1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
|
(* A proof by pointing algorithm. *)
open Util;;
open Names;;
open Term;;
open Tactics;;
open Tacticals;;
open Hipattern;;
open Pattern;;
open Matching;;
open Reduction;;
open Rawterm;;
open Environ;;
open Proof_trees;;
open Proof_type;;
open Tacmach;;
open Tacexpr;;
open Typing;;
open Pp;;
open Libnames;;
open Genarg;;
open Topconstr;;
open Termops;;
let zz = Util.dummy_loc;;
let hyp_radix = id_of_string "H";;
let next_global_ident = next_global_ident_away true
(* get_hyp_by_name : goal sigma -> string -> constr,
looks up for an hypothesis (or a global constant), from its name *)
let get_hyp_by_name g name =
let evd = project g in
let env = pf_env g in
try (let judgment =
Pretyping.understand_judgment
evd env (RVar(zz, name)) in
("hyp",judgment.uj_type))
(* je sais, c'est pas beau, mais je ne sais pas trop me servir de look_up...
Loc *)
with _ -> (let c = Nametab.global (Ident (zz,name)) in
("cste",type_of (Global.env()) Evd.empty (constr_of_reference c)))
;;
type pbp_atom =
| PbpTryAssumption of identifier option
| PbpTryClear of identifier list
| PbpGeneralize of identifier * identifier list
| PbpLApply of identifier (* = CutAndApply *)
| PbpIntros of intro_pattern_expr list
| PbpSplit
(* Existential *)
| PbpExists of identifier
(* Or *)
| PbpLeft
| PbpRight
(* Head *)
| PbpApply of identifier
| PbpElim of identifier * identifier list;;
(* Invariant: In PbpThens ([a1;...;an],[t1;...;tp]), all tactics
[a1]..[an-1] are atomic (or try of an atomic) tactic and produce
exactly one goal, and [an] produces exactly p subgoals
In [PbpThen [a1;..an]], all tactics are (try of) atomic tactics and
produces exactly one subgoal, except the last one which may complete the
goal
Convention: [PbpThen []] is Idtac and [PbpThen t] is a coercion
from atomic to composed tactic
*)
type pbp_sequence =
| PbpThens of pbp_atom list * pbp_sequence list
| PbpThen of pbp_atom list
(* This flattens sequences of tactics producing just one subgoal *)
let chain_tactics tl1 = function
| PbpThens (tl2, tl3) -> PbpThens (tl1@tl2, tl3)
| PbpThen tl2 -> PbpThen (tl1@tl2)
type pbp_rule = (identifier list *
identifier list *
bool *
identifier option *
(types, constr) kind_of_term *
int list *
(identifier list ->
identifier list ->
bool ->
identifier option -> (types, constr) kind_of_term -> int list -> pbp_sequence)) ->
pbp_sequence option;;
let make_named_intro id = PbpIntros [IntroIdentifier id];;
let make_clears str_list = PbpThen [PbpTryClear str_list]
let add_clear_names_if_necessary tactic clear_names =
match clear_names with
[] -> tactic
| l -> chain_tactics [PbpTryClear l] tactic;;
let make_final_cmd f optname clear_names constr path =
add_clear_names_if_necessary (f optname constr path) clear_names;;
let (rem_cast:pbp_rule) = function
(a,c,cf,o, Cast(f,_), p, func) ->
Some(func a c cf o (kind_of_term f) p)
| _ -> None;;
let (forall_intro: pbp_rule) = function
(avoid,
clear_names,
clear_flag,
None,
Prod(Name x, _, body),
(2::path),
f) ->
let x' = next_global_ident x avoid in
Some(chain_tactics [make_named_intro x']
(f (x'::avoid)
clear_names clear_flag None (kind_of_term body) path))
| _ -> None;;
let (imply_intro2: pbp_rule) = function
avoid, clear_names,
