1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: modutil.ml,v 1.7.2.1 2004/07/16 19:30:08 herbelin Exp $ i*)
open Names
open Declarations
open Environ
open Libnames
open Util
open Miniml
open Table
open Mlutil
(*S Functions upon modules missing in [Modops]. *)
(*s Add _all_ direct subobjects of a module, not only those exported.
Build on the [Modops.add_signature] model. *)
let add_structure mp msb env =
let add_one env (l,elem) =
let kn = make_kn mp empty_dirpath l in
match elem with
| SEBconst cb -> Environ.add_constant kn cb env
| SEBmind mib -> Environ.add_mind kn mib env
| SEBmodule mb -> Modops.add_module (MPdot (mp,l)) mb env
| SEBmodtype mtb -> Environ.add_modtype kn mtb env
in List.fold_left add_one env msb
(*s Apply a module path substitution on a module.
Build on the [Modops.subst_modtype] model. *)
let rec subst_module sub mb =
let mtb' = Modops.subst_modtype sub mb.mod_type
and meb' = option_smartmap (subst_meb sub) mb.mod_expr
and mtb'' = option_smartmap (Modops.subst_modtype sub) mb.mod_user_type
and mpo' = option_smartmap (subst_mp sub) mb.mod_equiv in
if (mtb'==mb.mod_type) && (meb'==mb.mod_expr) &&
(mtb''==mb.mod_user_type) && (mpo'==mb.mod_equiv)
then mb
else { mod_expr= meb';
mod_type=mtb';
mod_user_type=mtb'';
mod_equiv=mpo';
mod_constraints=mb.mod_constraints }
and subst_meb sub = function
| MEBident mp -> MEBident (subst_mp sub mp)
| MEBfunctor (mbid, mtb, meb) ->
assert (not (occur_mbid mbid sub));
MEBfunctor (mbid, Modops.subst_modtype sub mtb, subst_meb sub meb)
| MEBstruct (msid, msb) ->
assert (not (occur_msid msid sub));
MEBstruct (msid, subst_msb sub msb)
| MEBapply (meb, meb', c) ->
MEBapply (subst_meb sub meb, subst_meb sub meb', c)
and subst_msb sub msb =
let subst_body = function
| SEBconst cb -> SEBconst (subst_const_body sub cb)
| SEBmind mib -> SEBmind (subst_mind sub mib)
| SEBmodule mb -> SEBmodule (subst_module sub mb)
| SEBmodtype mtb -> SEBmodtype (Modops.subst_modtype sub mtb)
in List.map (fun (l,b) -> (l,subst_body b)) msb
(*s Change a msid in a module type, to follow a module expr.
Because of the "with" construct, the module type of a module can be a
[MTBsig] with a msid different from the one of the module. *)
let rec replicate_msid meb mtb = match meb,mtb with
| MEBfunctor (_, _, meb), MTBfunsig (mbid, mtb1, mtb2) ->
let mtb' = replicate_msid meb mtb2 in
if mtb' == mtb2 then mtb else MTBfunsig (mbid, mtb1, mtb')
| MEBstruct (msid, _), MTBsig (msid1, msig) when msid <> msid1 ->
let msig' = Modops.subst_signature_msid msid1 (MPself msid) msig in
if msig' == msig then MTBsig (msid, msig) else MTBsig (msid, msig')
| _ -> mtb
(*S More functions concerning [module_path]. *)
let rec mp_length = function
| MPdot (mp, _) -> 1 + (mp_length mp)
| _ -> 1
let rec prefixes_mp mp = match mp with
| MPdot (mp',_) -> MPset.add mp (prefixes_mp mp')
| _ -> MPset.singleton mp
let rec common_prefix prefixes_mp1 mp2 =
if MPset.mem mp2 prefixes_mp1 then mp2
else match mp2 with
| MPdot (mp,_) -> common_prefix prefixes_mp1 mp
| _ -> raise Not_found
let common_prefix_from_list mp0 mpl =
let prefixes_mp0 = prefixes_mp mp0 in
let rec f = function
| [] -> raise Not_found
