1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
|
(*
#use "/cygdrive/D/Tools/coq-7avril/dev/base_include";;
open Coqast;;
*)
open Environ
open Evd
open Names
open Nameops
open Libnames
open Term
open Termops
open Util
open Proof_type
open Coqast
open Pfedit
open Translate
open Term
open Reductionops
open Clenv
open Typing
open Inductive
open Inductiveops
open Vernacinterp
open Declarations
open Showproof_ct
open Proof_trees
open Sign
open Pp
open Printer
open Rawterm
open Tacexpr
open Genarg
(*****************************************************************************)
(*
Arbre de preuve maison:
*)
(* hypotheses *)
type nhyp = {hyp_name : identifier;
hyp_type : Term.constr;
hyp_full_type: Term.constr}
;;
type ntactic = tactic_expr
;;
type nproof =
Notproved
| Proof of ntactic * (ntree list)
and ngoal=
{newhyp : nhyp list;
t_concl : Term.constr;
t_full_concl: Term.constr;
t_full_env: Sign.named_context}
and ntree=
{t_info:string;
t_goal:ngoal;
t_proof : nproof}
;;
let hyps {t_info=info;
t_goal={newhyp=lh;t_concl=g;t_full_concl=gf;t_full_env=ge};
t_proof=p} = lh
;;
let concl {t_info=info;
t_goal={newhyp=lh;t_concl=g;t_full_concl=gf;t_full_env=ge};
t_proof=p} = g
;;
let proof {t_info=info;
t_goal={newhyp=lh;t_concl=g;t_full_concl=gf;t_full_env=ge};
t_proof=p} = p
;;
let g_env {t_info=info;
t_goal={newhyp=lh;t_concl=g;t_full_concl=gf;t_full_env=ge};
t_proof=p} = ge
;;
let sub_ntrees t =
match (proof t) with
Notproved -> []
| Proof (_,l) -> l
;;
let tactic t =
match (proof t) with
Notproved -> failwith "no tactic applied"
| Proof (t,_) -> t
;;
(*
un arbre est clos s'il ne contient pas de sous-but non prouves,
ou bien s'il a un cousin gauche qui n'est pas clos
ce qui fait qu'on a au plus un sous-but non clos, le premier sous-but.
*)
let update_closed nt =
let found_not_closed=ref false in
let rec update {t_info=b; t_goal=g; t_proof =p} =
if !found_not_closed
then {t_info="to_prove"; t_goal=g; t_proof =p}
else
match p with
Notproved -> found_not_closed:=true;
{t_info="not_proved"; t_goal=g; t_proof =p}
| Proof(tac,lt) ->
let lt1=List.map update lt in
let b=ref "proved" in
(List.iter
(fun x ->
if x.t_info ="not_proved" then b:="not_proved") lt1;
{t_info=(!b);
t_goal=g;
t_proof=Proof(tac,lt1)})
in update nt
;;
(*
type complet avec les hypotheses.