clear_flag, None, Prod(Anonymous, _, body), 2::path, f ->
let h' = next_global_ident hyp_radix avoid in
Some(chain_tactics [make_named_intro h']
(f (h'::avoid) clear_names clear_flag None (kind_of_term body) path))
| _ -> None;;
(*
let (imply_intro1: pbp_rule) = function
avoid, clear_names,
clear_flag, None, Prod(Anonymous, prem, body), 1::path, f ->
let h' = next_global_ident hyp_radix avoid in
let str_h' = h' in
Some(chain_tactics [make_named_intro str_h']
(f (h'::avoid) clear_names clear_flag (Some str_h')
(kind_of_term prem) path))
| _ -> None;;
*)
let make_var id = CRef (Ident(zz, id))
let make_app f l = CApp (zz,(None,f),List.map (fun x -> (x,None)) l)
let make_pbp_pattern x =
make_app (make_var (id_of_string "PBP_META"))
[make_var (id_of_string ("Value_for_" ^ (string_of_id x)))]
let rec make_then = function
| [] -> TacId ""
| [t] -> t
| t1::t2::l -> make_then (TacThen (t1,t2)::l)
let make_pbp_atomic_tactic = function
| PbpTryAssumption None -> TacTry (TacAtom (zz, TacAssumption))
| PbpTryAssumption (Some a) ->
TacTry (TacAtom (zz, TacExact (make_var a)))
| PbpExists x ->
TacAtom (zz, TacSplit (true,ImplicitBindings [make_pbp_pattern x]))
| PbpGeneralize (h,args) ->
let l = List.map make_pbp_pattern args in
TacAtom (zz, TacGeneralize [make_app (make_var h) l])
| PbpLeft -> TacAtom (zz, TacLeft NoBindings)
| PbpRight -> TacAtom (zz, TacRight NoBindings)
| PbpIntros l -> TacAtom (zz, TacIntroPattern l)
| PbpLApply h -> TacAtom (zz, TacLApply (make_var h))
| PbpApply h -> TacAtom (zz, TacApply (make_var h,NoBindings))
| PbpElim (hyp_name, names) ->
let bind = List.map (fun s ->(zz,NamedHyp s,make_pbp_pattern s)) names in
TacAtom
(zz, TacElim ((make_var hyp_name,ExplicitBindings bind),None))
| PbpTryClear l ->
TacTry (TacAtom (zz, TacClear (List.map (fun s -> AI (zz,s)) l)))
| PbpSplit -> TacAtom (zz, TacSplit (false,NoBindings));;
let rec make_pbp_tactic = function
| PbpThen tl -> make_then (List.map make_pbp_atomic_tactic tl)
| PbpThens (l,tl) ->
TacThens
(make_then (List.map make_pbp_atomic_tactic l),
List.map make_pbp_tactic tl)
let (forall_elim: pbp_rule) = function
avoid, clear_names, clear_flag,
Some h, Prod(Name x, _, body), 2::path, f ->
let h' = next_global_ident hyp_radix avoid in
let clear_names' = if clear_flag then h::clear_names else clear_names in
Some
(chain_tactics [PbpGeneralize (h,[x]); make_named_intro h']
(f (h'::avoid) clear_names' true (Some h') (kind_of_term body) path))
| _ -> None;;
let (imply_elim1: pbp_rule) = function
avoid, clear_names, clear_flag,
Some h, Prod(Anonymous, prem, body), 1::path, f ->
let clear_names' = if clear_flag then h::clear_names else clear_names in
let h' = next_global_ident hyp_radix avoid in
let str_h' = (string_of_id h') in
Some(PbpThens
([PbpLApply h],
[chain_tactics [make_named_intro h'] (make_clears (h::clear_names));
f avoid clear_names' false None (kind_of_term prem) path]))
| _ -> None;;
let (imply_elim2: pbp_rule) = function
avoid, clear_names, clear_flag,
Some h, Prod(Anonymous, prem, body), 2::path, f ->
let clear_names' = if clear_flag then h::clear_names else clear_names in
let h' = next_global_ident hyp_radix avoid in
Some(PbpThens
([PbpLApply h],
[chain_tactics [make_named_intro h']
(f (h'::avoid) clear_names' false (Some h')
(kind_of_term body) path);
