1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
|
open Paths;;
type tree = {mutable index : int;
parent : tree option;
path_to_root : int list;
mutable is_open : bool;
mutable sub_proofs : tree list};;
type prf_info = {
mutable prf_length : int;
mutable ranks_and_goals : (int * int * tree) list;
mutable border : tree list;
prf_struct : tree};;
let theorem_proofs = ((Hashtbl.create 17):
(string, prf_info) Hashtbl.t);;
let rec mk_trees_for_goals path tree rank k n =
if k = (n + 1) then
[]
else
{ index = rank;
parent = tree;
path_to_root = k::path;
is_open = true;
sub_proofs = [] } ::(mk_trees_for_goals path tree rank (k+1) n);;
let push_command s rank ngoals =
let ({prf_length = this_length;
ranks_and_goals = these_ranks;
border = this_border} as proof_info) =
Hashtbl.find theorem_proofs s in
let rec push_command_aux n = function
[] -> failwith "the given rank was too large"
| a::l ->
if n = 1 then
let {path_to_root = p} = a in
let new_trees = mk_trees_for_goals p (Some a) (this_length + 1) 1 ngoals in
new_trees,(new_trees@l),a
else
let new_trees, res, this_tree = push_command_aux (n-1) l in
new_trees,(a::res),this_tree in
let new_trees, new_border, this_tree =
push_command_aux rank this_border in
let new_length = this_length + 1 in
begin
proof_info.border <- new_border;
proof_info.prf_length <- new_length;
proof_info.ranks_and_goals <- (rank, ngoals, this_tree)::these_ranks;
this_tree.index <- new_length;
this_tree.is_open <- false;
this_tree.sub_proofs <- new_trees
end;;
let get_tree_for_rank thm_name rank =
let {ranks_and_goals=l;prf_length=n} =
Hashtbl.find theorem_proofs thm_name in
let rec get_tree_aux = function
[] ->
failwith
"inconsistent values for thm_name and rank in get_tree_for_rank"
| (_,_,({index=i} as tree))::tl ->
if i = rank then
tree
else
get_tree_aux tl in
get_tree_aux l;;
let get_path_for_rank thm_name rank =
let {path_to_root=l}=get_tree_for_rank thm_name rank in
l;;
let rec list_descendants_aux l tree =
let {index = i; is_open = open_status; sub_proofs = tl} = tree in
let res = (List.fold_left list_descendants_aux l tl) in
if open_status then i::res else res;;
let list_descendants thm_name rank =
list_descendants_aux [] (get_tree_for_rank thm_name rank);;
let parent_from_rank thm_name rank =
let {parent=mommy} = get_tree_for_rank thm_name rank in
match mommy with
Some x -> Some x.index
| None -> None;;
let first_child_command thm_name rank =
let {sub_proofs = l} = get_tree_for_rank thm_name rank in
let rec first_child_rec = function
[] -> None
| {index=i;is_open=b}::l ->
if b then
(first_child_rec l)
else
Some i in
first_child_rec l;;
type index_or_rank = Is_index of int | Is_rank of int;;
let first_child_command_or_goal thm_name rank =
let proof_info = Hashtbl.find theorem_proofs thm_name in
let {sub_proofs=l}=get_tree_for_rank thm_name rank in
match l with
[] -> None
| ({index=i;is_open=b} as t)::_ ->
if b then
let rec get_rank n = function
[] -> failwith "A goal is lost in first_child_command_or_goal"
| a::l ->
if a==t then
n
else
get_rank (n + 1) l in
Some(Is_rank(get_rank 1 proof_info.border))
else
Some(Is_index i);;
let next_sibling thm_name rank =
let ({parent=mommy} as t)=get_tree_for_rank thm_name rank in
match mommy with
None -> None
| Some real_mommy ->
let {sub_proofs=l}=real_mommy in
let rec next_sibling_aux b = function
(opt_first, []) ->
if b then
opt_first
else
failwith "inconsistency detected in next_sibling"
| (opt_first, {is_open=true}::l) ->
next_sibling_aux b (opt_first, l)
| (Some(first),({index=i; is_open=false} as t')::l) ->
if b then
Some i
else
next_sibling_aux (t == t') (Some first,l)
| None,({index=i;is_open=false} as t')::l ->
next_sibling_aux (t == t') ((Some i), l)
in
Some (next_sibling_aux false (None, l));;
let prefix l1 l2 =
let l1rev = List.rev l1 in
let l2rev = List.rev l2 in
is_prefix l1rev l2rev;;
let rec remove_all_prefixes p = function
[] -> []
| a::l ->
if is_prefix p a then
(remove_all_prefixes p l)
else
a::(remove_all_prefixes p l);;
let recompute_border tree =
let rec recompute_border_aux tree acc =
let {is_open=b;sub_proofs=l}=tree in
if b then
tree::acc
else
List.fold_right recompute_border_aux l acc in
recompute_border_aux tree [];;
let historical_undo thm_name rank =
let ({ranks_and_goals=l} as proof_info)=
Hashtbl.find theorem_proofs thm_name in
let rec undo_aux acc = function
[] -> failwith "bad rank provided for undoing in historical_undo"
| (r, n, ({index=i} as tree))::tl ->
let this_path_reversed = List.rev tree.path_to_root in
let res = remove_all_prefixes this_path_reversed acc in
if i = rank then
begin
proof_info.prf_length <- i-1;
proof_info.ranks_and_goals <- tl;
tree.is_open <- true;
tree.sub_proofs <- [];
proof_info.border <- recompute_border proof_info.prf_struct;
this_path_reversed::res
end
else
begin
tree.is_open <- true;
tree.sub_proofs <- [];
undo_aux (this_path_reversed::res) tl
end
in