*)
let long_type_hyp lh t=
let t=ref t in
List.iter (fun (n,th) ->
let ni = match n with Name ni -> ni | _ -> assert false in
t:= mkProd(n,th,subst_term (mkVar ni) !t))
(List.rev lh);
!t
;;
(* let long_type_hyp x y = y;; *)
(* Expansion des tactikelles *)
let seq_to_lnhyp sign sign' cl =
let lh= ref (List.map (fun (x,c,t) -> (Name x, t)) sign) in
let nh=List.map (fun (id,c,ty) ->
{hyp_name=id;
hyp_type=ty;
hyp_full_type=
let res= long_type_hyp !lh ty in
lh:=(!lh)@[(Name id,ty)];
res})
sign'
in
{newhyp=nh;
t_concl=cl;
t_full_concl=long_type_hyp !lh cl;
t_full_env = sign@sign'}
;;
let rule_is_complex r =
match r with
Tactic (TacArg (Tacexp t),_) -> true
| Tactic (TacAtom (_,TacAuto _), _) -> true
| Tactic (TacAtom (_,TacSymmetry _), _) -> true
|_ -> false
;;
let ast_of_constr = Termast.ast_of_constr true (Global.env()) ;;
(*
let rule_to_ntactic r =
let rast =
(match r with
Tactic (s,l) ->
Ast.ope (s,(List.map ast_of_cvt_arg l))
| Prim (Refine h) ->
Ast.ope ("Exact",
[Node ((0,0), "COMMAND", [ast_of_constr h])])
| _ -> Ast.ope ("Intros",[])) in
if rule_is_complex r
then (match rast with
Node(_,_,[Node(_,_,[Node(_,_,x)])]) ->x
| _ -> assert false)
else [rast ]
;;
*)
let rule_to_ntactic r =
let rt =
(match r with
Tactic (t,_) -> t
| Prim (Refine h) -> TacAtom (dummy_loc,TacExact h)
| _ -> TacAtom (dummy_loc, TacIntroPattern [])) in
if rule_is_complex r
then (match rt with
TacArg (Tacexp _) as t -> t
| _ -> assert false)
else rt
;;
(*
let term_of_command x =
match x with
Node(_,_,y::_) -> y
| _ -> x
;;
*)
(* Attribue les preuves de la liste l aux sous-buts non-prouvs de nt *)
let fill_unproved nt l =
let lnt = ref l in
let rec fill nt =
let {t_goal=g;t_proof=p}=nt in
match p with
Notproved -> let p=List.hd (!lnt) in
lnt:=List.tl (!lnt);
{t_info="to_prove";t_goal=g;t_proof=p}
|Proof(tac,lt) ->
{t_info="to_prove";t_goal=g;
t_proof=Proof(tac,List.map fill lt)}
in fill nt
;;
(* Differences entre signatures *)
let new_sign osign sign =
let res=ref [] in
List.iter (fun (id,c,ty) ->
try (let (_,_,ty1)= (lookup_named id osign) in
())
with Not_found -> res:=(id,c,ty)::(!res))
sign;
!res
;;
let old_sign osign sign =
let res=ref [] in
List.iter (fun (id,c,ty) ->
try (let (_,_,ty1) = (lookup_named id osign) in
if ty1 = ty then res:=(id,c,ty)::(!res))
with Not_found -> ())
sign;
!res
;;
(* convertit l'arbre de preuve courant en ntree *)
let to_nproof sigma osign pf =
let rec to_nproof_rec sigma osign pf =
let {evar_hyps=sign;evar_concl=cl} = pf.goal in
let nsign = new_sign osign sign in
let oldsign = old_sign osign sign in
match pf.ref with
None -> {t_info="to_prove";
t_goal=(seq_to_lnhyp oldsign nsign cl);
t_proof=Notproved}
| Some(r,spfl) ->
if rule_is_complex r
then (
let p1= to_nproof_rec sigma sign (subproof_of_proof pf) in
let ntree= fill_unproved p1
(List.map (fun x -> (to_nproof_rec sigma sign x).t_proof)
spfl) in
(match r with
Tactic (TacAtom (_, TacAuto _),_) ->
if spfl=[]
then
{t_info="to_prove";
t_goal= {newhyp=[];
t_concl=concl ntree;
t_full_concl=ntree.t_goal.t_full_concl;
t_full_env=ntree.t_goal.t_full_env};
t_proof= Proof (TacAtom (dummy_loc,TacExtend (dummy_loc,"InfoAuto",[])), [ntree])}
else ntree
| _ -> ntree))
else
{t_info="to_prove";
t_goal=(seq_to_lnhyp oldsign nsign cl);
t_proof=(Proof (rule_to_ntactic r,
List.map (fun x -> to_nproof_rec sigma sign x) spfl))}
in update_closed (to_nproof_rec sigma osign pf)
;;
(*
recupere l'arbre de preuve courant.