make_clears clear_names]))
| _ -> None;;
let reference dir s = Coqlib.gen_reference "Pbp" ("Init"::dir) s
let constant dir s = Coqlib.gen_constant "Pbp" ("Init"::dir) s
let andconstr: unit -> constr = Coqlib.build_coq_and;;
let prodconstr () = constant ["Datatypes"] "prod";;
let exconstr = Coqlib.build_coq_ex;;
let sigconstr () = constant ["Specif"] "sig";;
let sigTconstr () = (Coqlib.build_sigma_type()).Coqlib.typ;;
let orconstr = Coqlib.build_coq_or;;
let sumboolconstr = Coqlib.build_coq_sumbool;;
let sumconstr() = constant ["Datatypes"] "sum";;
let notconstr = Coqlib.build_coq_not;;
let notTconstr () = constant ["Logic_Type"] "notT";;
let is_matching_local a b = is_matching (pattern_of_constr a) b;;
let rec (or_and_tree_to_intro_pattern: identifier list ->
constr -> int list ->
intro_pattern_expr * identifier list * identifier *constr
* int list * int * int) =
fun avoid c path -> match kind_of_term c, path with
| (App(oper, [|c1; c2|]), 2::a::path)
when ((is_matching_local (andconstr()) oper) or
(is_matching_local (prodconstr()) oper)) & (a = 1 or a = 2) ->
let id2 = next_global_ident hyp_radix avoid in
let cont_expr = if a = 1 then c1 else c2 in
let cont_patt, avoid_names, id, c, path, rank, total_branches =
or_and_tree_to_intro_pattern (id2::avoid) cont_expr path in
let patt_list =
if a = 1 then
[cont_patt; IntroIdentifier id2]
else
[IntroIdentifier id2; cont_patt] in
(IntroOrAndPattern[patt_list], avoid_names, id, c, path, rank,
total_branches)
| (App(oper, [|c1; c2|]), 2::3::path)
when ((is_matching_local (exconstr()) oper) or
(is_matching_local (sigconstr()) oper)) ->
(match (kind_of_term c2) with
Lambda (Name x, _, body) ->
let id1 = next_global_ident x avoid in
let cont_patt, avoid_names, id, c, path, rank, total_branches =
or_and_tree_to_intro_pattern (id1::avoid) body path in
(IntroOrAndPattern[[IntroIdentifier id1; cont_patt]],
avoid_names, id, c, path, rank, total_branches)
| _ -> assert false)
| (App(oper, [|c1; c2|]), 2::a::path)
when ((is_matching_local (orconstr ()) oper) or
(is_matching_local (sumboolconstr ()) oper) or
(is_matching_local (sumconstr ()) oper)) & (a = 1 or a = 2) ->
let id2 = next_global_ident hyp_radix avoid in
let cont_expr = if a = 1 then c1 else c2 in
let cont_patt, avoid_names, id, c, path, rank, total_branches =
or_and_tree_to_intro_pattern (id2::avoid) cont_expr path in
let new_rank = if a = 1 then rank else rank+1 in
let patt_list =
if a = 1 then
[[cont_patt];[IntroIdentifier id2]]
else
[[IntroIdentifier id2];[cont_patt]] in
(IntroOrAndPattern patt_list,
avoid_names, id, c, path, new_rank, total_branches+1)
| (_, path) -> let id = next_global_ident hyp_radix avoid in
(IntroIdentifier id, (id::avoid), id, c, path, 1, 1);;
let auxiliary_goals clear_names clear_flag this_name n_aux others =
let clear_cmd =
make_clears (if clear_flag then (this_name ::clear_names) else clear_names) in
let rec clear_list = function
0 -> others
| n -> clear_cmd::(clear_list (n - 1)) in
clear_list n_aux;;
let (imply_intro3: pbp_rule) = function
avoid, clear_names, clear_flag, None, Prod(Anonymous, prem, body),
1::path, f ->
let intro_patt, avoid_names, id, c, p, rank, total_branches =
or_and_tree_to_intro_pattern avoid prem path in
if total_branches = 1 then
Some(chain_tactics [PbpIntros [intro_patt]]
