in
if mlargs = [] then mk_head type_head else MLapp (mk_head type_head, mlargs)
(*s Auxiliary function used to extract arguments of constant or constructor. *)
and make_mlargs env e s args typs =
let l = ref s in
let keep () = match !l with [] -> true | b :: s -> l:=s; b in
let rec f = function
| [], [] -> []
| a::la, t::lt when keep() -> extract_maybe_term env e t a :: (f (la,lt))
| _::la, _::lt -> f (la,lt)
| _ -> assert false
in f (args,typs)
(*s Extraction of a constant applied to arguments. *)
and extract_cst_app env mle mlt kn args =
(* First, the [ml_schema] of the constant, in expanded version. *)
let nb,t = record_constant_type env kn None in
let schema = nb, type_expand env t in
(* Then the expected type of this constant. *)
let metas = List.map new_meta args in
(* We compare stored and expected types in two steps. *)
(* First, can [kn] be applied to all args ? *)
let a = new_meta () in
let magic1 = needs_magic (type_recomp (metas, a), instantiation schema) in
(* Second, is the resulting type compatible with the expected type [mlt] ? *)
let magic2 = needs_magic (a, mlt) in
(* The internal head receives a magic if [magic1] *)
let head = put_magic_if magic1 (MLglob (ConstRef kn)) in
(* Now, the extraction of the arguments. *)
let s = type_to_sign env (snd schema) in
let ls = List.length s in
let la = List.length args in
let mla = make_mlargs env mle s args metas in
let mla =
if not magic1 then
try
let l,l' = list_chop (projection_arity (ConstRef kn)) mla in
if l' <> [] then (List.map (fun _ -> MLexn "Proj Args") l) @ l'
else mla
with _ -> mla
else mla
in
(* Different situations depending of the number of arguments: *)
if ls = 0 then put_magic_if magic2 head
else if List.mem true s then
if la >= ls then put_magic_if (magic2 && not magic1) (MLapp (head, mla))
else
(* Not enough arguments. We complete via eta-expansion. *)
let ls' = ls-la in
let s' = list_lastn ls' s in
let mla = (List.map (ast_lift ls') mla) @ (eta_args_sign ls' s') in
put_magic_if magic2 (anonym_or_dummy_lams (MLapp (head, mla)) s')
else
(* In the special case of always false signature, one dummy lam is left. *)
(* So a [MLdummy] is left accordingly. *)
if la >= ls
then put_magic_if (magic2 && not magic1) (MLapp (head, MLdummy :: mla))
else put_magic_if magic2 (dummy_lams head (ls-la-1))
(*s Extraction of an inductive constructor applied to arguments. *)
(* \begin{itemize}
\item In ML, contructor arguments are uncurryfied.
\item We managed to suppress logical parts inside inductive definitions,
but they must appears outside (for partial applications for instance)
\item We also suppressed all Coq parameters to the inductives, since
they are fixed, and thus are not used for the computation.
\end{itemize} *)
and extract_cons_app env mle mlt (((kn,i) as ip,j) as cp) args =
(* First, we build the type of the constructor, stored in small pieces. *)
let mi = extract_ind env kn in
let params_nb = mi.ind_nparams in
let oi = mi.ind_packets.(i) in
let nb_tvars = List.length oi.ip_vars
and types = List.map (type_expand env) oi.ip_types.(j-1) in
let list_tvar = List.map (fun i -> Tvar i) (interval 1 nb_tvars) in
let type_cons = type_recomp (types, Tglob (IndRef ip, list_tvar)) in
let type_cons = instantiation (nb_tvars, type_cons) in
(* Then, the usual variables [s], [ls], [la], ... *)
let s = List.map ((<>) Tdummy) types in
let ls = List.length s in
let la = List.length args in
assert (la <= ls + params_nb);
let la' = max 0 (la - params_nb) in
let args' = list_lastn la' args in
(* Now, we build the expected type of the constructor *)
let metas = List.map new_meta args' in
(* If stored and expected types differ, then magic! *)
let a = new_meta () in
let magic1 = needs_magic (type_cons, type_recomp (metas, a)) in
let magic2 = needs_magic (a, mlt) in
let head mla =
if mi.ind_info = Singleton then
put_magic_if magic1 (List.hd mla) (* assert (List.length mla = 1) *)
else put_magic_if magic1 (MLcons (ConstructRef cp, mla))
in
(* Different situations depending of the number of arguments: *)