*)
let get_nproof () =
to_nproof (Global.env()) []
(Tacmach.proof_of_pftreestate (get_pftreestate()))
;;
(*****************************************************************************)
(*
Pprinter
*)
let pr_void () = sphs "";;
let list_rem l = match l with [] -> [] |x::l1->l1;;
(* liste de chaines *)
let prls l =
let res = ref (sps (List.hd l)) in
List.iter (fun s ->
res:= sphv [ !res; spb; sps s]) (list_rem l);
!res
;;
let prphrases f l =
spv (List.map (fun s -> sphv [f s; sps ","]) l)
;;
(* indentation *)
let spi = spnb 3;;
(* en colonne *)
let prl f l =
if l=[] then spe else spv (List.map f l);;
(*en colonne, avec indentation *)
let prli f l =
if l=[] then spe else sph [spi; spv (List.map f l)];;
(*
Langues.
*)
let rand l =
List.nth l (Random.int (List.length l))
;;
type natural_languages = French | English;;
let natural_language = ref French;;
(*****************************************************************************)
(*
Les liens html pour proof-by-pointing
*)
(* le path du but en cours. *)
let path=ref[1];;
let ftag_apply =ref (fun (n:string) t -> spt t);;
let ftag_case =ref (fun n -> sps n);;
let ftag_elim =ref (fun n -> sps n);;
let ftag_hypt =ref (fun h t -> sphypt (translate_path !path) h t);;
let ftag_hyp =ref (fun h t -> sphyp (translate_path !path) h t);;
let ftag_uselemma =ref (fun h t ->
let intro = match !natural_language with
French -> "par"
| English -> "by"
in
spuselemma intro h t);;
let ftag_toprove =ref (fun t -> sptoprove (translate_path !path) t);;
let tag_apply = !ftag_apply;;
let tag_case = !ftag_case;;
let tag_elim = !ftag_elim;;
let tag_uselemma = !ftag_uselemma;;
let tag_hyp = !ftag_hyp;;
let tag_hypt = !ftag_hypt;;
let tag_toprove = !ftag_toprove;;
(*****************************************************************************)
(* pluriel *)
let txtn n s =
if n=1 then s
else match s with
|"un" -> "des"
|"a" -> ""
|"an" -> ""
|"une" -> "des"
|"Soit" -> "Soient"
|"Let" -> "Let"
| s -> s^"s"
;;
let _et () = match !natural_language with
French -> sps "et"
| English -> sps "and"
;;
let name_count = ref 0;;
let new_name () =
name_count:=(!name_count)+1;
string_of_int !name_count
;;
let enumerate f ln =
match ln with
[] -> []
| [x] -> [f x]
|ln ->
let rec enum_rec f ln =
(match ln with
[x;y] -> [f x; spb; sph [_et ();spb;f y]]
|x::l -> [sph [(f x);sps ","];spb]@(enum_rec f l)
| _ -> assert false)
in enum_rec f ln
;;
let constr_of_ast = Constrintern.interp_constr Evd.empty (Global.env());;
(*
let sp_tac tac =
try spt (constr_of_ast (term_of_command tac))
with _ -> (* let Node(_,t,_) = tac in *)
spe (* sps ("error in sp_tac " ^ t) *)
;;
*)
let sp_tac tac = failwith "TODO"
let soit_A_une_proposition nh ln t= match !natural_language with
French ->
sphv ([sps (txtn nh "Soit");spb]@(enumerate (fun x -> tag_hyp x t) ln)
@[spb; prls [txtn nh "une";txtn nh "proposition"]])
| English ->
sphv ([sps "Let";spb]@(enumerate (fun x -> tag_hyp x t) ln)
@[spb; prls ["be"; txtn nh "a";txtn nh "proposition"]])