(f avoid_names clear_names clear_flag (Some id)
(kind_of_term c) path))
else
Some
(PbpThens
([PbpIntros [intro_patt]],
auxiliary_goals clear_names clear_flag id
(rank - 1)
((f avoid_names clear_names clear_flag (Some id)
(kind_of_term c) path)::
auxiliary_goals clear_names clear_flag id
(total_branches - rank) [])))
| _ -> None;;
let (and_intro: pbp_rule) = function
avoid, clear_names, clear_flag,
None, App(and_oper, [|c1; c2|]), 2::a::path, f
->
if ((is_matching_local (andconstr()) and_oper) or
(is_matching_local (prodconstr ()) and_oper)) & (a = 1 or a = 2) then
let cont_term = if a = 1 then c1 else c2 in
let cont_cmd = f avoid clear_names false None
(kind_of_term cont_term) path in
let clear_cmd = make_clears clear_names in
let cmds =
(if a = 1
then [cont_cmd;clear_cmd]
else [clear_cmd;cont_cmd]) in
Some (PbpThens ([PbpSplit],cmds))
else None
| _ -> None;;
let exists_from_lambda avoid clear_names clear_flag c2 path f =
match kind_of_term c2 with
Lambda(Name x, _, body) ->
Some (PbpThens ([PbpExists x],
[f avoid clear_names false None (kind_of_term body) path]))
| _ -> None;;
let (ex_intro: pbp_rule) = function
avoid, clear_names, clear_flag, None,
App(oper, [| c1; c2|]), 2::3::path, f
when (is_matching_local (exconstr ()) oper)
or (is_matching_local (sigconstr ()) oper) ->
exists_from_lambda avoid clear_names clear_flag c2 path f
| _ -> None;;
let (exT_intro : pbp_rule) = function
avoid, clear_names, clear_flag, None,
App(oper, [| c1; c2|]), 2::2::2::path, f
when (is_matching_local (sigTconstr ()) oper) ->
exists_from_lambda avoid clear_names clear_flag c2 path f
| _ -> None;;
let (or_intro: pbp_rule) = function
avoid, clear_names, clear_flag, None,
App(or_oper, [|c1; c2 |]), 2::a::path, f ->
if ((is_matching_local (orconstr ()) or_oper) or
(is_matching_local (sumboolconstr ()) or_oper) or
(is_matching_local (sumconstr ()) or_oper))
& (a = 1 or a = 2) then
let cont_term = if a = 1 then c1 else c2 in
let fst_cmd = if a = 1 then PbpLeft else PbpRight in
let cont_cmd = f avoid clear_names false None
(kind_of_term cont_term) path in
Some(chain_tactics [fst_cmd] cont_cmd)
else
None
| _ -> None;;
let dummy_id = id_of_string "Dummy";;
let (not_intro: pbp_rule) = function
avoid, clear_names, clear_flag, None,
App(not_oper, [|c1|]), 2::1::path, f ->
if(is_matching_local (notconstr ()) not_oper) or
(is_matching_local (notTconstr ()) not_oper) then
let h' = next_global_ident hyp_radix avoid in
Some(chain_tactics [make_named_intro h']
(f (h'::avoid) clear_names false (Some h')
(kind_of_term c1) path))
else
None
| _ -> None;;
let elim_with_bindings hyp_name names =
PbpElim (hyp_name, names);;
(* This function is used to follow down a path, while staying on the spine of
successive products (universal quantifications or implications).
Arguments are the current observed constr object and the path that remains
to be followed, and an integer indicating how many products have already been
crossed.
Result is:
- a list of string indicating the names of universally quantified variables.
- a list of integers indicating the positions of the successive
universally quantified variables.
- an integer indicating the number of non-dependent products.
- the last constr object encountered during the walk down, and
- the remaining path.