List.map List.rev (undo_aux [] l);;
(* The following function takes a list of trees and compute the
number of elements whose path is lexically smaller or a suffixe of
the path given as a first argument. This works under the precondition that
the list is lexicographically order. *)
let rec logical_undo_on_border the_tree rev_path = function
[] -> (0,[the_tree])
| ({path_to_root=p}as tree)::tl ->
let p_rev = List.rev p in
if is_prefix rev_path p_rev then
let (k,res) = (logical_undo_on_border the_tree rev_path tl) in
(k+1,res)
else if lex_smaller p_rev rev_path then
let (k,res) = (logical_undo_on_border the_tree rev_path tl) in
(k,tree::res)
else
(0, the_tree::tree::tl);;
let logical_undo thm_name rank =
let ({ranks_and_goals=l; border=last_border} as proof_info)=
Hashtbl.find theorem_proofs thm_name in
let ({path_to_root=ref_path} as ref_tree)=get_tree_for_rank thm_name rank in
let rev_ref_path = List.rev ref_path in
let rec logical_aux lex_smaller_offset family_width = function
[] -> failwith "this case should never happen in logical_undo"
| (r,n,({index=i;path_to_root=this_path; sub_proofs=these_goals} as tree))::
tl ->
let this_path_rev = List.rev this_path in
let new_rank, new_offset, new_width, kept =
if is_prefix rev_ref_path this_path_rev then
(r + lex_smaller_offset), lex_smaller_offset,
(family_width + 1 - n), false
else if lex_smaller this_path_rev rev_ref_path then
r, (lex_smaller_offset - 1 + n), family_width, true
else
(r + 1 - family_width+ lex_smaller_offset),
lex_smaller_offset, family_width, true in
if i=rank then
[i,new_rank],[], tl, rank
else
let ranks_undone, ranks_kept, ranks_and_goals, current_rank =
(logical_aux new_offset new_width tl) in
begin
if kept then
begin
tree.index <- current_rank;
ranks_undone, ((i,new_rank)::ranks_kept),
((new_rank, n, tree)::ranks_and_goals),
(current_rank + 1)
end
else
((i,new_rank)::ranks_undone), ranks_kept,
ranks_and_goals, current_rank
end in
let number_suffix, new_border =
logical_undo_on_border ref_tree rev_ref_path last_border in
let changed_ranks_undone, changed_ranks_kept, new_ranks_and_goals,
new_length_plus_one = logical_aux 0 number_suffix l in
let the_goal_index =
let rec compute_goal_index n = function
[] -> failwith "this case should never happen in logical undo (2)"
| {path_to_root=path}::tl ->
if List.rev path = (rev_ref_path) then
n
else
compute_goal_index (n+1) tl in
compute_goal_index 1 new_border in
begin
ref_tree.is_open <- true;
ref_tree.sub_proofs <- [];
proof_info.border <- new_border;
proof_info.ranks_and_goals <- new_ranks_and_goals;
proof_info.prf_length <- new_length_plus_one - 1;
changed_ranks_undone, changed_ranks_kept, proof_info.prf_length,
the_goal_index
end;;
let start_proof thm_name =
let the_tree =
{index=0;parent=None;path_to_root=[];is_open=true;sub_proofs=[]} in
Hashtbl.add theorem_proofs thm_name
{prf_length=0;
ranks_and_goals=[];
border=[the_tree];
prf_struct=the_tree};;
let dump_sequence chan s =
match (Hashtbl.find theorem_proofs s) with
{ranks_and_goals=l}->
let rec dump_rec = function
[] -> ()
| (r,n,_)::tl ->
dump_rec tl;
output_string chan (string_of_int r);
output_string chan ",";
output_string chan (string_of_int n);
output_string chan "\n" in
begin
dump_rec l;
output_string chan "end\n"
end;;
let proof_info_as_string s =
let res = ref "" in
match (Hashtbl.find theorem_proofs s) with
{prf_struct=tree} ->
let open_goal_counter = ref 0 in
let rec dump_rec = function
{index=i;sub_proofs=trees;parent=the_parent;is_open=op} ->
begin
(match the_parent with
None ->
if op then
res := !res ^ "\"open goal\"\n"
| Some {index=j} ->
begin
res := !res ^ (string_of_int j);
res := !res ^ " -> ";
if op then
begin
res := !res ^ "\"open goal ";
open_goal_counter := !open_goal_counter + 1;
res := !res ^ (string_of_int !open_goal_counter);
res := !res ^ "\"\n";
end
else
begin
res := !res ^ (string_of_int i);
res := !res ^ "\n"
end
end);
List.iter dump_rec trees
end in
dump_rec tree;
!res;;
let dump_proof_info chan s =
match (Hashtbl.find theorem_proofs s) with
{prf_struct=tree} ->
let open_goal_counter = ref 0 in
let rec dump_rec = function
{index=i;sub_proofs=trees;parent=the_parent;is_open=op} ->
begin
(match the_parent with
None ->
if op then
output_string chan "\"open goal\"\n"
| Some {index=j} ->
begin
output_string chan (string_of_int j);
output_string chan " -> ";
if op then
begin
output_string chan "\"open goal ";
open_goal_counter := !open_goal_counter + 1;
output_string chan (string_of_int !open_goal_counter);
output_string chan "\"\n";
end
else
begin
output_string chan (string_of_int i);
output_string chan "\n"
end
end);
List.iter dump_rec trees
end in
dump_rec tree;;
let get_nth_open_path s n =
match Hashtbl.find theorem_proofs s with
{border=l} ->
let {path_to_root=p}=List.nth l (n - 1) in
p;;
let border_length s =
match Hashtbl.find theorem_proofs s with
{border=l} -> List.length l;;
|