;;
let on_a ()= match !natural_language with
French -> rand ["on a "]
| English ->rand ["we have "]
;;
let bon_a ()= match !natural_language with
French -> rand ["On a "]
| English ->rand ["We have "]
;;
let soit_X_un_element_de_T nh ln t = match !natural_language with
French ->
sphv ([sps (txtn nh "Soit");spb]@(enumerate (fun x -> tag_hyp x t) ln)
@[spb; prls [txtn nh "un";txtn nh "lment";"de"]]
@[spb; spt t])
| English ->
sphv ([sps (txtn nh "Let");spb]@(enumerate (fun x -> tag_hyp x t) ln)
@[spb; prls ["be";txtn nh "an";txtn nh "element";"of"]]
@[spb; spt t])
;;
let soit_F_une_fonction_de_type_T nh ln t = match !natural_language with
French ->
sphv ([sps (txtn nh "Soit");spb]@(enumerate (fun x -> tag_hyp x t) ln)
@[spb; prls [txtn nh "une";txtn nh "fonction";"de";"type"]]
@[spb; spt t])
| English ->
sphv ([sps (txtn nh "Let");spb]@(enumerate (fun x -> tag_hyp x t) ln)
@[spb; prls ["be";txtn nh "a";txtn nh "function";"of";"type"]]
@[spb; spt t])
;;
let telle_que nh = match !natural_language with
French -> [prls [" ";txtn nh "telle";"que";" "]]
| English -> [prls [" "; "such";"that";" "]]
;;
let tel_que nh = match !natural_language with
French -> [prls [" ";txtn nh "tel";"que";" "]]
| English -> [prls [" ";"such";"that";" "]]
;;
let supposons () = match !natural_language with
French -> "Supposons "
| English -> "Suppose "
;;
let cas () = match !natural_language with
French -> "Cas"
| English -> "Case"
;;
let donnons_une_proposition () = match !natural_language with
French -> sph[ (prls ["Donnons";"une";"proposition"])]
| English -> sph[ (prls ["Let us give";"a";"proposition"])]
;;
let montrons g = match !natural_language with
French -> sph[ sps (rand ["Prouvons";"Montrons";"Dmontrons"]);
spb; spt g; sps ". "]
| English -> sph[ sps (rand ["Let us";"Now"]);spb;
sps (rand ["prove";"show"]);
spb; spt g; sps ". "]
;;
let calculons_un_element_de g = match !natural_language with
French -> sph[ (prls ["Calculons";"un";"lment";"de"]);
spb; spt g; sps ". "]
| English -> sph[ (prls ["Let us";"compute";"an";"element";"of"]);
spb; spt g; sps ". "]
;;
let calculons_une_fonction_de_type g = match !natural_language with
French -> sphv [ (prls ["Calculons";"une";"fonction";"de";"type"]);
spb; spt g; sps ". "]
| English -> sphv [ (prls ["Let";"us";"compute";"a";"function";"of";"type"]);
spb; spt g; sps ". "];;
let en_simplifiant_on_obtient g = match !natural_language with
French ->
sphv [ (prls [rand ["Aprs simplification,"; "En simplifiant,"];
rand ["on doit";"il reste "];
rand ["prouver";"montrer";"dmontrer"]]);
spb; spt g; sps ". "]
| English ->
sphv [ (prls [rand ["After simplification,"; "Simplifying,"];
rand ["we must";"it remains to"];
rand ["prove";"show"]]);
spb; spt g; sps ". "] ;;
let on_obtient g = match !natural_language with
French -> sph[ (prls [rand ["on doit";"il reste "];
rand ["prouver";"montrer";"dmontrer"]]);
spb; spt g; sps ". "]
| English ->sph[ (prls [rand ["we must";"it remains to"];
rand ["prove";"show"]]);