| mp1 :: l -> try common_prefix prefixes_mp0 mp1 with Not_found -> f l
in f mpl
let rec modfile_of_mp mp = match mp with
| MPfile _ -> mp
| MPdot (mp,_) -> modfile_of_mp mp
| _ -> raise Not_found
let rec parse_labels ll = function
| MPdot (mp,l) -> parse_labels (l::ll) mp
| mp -> mp,ll
let labels_of_mp mp = parse_labels [] mp
let labels_of_kn kn =
let mp,_,l = repr_kn kn in parse_labels [l] mp
let rec add_labels_mp mp = function
| [] -> mp
| l :: ll -> add_labels_mp (MPdot (mp,l)) ll
(*S Functions upon ML modules. *)
(*s Apply some functions upon all [ml_decl] and [ml_spec] found in a
[ml_structure]. *)
let struct_iter do_decl do_spec s =
let rec mt_iter = function
| MTident _ -> ()
| MTfunsig (_,mt,mt') -> mt_iter mt; mt_iter mt'
| MTsig (_, sign) -> List.iter spec_iter sign
and spec_iter = function
| (_,Spec s) -> do_spec s
| (_,Smodule mt) -> mt_iter mt
| (_,Smodtype mt) -> mt_iter mt
in
let rec se_iter = function
| (_,SEdecl d) -> do_decl d
| (_,SEmodule m) ->
me_iter m.ml_mod_expr; mt_iter m.ml_mod_type
| (_,SEmodtype m) -> mt_iter m
and me_iter = function
| MEident _ -> ()
| MEfunctor (_,mt,me) -> me_iter me; mt_iter mt
| MEapply (me,me') -> me_iter me; me_iter me'
| MEstruct (msid, sel) -> List.iter se_iter sel
in
List.iter (function (_,sel) -> List.iter se_iter sel) s
(*s Apply some fonctions upon all references in [ml_type], [ml_ast],
[ml_decl], [ml_spec] and [ml_structure]. *)
type do_ref = global_reference -> unit
let type_iter_references do_type t =
let rec iter = function
| Tglob (r,l) -> do_type r; List.iter iter l
| Tarr (a,b) -> iter a; iter b
| _ -> ()
in iter t
let ast_iter_references do_term do_cons do_type a =
let rec iter a =
ast_iter iter a;
match a with
| MLglob r -> do_term r
| MLcons (r,_) -> do_cons r
| MLcase (_,v) as a -> Array.iter (fun (r,_,_) -> do_cons r) v
| _ -> ()
in iter a
let ind_iter_references do_term do_cons do_type kn ind =
let type_iter = type_iter_references do_type in
let cons_iter cp l = do_cons (ConstructRef cp); List.iter type_iter l in
let packet_iter ip p =
do_type (IndRef ip); Array.iteri (fun j -> cons_iter (ip,j+1)) p.ip_types
in
if ind.ind_info = Record then List.iter do_term (find_projections kn);
Array.iteri (fun i -> packet_iter (kn,i)) ind.ind_packets
let decl_iter_references do_term do_cons do_type =
let type_iter = type_iter_references do_type
and ast_iter = ast_iter_references do_term do_cons do_type in
function
| Dind (kn,ind) -> ind_iter_references do_term do_cons do_type kn ind
| Dtype (r,_,t) -> do_type r; type_iter t
| Dterm (r,a,t) -> do_term r; ast_iter a; type_iter t
| Dfix(rv,c,t) ->
Array.iter do_term rv; Array.iter ast_iter c; Array.iter type_iter t
let spec_iter_references do_term do_cons do_type = function
| Sind (kn,ind) -> ind_iter_references do_term do_cons do_type kn ind
| Stype (r,_,ot) -> do_type r; option_iter (type_iter_references do_type) ot
| Sval (r,t) -> do_term r; type_iter_references do_type t
let struct_iter_references do_term do_cons do_type =
struct_iter
(decl_iter_references do_term do_cons do_type)
(spec_iter_references do_term do_cons do_type)
(*s Get all references used in one [ml_structure], either in [list] or [set]. *)