For instance the following session should happen:
let tt = raw_constr_of_com (Evd.mt_evd())(gLOB(initial_sign()))
(parse_com "(P:nat->Prop)(x:nat)(P x)->(P x)") in
down_prods (tt, [2;2;2], 0)
---> ["P","x"],[0;1], 1, <<(P x)>>, []
*)
let rec down_prods: (types, constr) kind_of_term * (int list) * int ->
identifier list * (int list) * int * (types, constr) kind_of_term *
(int list) =
function
Prod(Name x, _, body), 2::path, k ->
let res_sl, res_il, res_i, res_cstr, res_p
= down_prods (kind_of_term body, path, k+1) in
x::res_sl, (k::res_il), res_i, res_cstr, res_p
| Prod(Anonymous, _, body), 2::path, k ->
let res_sl, res_il, res_i, res_cstr, res_p
= down_prods (kind_of_term body, path, k+1) in
res_sl, res_il, res_i+1, res_cstr, res_p
| cstr, path, _ -> [], [], 0, cstr, path;;
exception Pbp_internal of int list;;
(* This function should be usable to check that a type can be used by the
Apply command. Basically, c is supposed to be the head of some
type, where l gives the ranks of all universally quantified variables.
It check that these universally quantified variables occur in the head.
The knowledge I have on constr structures is incomplete.
*)
let (check_apply: (types, constr) kind_of_term -> (int list) -> bool) =
function c -> function l ->
let rec delete n = function
| [] -> []
| p::tl -> if n = p then tl else p::(delete n tl) in
let rec check_rec l = function
| App(f, array) ->
Array.fold_left (fun l c -> check_rec l (kind_of_term c))
(check_rec l (kind_of_term f)) array
| Const _ -> l
| Ind _ -> l
| Construct _ -> l
| Var _ -> l
| Rel p ->
let result = delete p l in
if result = [] then
raise (Pbp_internal [])
else
result
| _ -> raise (Pbp_internal l) in
try
(check_rec l c) = []
with Pbp_internal l -> l = [];;
let (mk_db_indices: int list -> int -> int list) =
function int_list -> function nprems ->
let total = (List.length int_list) + nprems in
let rec mk_db_aux = function
[] -> []
| a::l -> (total - a)::(mk_db_aux l) in
mk_db_aux int_list;;
(* This proof-by-pointing rule is quite complicated, as it attempts to foresee
usages of head tactics. A first operation is to follow the path as far
as possible while staying on the spine of products (function down_prods)
and then to check whether the next step will be an elim step. If the
answer is true, then the built command takes advantage of the power of
head tactics. *)
let (head_tactic_patt: pbp_rule) = function
avoid, clear_names, clear_flag, Some h, cstr, path, f ->
(match down_prods (cstr, path, 0) with
| (str_list, _, nprems, App(oper,[|c1; c2|]), b::a::path)
when (((is_matching_local (exconstr ()) oper) (* or
(is_matching_local (sigconstr ()) oper) *)) && a = 3) ->
(match (kind_of_term c2) with
Lambda(Name x, _,body) ->
Some(PbpThens
([elim_with_bindings h str_list],
let x' = next_global_ident x avoid in
let cont_body =
Prod(Name x', c1,
mkProd(Anonymous, body,
mkVar(dummy_id))) in
let cont_tac
= f avoid (h::clear_names) false None
cont_body (2::1::path) in
cont_tac::(auxiliary_goals
clear_names clear_flag
h nprems [])))
| _ -> None)
| (str_list, _, nprems,
App(oper,[|c1|]), 2::1::path)
when
(is_matching_local (notconstr ()) oper) or
(is_matching_local (notTconstr ()) oper) ->
Some(chain_tactics [elim_with_bindings h str_list]
(f avoid clear_names false None (kind_of_term c1) path))
| (str_list, _, nprems,