spb; spt g; sps ". "]
;;
let reste_a_montrer g = match !natural_language with
French -> sph[ (prls ["Reste";"";
rand ["prouver";"montrer";"dmontrer"]]);
spb; spt g; sps ". "]
| English -> sph[ (prls ["It remains";"to";
rand ["prove";"show"]]);
spb; spt g; sps ". "]
;;
let discutons_avec_A type_arg = match !natural_language with
French -> sphv [sps "Discutons"; spb; sps "avec"; spb;
spt type_arg; sps ":"]
| English -> sphv [sps "Let us discuss"; spb; sps "with"; spb;
spt type_arg; sps ":"]
;;
let utilisons_A arg1 = match !natural_language with
French -> sphv [sps (rand ["Utilisons";"Avec";"A l'aide de"]);
spb; spt arg1; sps ":"]
| English -> sphv [sps (rand ["Let us use";"With";"With the help of"]);
spb; spt arg1; sps ":"]
;;
let selon_les_valeurs_de_A arg1 = match !natural_language with
French -> sphv [ (prls ["Selon";"les";"valeurs";"de"]);
spb; spt arg1; sps ":"]
| English -> sphv [ (prls ["According";"values";"of"]);
spb; spt arg1; sps ":"]
;;
let de_A_on_a arg1 = match !natural_language with
French -> sphv [ sps (rand ["De";"Avec";"Grce "]); spb; spt arg1; spb;
sps (rand ["on a:";"on dduit:";"on obtient:"])]
| English -> sphv [ sps (rand ["From";"With";"Thanks to"]); spb;
spt arg1; spb;
sps (rand ["we have:";"we deduce:";"we obtain:"])]
;;
let procedons_par_recurrence_sur_A arg1 = match !natural_language with
French -> sphv [ (prls ["Procdons";"par";"rcurrence";"sur"]);
spb; spt arg1; sps ":"]
| English -> sphv [ (prls ["By";"induction";"on"]);
spb; spt arg1; sps ":"]
;;
let calculons_la_fonction_F_de_type_T_par_recurrence_sur_son_argument_A
nfun tfun narg = match !natural_language with
French -> sphv [
sphv [ prls ["Calculons";"la";"fonction"];
spb; sps (string_of_id nfun);spb;
prls ["de";"type"];
spb; spt tfun;spb;
prls ["par";"rcurrence";"sur";"son";"argument"];
spb; sps (string_of_int narg); sps ":"]
]
| English -> sphv [
sphv [ prls ["Let us compute";"the";"function"];
spb; sps (string_of_id nfun);spb;
prls ["of";"type"];
spb; spt tfun;spb;
prls ["by";"induction";"on";"its";"argument"];
spb; sps (string_of_int narg); sps ":"]
]
;;
let pour_montrer_G_la_valeur_recherchee_est_A g arg1 =
match !natural_language with
French -> sph [sps "Pour";spb;sps "montrer"; spt g; spb;
sps ","; spb; sps "choisissons";spb;
spt arg1;sps ". " ]
| English -> sph [sps "In order to";spb;sps "show"; spt g; spb;
sps ","; spb; sps "let us choose";spb;
spt arg1;sps ". " ]
;;
let on_se_sert_de_A arg1 = match !natural_language with
French -> sph [sps "On se sert de";spb ;spt arg1;sps ":" ]
| English -> sph [sps "We use";spb ;spt arg1;sps ":" ]
;;
let d_ou_A g = match !natural_language with
French -> sph [spi; sps "d'o";spb ;spt g;sps ". " ]
| English -> sph [spi; sps "then";spb ;spt g;sps ". " ]
;;
let coq_le_demontre_seul () = match !natural_language with
French -> rand [prls ["Coq";"le";"dmontre"; "seul."];
sps "Fastoche.";
sps "Trop cool"]
| English -> rand [prls ["Coq";"shows";"it"; "alone."];
sps "Fingers in the nose."]