type 'a updown = { mutable up : 'a ; mutable down : 'a }
let struct_get_references empty add struc =
let o = { up = empty ; down = empty } in
let do_term r = o.down <- add r o.down in
let do_cons r = o.up <- add r o.up in
let do_type = if lang () = Haskell then do_cons else do_term in
struct_iter_references do_term do_cons do_type struc; o
let struct_get_references_set = struct_get_references Refset.empty Refset.add
module Orefset = struct
type t = { set : Refset.t ; list : global_reference list }
let empty = { set = Refset.empty ; list = [] }
let add r o =
if Refset.mem r o.set then o
else { set = Refset.add r o.set ; list = r :: o.list }
let set o = o.set
let list o = o.list
end
let struct_get_references_list struc =
let o = struct_get_references Orefset.empty Orefset.add struc in
{ up = Orefset.list o.up; down = Orefset.list o.down }
(*s Searching occurrences of a particular term (no lifting done). *)
exception Found
let rec ast_search t a =
if t = a then raise Found else ast_iter (ast_search t) a
let decl_ast_search t = function
| Dterm (_,a,_) -> ast_search t a
| Dfix (_,c,_) -> Array.iter (ast_search t) c
| _ -> ()
let struct_ast_search t s =
try struct_iter (decl_ast_search t) (fun _ -> ()) s; false
with Found -> true
let rec type_search t = function
| Tarr (a,b) -> type_search t a; type_search t b
| Tglob (r,l) -> List.iter (type_search t) l
| u -> if t = u then raise Found
let decl_type_search t = function
| Dind (_,{ind_packets=p}) ->
Array.iter
(fun {ip_types=v} -> Array.iter (List.iter (type_search t)) v) p
| Dterm (_,_,u) -> type_search t u
| Dfix (_,_,v) -> Array.iter (type_search t) v
| Dtype (_,_,u) -> type_search t u
let spec_type_search t = function
| Sind (_,{ind_packets=p}) ->
Array.iter
(fun {ip_types=v} -> Array.iter (List.iter (type_search t)) v) p
| Stype (_,_,ot) -> option_iter (type_search t) ot
| Sval (_,u) -> type_search t u
let struct_type_search t s =
try struct_iter (decl_type_search t) (spec_type_search t) s; false
with Found -> true
(*s Generating the signature. *)
let rec msig_of_ms = function
| [] -> []
| (l,SEdecl (Dind (kn,i))) :: ms ->
(l,Spec (Sind (kn,i))) :: (msig_of_ms ms)
| (l,SEdecl (Dterm (r,_,t))) :: ms ->
(l,Spec (Sval (r,t))) :: (msig_of_ms ms)
| (l,SEdecl (Dtype (r,v,t))) :: ms ->
(l,Spec (Stype (r,v,Some t))) :: (msig_of_ms ms)
| (l,SEdecl (Dfix (rv,_,tv))) :: ms ->
let msig = ref (msig_of_ms ms) in
for i = Array.length rv - 1 downto 0 do
msig := (l,Spec (Sval (rv.(i),tv.(i))))::!msig
done;
!msig
| (l,SEmodule m) :: ms -> (l,Smodule m.ml_mod_type) :: (msig_of_ms ms)
| (l,SEmodtype m) :: ms -> (l,Smodtype m) :: (msig_of_ms ms)
let signature_of_structure s =
List.map (fun (mp,ms) -> mp,msig_of_ms ms) s
(*s Searching one [ml_decl] in a [ml_structure] by its [global_reference] *)
let get_decl_in_structure r struc =
try
let kn = kn_of_r r in
let base_mp,ll = labels_of_kn kn in
if not (at_toplevel base_mp) then error_not_visible r;
let sel = List.assoc base_mp struc in
let rec go ll sel = match ll with
| [] -> assert false
| l :: ll ->
match List.assoc l sel with
| SEdecl d -> d
| SEmodtype m -> assert false
| SEmodule m ->
match m.ml_mod_expr with