App(oper, [|c1; c2|]), 2::a::path)
when ((is_matching_local (andconstr()) oper) or
(is_matching_local (prodconstr()) oper)) & (a = 1 or a = 2) ->
let h1 = next_global_ident hyp_radix avoid in
let h2 = next_global_ident hyp_radix (h1::avoid) in
Some(PbpThens
([elim_with_bindings h str_list],
let cont_body =
if a = 1 then c1 else c2 in
let cont_tac =
f (h2::h1::avoid) (h::clear_names)
false (Some (if 1 = a then h1 else h2))
(kind_of_term cont_body) path in
(chain_tactics
[make_named_intro h1; make_named_intro h2]
cont_tac)::
(auxiliary_goals clear_names clear_flag h nprems [])))
| (str_list, _, nprems, App(oper,[|c1; c2|]), 2::a::path)
when ((is_matching_local (sigTconstr()) oper)) & a = 2 ->
(match (kind_of_term c2),path with
Lambda(Name x, _,body), (2::path) ->
Some(PbpThens
([elim_with_bindings h str_list],
let x' = next_global_ident x avoid in
let cont_body =
Prod(Name x', c1,
mkProd(Anonymous, body,
mkVar(dummy_id))) in
let cont_tac
= f avoid (h::clear_names) false None
cont_body (2::1::path) in
cont_tac::(auxiliary_goals
clear_names clear_flag
h nprems [])))
| _ -> None)
| (str_list, _, nprems, App(oper,[|c1; c2|]), 2::a::path)
when ((is_matching_local (orconstr ()) oper) or
(is_matching_local (sumboolconstr ()) oper) or
(is_matching_local (sumconstr ()) oper)) &
(a = 1 or a = 2) ->
Some(PbpThens
([elim_with_bindings h str_list],
let cont_body =
if a = 1 then c1 else c2 in
(* h' is the name for the new intro *)
let h' = next_global_ident hyp_radix avoid in
let cont_tac =
chain_tactics
[make_named_intro h']
(f
(* h' should not be used again *)
(h'::avoid)
(* the disjunct itself can be discarded *)
(h::clear_names) false (Some h')
(kind_of_term cont_body) path) in
let snd_tac =
chain_tactics
[make_named_intro h']
(make_clears (h::clear_names)) in
let tacs1 =
if a = 1 then
[cont_tac; snd_tac]
else
[snd_tac; cont_tac] in
tacs1@(auxiliary_goals (h::clear_names)
false dummy_id nprems [])))
| (str_list, int_list, nprems, c, [])
when (check_apply c (mk_db_indices int_list nprems)) &
(match c with Prod(_,_,_) -> false
| _ -> true) &
(List.length int_list) + nprems > 0 ->
Some(add_clear_names_if_necessary (PbpThen [PbpApply h]) clear_names)
| _ -> None)
| _ -> None;;
let pbp_rules = ref [rem_cast;head_tactic_patt;forall_intro;imply_intro2;
forall_elim; imply_intro3; imply_elim1; imply_elim2;
and_intro; or_intro; not_intro; ex_intro; exT_intro];;
let try_trace = ref true;;
let traced_try (f1:tactic) g =
try (try_trace := true; tclPROGRESS f1 g)
with e when Logic.catchable_exception e ->
(try_trace := false; tclIDTAC g);;
let traced_try_entry = function
[Tacexp t] ->
traced_try (Tacinterp.interp t)
| _ -> failwith "traced_try_entry received wrong arguments";;
(* When the recursive descent along the path is over, one includes the
command requested by the point-and-shoot strategy. Default is
Try Assumption--Try Exact. *)
let default_ast optname constr path = PbpThen [PbpTryAssumption optname]
(* This is the main proof by pointing function. *)
(* avoid: les noms a ne pas utiliser *)
(* final_cmd: la fonction appelee par defaut *)
(* opt_name: eventuellement le nom de l'hypothese sur laquelle on agit *)
let rec pbpt final_cmd avoid clear_names clear_flag opt_name constr path =
let rec try_all_rules rl =
match rl with
f::tl ->
(match f (avoid, clear_names, clear_flag,