if la < params_nb then
let head' = head (eta_args_sign ls s) in
put_magic_if magic2
(dummy_lams (anonym_or_dummy_lams head' s) (params_nb - la))
else
let mla = make_mlargs env mle s args' metas in
if la = ls + params_nb
then put_magic_if (magic2 && not magic1) (head mla)
else (* [ params_nb <= la <= ls + params_nb ] *)
let ls' = params_nb + ls - la in
let s' = list_lastn ls' s in
let mla = (List.map (ast_lift ls') mla) @ (eta_args_sign ls' s') in
put_magic_if magic2 (anonym_or_dummy_lams (head mla) s')
(*S Extraction of a case. *)
and extract_case env mle ((kn,i) as ip,c,br) mlt =
(* [br]: bodies of each branch (in functional form) *)
(* [ni]: number of arguments without parameters in each branch *)
let ni = mis_constr_nargs_env env ip in
let br_size = Array.length br in
assert (Array.length ni = br_size);
if br_size = 0 then begin
add_recursors env kn; (* May have passed unseen if logical ... *)
MLexn "absurd case"
end else
(* [c] has an inductive type, and is not a type scheme type. *)
let t = type_of env c in
(* The only non-informative case: [c] is of sort [Prop] *)
if (sort_of env t) = InProp then
begin
add_recursors env kn; (* May have passed unseen if logical ... *)
(* Logical singleton case: *)
(* [match c with C i j k -> t] becomes [t'] *)
assert (br_size = 1);
let s = iterate (fun l -> false :: l) ni.(0) [] in
let mlt = iterate (fun t -> Tarr (Tdummy, t)) ni.(0) mlt in
let e = extract_maybe_term env mle mlt br.(0) in
snd (case_expunge s e)
end
else
let mi = extract_ind env kn in
let params_nb = mi.ind_nparams in
let oi = mi.ind_packets.(i) in
let metas = Array.init (List.length oi.ip_vars) new_meta in
(* The extraction of the head. *)
let type_head = Tglob (IndRef ip, Array.to_list metas) in
let a = extract_term env mle type_head c [] in
(* The extraction of each branch. *)
let extract_branch i =
(* The types of the arguments of the corresponding constructor. *)
let f t = type_subst_vect metas (type_expand env t) in
let l = List.map f oi.ip_types.(i) in
(* Extraction of the branch (in functional form). *)
let e = extract_maybe_term env mle (type_recomp (l,mlt)) br.(i) in
(* We suppress dummy arguments according to signature. *)
let ids,e = case_expunge (List.map ((<>) Tdummy) l) e in
(ConstructRef (ip,i+1), List.rev ids, e)
in
if mi.ind_info = Singleton then
begin
(* Informative singleton case: *)
(* [match c with C i -> t] becomes [let i = c' in t'] *)
assert (br_size = 1);
let (_,ids,e') = extract_branch 0 in
assert (List.length ids = 1);
MLletin (List.hd ids,a,e')
end
else
(* Standard case: we apply [extract_branch]. *)
MLcase (a, Array.init br_size extract_branch)
(*s Extraction of a (co)-fixpoint. *)
and extract_fix env mle i (fi,ti,ci as recd) mlt =
let env = push_rec_types recd env in
let metas = Array.map new_meta fi in
metas.(i) <- mlt;
let mle = Array.fold_left Mlenv.push_type mle metas in
let ei = array_map2 (extract_maybe_term env mle) metas ci in
MLfix (i, Array.map id_of_name fi, ei)
(*S ML declarations. *)
(* [decomp_lams_eta env c t] finds the number [n] of products in the type [t],
and decompose the term [c] in [n] lambdas, with eta-expansion if needed. *)
let rec decomp_lams_eta_n n env c t =
let rels = fst (decomp_n_prod env none n t) in
let rels = List.map (fun (id,_,c) -> (id,c)) rels in
let m = nb_lam c in
if m >= n then decompose_lam_n n c
else
let rels',c = decompose_lam c in
let d = n - m in
(* we'd better keep rels' as long as possible. *)
let rels = (list_firstn d rels) @ rels' in
let eta_args = List.rev_map mkRel (interval 1 d) in
rels, applist (lift d c,eta_args)
(*s From a constant to a ML declaration. *)
let extract_std_constant env kn body typ =
reset_meta_count ();
(* The short type [t] (i.e. possibly with abbreviations). *)
let t = snd (record_constant_type env kn (Some typ)) in
(* The real type [t']: without head lambdas, expanded, *)
(* and with [Tvar] translated to [Tvar'] (not instantiable). *)
let l,t' = type_decomp (type_expand env (var2var' t)) in
let s = List.map ((<>) Tdummy) l in