| MEstruct (_,sel) -> go ll sel
| _ -> error_not_visible r
in go ll sel
with Not_found -> assert false
(*s Optimization of a [ml_structure]. *)
(* Some transformations of ML terms. [optimize_struct] simplify
all beta redexes (when the argument does not occur, it is just
thrown away; when it occurs exactly once it is substituted; otherwise
a let-in redex is created for clarity) and iota redexes, plus some other
optimizations. *)
let dfix_to_mlfix rv av i =
let rec make_subst n s =
if n < 0 then s
else make_subst (n-1) (KNmap.add (kn_of_r rv.(n)) (n+1) s)
in
let s = make_subst (Array.length rv - 1) KNmap.empty
in
let rec subst n t = match t with
| MLglob (ConstRef kn) ->
(try MLrel (n + (KNmap.find kn s)) with Not_found -> t)
| _ -> ast_map_lift subst n t
in
let ids = Array.map (fun r -> id_of_label (label (kn_of_r r))) rv in
let c = Array.map (subst 0) av
in MLfix(i, ids, c)
let rec optim prm s = function
| [] -> []
| (Dtype (r,_,Tdummy) | Dterm(r,MLdummy,_)) as d :: l ->
if List.mem r prm.to_appear then d :: (optim prm s l) else optim prm s l
| Dterm (r,t,typ) :: l ->
let t = normalize (ast_glob_subst !s t) in
let i = inline r t in
if i then s := KNmap.add (kn_of_r r) t !s;
if not i || prm.modular || List.mem r prm.to_appear
then
let d = match optimize_fix t with
| MLfix (0, _, [|c|]) ->
Dfix ([|r|], [|ast_subst (MLglob r) c|], [|typ|])
| t -> Dterm (r, t, typ)
in d :: (optim prm s l)
else optim prm s l
| d :: l -> d :: (optim prm s l)
let rec optim_se top prm s = function
| [] -> []
| (l,SEdecl (Dterm (r,a,t))) :: lse ->
let kn = kn_of_r r in
let a = normalize (ast_glob_subst !s a) in
let i = inline r a in
if i then s := KNmap.add kn a !s;
if top && i && not prm.modular && not (List.mem r prm.to_appear)
then optim_se top prm s lse
else
let d = match optimize_fix a with
| MLfix (0, _, [|c|]) ->
Dfix ([|r|], [|ast_subst (MLglob r) c|], [|t|])
| a -> Dterm (r, a, t)
in (l,SEdecl d) :: (optim_se top prm s lse)
| (l,SEdecl (Dfix (rv,av,tv))) :: lse ->
let av = Array.map (fun a -> normalize (ast_glob_subst !s a)) av in
let all = ref true in
(* This fake body ensures that no fixpoint will be auto-inlined. *)
let fake_body = MLfix (0,[||],[||]) in
for i = 0 to Array.length rv - 1 do
if inline rv.(i) fake_body
then s := KNmap.add (kn_of_r rv.(i)) (dfix_to_mlfix rv av i) !s
else all := false
done;
if !all && top && not prm.modular
&& (array_for_all (fun r -> not (List.mem r prm.to_appear)) rv)
then optim_se top prm s lse
else (l,SEdecl (Dfix (rv, av, tv))) :: (optim_se top prm s lse)
| (l,SEmodule m) :: lse ->
let m = { m with ml_mod_expr = optim_me prm s m.ml_mod_expr}
in (l,SEmodule m) :: (optim_se top prm s lse)
| se :: lse -> se :: (optim_se top prm s lse)
and optim_me prm s = function
| MEstruct (msid, lse) -> MEstruct (msid, optim_se false prm s lse)
| MEident mp as me -> me
| MEapply (me, me') -> MEapply (optim_me prm s me, optim_me prm s me')
| MEfunctor (mbid,mt,me) -> MEfunctor (mbid,mt, optim_me prm s me)
let optimize_struct prm before struc =
let subst = ref (KNmap.empty : ml_ast KNmap.t) in
option_iter (fun l -> ignore (optim prm subst l)) before;
List.map (fun (mp,lse) -> (mp, optim_se true prm subst lse)) struc
|