opt_name, constr, path, pbpt final_cmd) with
Some(ast) -> ast
| None -> try_all_rules tl)
| [] -> make_final_cmd final_cmd opt_name clear_names constr path
in try_all_rules (!pbp_rules);;
(* these are the optimisation functions. *)
(* This function takes care of flattening successive then commands. *)
(* Invariant: in [flatten_sequence t], occurrences of [PbpThenCont(l,t)] enjoy
that t is some [PbpAtom t] *)
(* This optimization function takes care of compacting successive Intro commands
together. *)
let rec group_intros names = function
[] -> (match names with
[] -> []
| l -> [PbpIntros l])
| (PbpIntros ids)::others -> group_intros (names@ids) others
| t1::others ->
(match names with
[] -> t1::(group_intros [] others)
| l -> (PbpIntros l)::t1::(group_intros [] others))
let rec optim2 = function
| PbpThens (tl1,tl2) -> PbpThens (group_intros [] tl1, List.map optim2 tl2)
| PbpThen tl -> PbpThen (group_intros [] tl)
let rec cleanup_clears str_list = function
[] -> []
| x::tail ->
if List.mem x str_list then cleanup_clears str_list tail
else x::(cleanup_clears str_list tail);;
(* This function takes care of compacting instanciations of universal
quantifications. *)
let rec optim3_aux str_list = function
(PbpGeneralize (h,l1))::
(PbpIntros [IntroIdentifier s])::(PbpGeneralize (h',l2))::others
when s=h' ->
optim3_aux (s::str_list) (PbpGeneralize (h,l1@l2)::others)
| (PbpTryClear names)::other ->
(match cleanup_clears str_list names with
[] -> other
| l -> (PbpTryClear l)::other)
| a::l -> a::(optim3_aux str_list l)
| [] -> [];;
let rec optim3 str_list = function
PbpThens (tl1, tl2) ->
PbpThens (optim3_aux str_list tl1, List.map (optim3 str_list) tl2)
| PbpThen tl -> PbpThen (optim3_aux str_list tl)
let optim x = make_pbp_tactic (optim3 [] (optim2 x));;
(* TODO
add_tactic "Traced_Try" traced_try_entry;;
*)
let rec tactic_args_to_ints = function
[] -> []
| (Integer n)::l -> n::(tactic_args_to_ints l)
| _ -> failwith "expecting only numbers";;
(*
let pbp_tac display_function = function
(Identifier a)::l ->
(function g ->
let str = (string_of_id a) in
let (ou,tstr) = (get_hyp_by_name g str) in
let exp_ast =
pbpt default_ast
(match ou with
"hyp" ->(pf_ids_of_hyps g)
|_ -> (a::(pf_ids_of_hyps g)))
[]
false
(Some str)
(kind_of_term tstr)
(tactic_args_to_ints l) in
(display_function (optim exp_ast);
tclIDTAC g))
| ((Integer n)::_) as l ->
(function g ->
let exp_ast =
(pbpt default_ast (pf_ids_of_hyps g) [] false
None (kind_of_term (pf_concl g))
(tactic_args_to_ints l)) in
(display_function (optim exp_ast);
tclIDTAC g))
| [] -> (function g ->
(display_function (default_ast None (pf_concl g) []);
tclIDTAC g))
| _ -> failwith "expecting other arguments";;
*)
let pbp_tac display_function idopt nl =
match idopt with
| Some str ->
(function g ->
let (ou,tstr) = (get_hyp_by_name g str) in
let exp_ast =
pbpt default_ast
(match ou with
"hyp" ->(pf_ids_of_hyps g)
|_ -> (str::(pf_ids_of_hyps g)))
[]
false
(Some str)
(kind_of_term tstr)
nl in
(display_function (optim exp_ast); tclIDTAC g))
| None ->
if nl <> [] then
(function g ->
let exp_ast =
(pbpt default_ast (pf_ids_of_hyps g) [] false
None (kind_of_term (pf_concl g)) nl) in
(display_function (optim exp_ast); tclIDTAC g))
else
(function g ->
(display_function
(make_pbp_tactic (default_ast None (pf_concl g) []));
tclIDTAC g));;
|