(* The initial ML environment. *)
let mle = List.fold_left Mlenv.push_std_type Mlenv.empty l in
(* Decomposing the top level lambdas of [body]. *)
let rels,c = decomp_lams_eta_n (List.length s) env body typ in
(* The lambdas names. *)
let ids = List.map (fun (n,_) -> id_of_name n) rels in
(* The according Coq environment. *)
let env = push_rels_assum rels env in
(* The real extraction: *)
let e = extract_term env mle t' c [] in
(* Expunging term and type from dummy lambdas. *)
term_expunge s (ids,e), type_expunge env t
let extract_fixpoint env vkn (fi,ti,ci) =
let n = Array.length vkn in
let types = Array.make n Tdummy
and terms = Array.make n MLdummy in
(* for replacing recursive calls [Rel ..] by the corresponding [Const]: *)
let sub = List.rev_map mkConst (Array.to_list vkn) in
for i = 0 to n-1 do
if sort_of env ti.(i) <> InProp then begin
let e,t = extract_std_constant env vkn.(i) (substl sub ci.(i)) ti.(i) in
terms.(i) <- e;
types.(i) <- t;
end
done;
Dfix (Array.map (fun kn -> ConstRef kn) vkn, terms, types)
let extract_constant env kn cb =
let r = ConstRef kn in
let typ = cb.const_type in
match cb.const_body with
| None -> (* A logical axiom is risky, an informative one is fatal. *)
(match flag_of_type env typ with
| (Info,TypeScheme) ->
if not (is_custom r) then warning_info_ax r;
let n = type_scheme_nb_args env typ in
let ids = iterate (fun l -> anonymous::l) n [] in
Dtype (r, ids, Taxiom)
| (Info,Default) ->
if not (is_custom r) then warning_info_ax r;
let t = snd (record_constant_type env kn (Some typ)) in
Dterm (r, MLaxiom, type_expunge env t)
| (Logic,TypeScheme) -> warning_log_ax r; Dtype (r, [], Tdummy)
| (Logic,Default) -> warning_log_ax r; Dterm (r, MLdummy, Tdummy))
| Some body ->
(match flag_of_type env typ with
| (Logic, Default) -> Dterm (r, MLdummy, Tdummy)
| (Logic, TypeScheme) -> Dtype (r, [], Tdummy)
| (Info, Default) ->
let e,t = extract_std_constant env kn (force body) typ in
Dterm (r,e,t)
| (Info, TypeScheme) ->
let s,vl = type_sign_vl env typ in
let db = db_from_sign s in
let t = extract_type_scheme env db (force body) (List.length s)
in Dtype (r, vl, t))
let extract_constant_spec env kn cb =
let r = ConstRef kn in
let typ = cb.const_type in
match flag_of_type env typ with
| (Logic, TypeScheme) -> Stype (r, [], Some Tdummy)
| (Logic, Default) -> Sval (r, Tdummy)
| (Info, TypeScheme) ->
let s,vl = type_sign_vl env typ in
(match cb.const_body with
| None -> Stype (r, vl, None)
| Some body ->
let db = db_from_sign s in
let t = extract_type_scheme env db (force body) (List.length s)
in Stype (r, vl, Some t))
| (Info, Default) ->
let t = snd (record_constant_type env kn (Some typ)) in
Sval (r, type_expunge env t)
let extract_inductive env kn =
let ind = extract_ind env kn in
add_recursors env kn;
let f l = List.filter (type_neq env Tdummy) l in
let packets =
Array.map (fun p -> { p with ip_types = Array.map f p.ip_types })
ind.ind_packets
in { ind with ind_packets = packets }
(*s From a global reference to a ML declaration. *)
let extract_declaration env r = match r with
| ConstRef kn -> extract_constant env kn (Environ.lookup_constant kn env)
| IndRef (kn,_) -> Dind (kn, extract_inductive env kn)
| ConstructRef ((kn,_),_) -> Dind (kn, extract_inductive env kn)
| VarRef kn -> assert false
(*s Without doing complete extraction, just guess what a constant would be. *)
type kind = Logical | Term | Type
let constant_kind env cb =
match flag_of_type env cb.const_type with
| (Logic,_) -> Logical
| (Info,TypeScheme) -> Type
| (Info,Default) -> Term
(*s Is a [ml_decl] logical ? *)
let logical_decl = function
| Dterm (_,MLdummy,Tdummy) -> true
| Dtype (_,[],Tdummy) -> true
| Dfix (_,av,tv) ->
(array_for_all ((=) MLdummy) av) && (array_for_all ((=) Tdummy) tv)
| Dind (_,i) -> array_for_all (fun ip -> ip.ip_logical) i.ind_packets
| _ -> false
(*s Is a [ml_spec] logical ? *)
let logical_spec = function
| Stype (_, [], Some Tdummy) -> true
| Sval (_,Tdummy) -> true
| Sind (_,i) -> array_for_all (fun ip -> ip.ip_logical) i.ind_packets
| _ -> false
|