;;
let de_A_on_deduit_donc_B arg g = match !natural_language with
French -> sph
[ sps "De"; spb; spt arg; spb; sps "on";spb;
sps "dduit";spb; sps "donc";spb; spt g ]
| English -> sph
[ sps "From"; spb; spt arg; spb; sps "we";spb;
sps "deduce";spb; sps "then";spb; spt g ]
;;
let _A_est_immediat_par_B g arg = match !natural_language with
French -> sph [ spt g; spb; (prls ["est";"immdiat";"par"]);
spb; spt arg ]
| English -> sph [ spt g; spb; (prls ["is";"immediate";"from"]);
spb; spt arg ]
;;
let le_resultat_est arg = match !natural_language with
French -> sph [ (prls ["le";"rsultat";"est"]);
spb; spt arg ]
| English -> sph [ (prls ["the";"result";"is"]);
spb; spt arg ];;
let on_applique_la_tactique tactic tac = match !natural_language with
French -> sphv
[ sps "on applique";spb;sps "la tactique"; spb;tactic;spb;tac]
| English -> sphv
[ sps "we apply";spb;sps "the tactic"; spb;tactic;spb;tac]
;;
let de_A_il_vient_B arg g = match !natural_language with
French -> sph
[ sps "De"; spb; spt arg; spb;
sps "il";spb; sps "vient";spb; spt g; sps ". " ]
| English -> sph
[ sps "From"; spb; spt arg; spb;
sps "it";spb; sps "comes";spb; spt g; sps ". " ]
;;
let ce_qui_est_trivial () = match !natural_language with
French -> sps "Trivial."
| English -> sps "Trivial."
;;
let en_utilisant_l_egalite_A arg = match !natural_language with
French -> sphv [ sps "En"; spb;sps "utilisant"; spb;
sps "l'egalite"; spb; spt arg; sps ","
]
| English -> sphv [ sps "Using"; spb;
sps "the equality"; spb; spt arg; sps ","
]
;;
let simplifions_H_T hyp thyp = match !natural_language with
French -> sphv [sps"En simplifiant";spb;sps hyp;spb;sps "on obtient:";
spb;spt thyp;sps "."]
| English -> sphv [sps"Simplifying";spb;sps hyp;spb;sps "we get:";
spb;spt thyp;sps "."]
;;
let grace_a_A_il_suffit_de_montrer_LA arg lg=
match !natural_language with
French -> sphv ([sps (rand ["Grce ";"Avec";"A l'aide de"]);spb;
spt arg;sps ",";spb;
sps "il suffit";spb; sps "de"; spb;
sps (rand["prouver";"montrer";"dmontrer"]); spb]
@[spv (enumerate (fun x->x) lg)])
| English -> sphv ([sps (rand ["Thanks to";"With"]);spb;
spt arg;sps ",";spb;
sps "it suffices";spb; sps "to"; spb;
sps (rand["prove";"show"]); spb]
@[spv (enumerate (fun x->x) lg)])
;;
let reste_a_montrer_LA lg=
match !natural_language with
French -> sphv ([ sps "Il reste";spb; sps ""; spb;
sps (rand["prouver";"montrer";"dmontrer"]); spb]
@[spv (enumerate (fun x->x) lg)])
| English -> sphv ([ sps "It remains";spb; sps "to"; spb;
sps (rand["prove";"show"]); spb]
@[spv (enumerate (fun x->x) lg)])
;;
(*****************************************************************************)
(*
Traduction des hypothses.
*)
type n_sort=
Nprop
| Nformula
| Ntype
| Nfunction
;;
let sort_of_type t ts =
let t=(strip_outer_cast t) in
if is_Prop t
then Nprop
else
match ts with
Prop(Null) -> Nformula
|_ -> (match (kind_of_term t) with
Prod(_,_,_) -> Nfunction
|_ -> Ntype)
;;
let adrel (x,t) e =
match x with
Name(xid) -> Environ.push_rel (x,None,t) e
| Anonymous -> Environ.push_rel (x,None,t) e
let rec nsortrec vl x =
match (kind_of_term x) with
Prod(n,t,c)->
let vl = (adrel (n,t) vl) in nsortrec vl c
| Lambda(n,t,c) ->
let vl = (adrel (n,t) vl) in nsortrec vl c
| App(f,args) -> nsortrec vl f
| Sort(Prop(Null)) -> Prop(Null)
| Sort(c) -> c
| Ind(ind) ->
let (mib,mip) = lookup_mind_specif vl ind in
mip.mind_sort
| Construct(c) ->
nsortrec vl (mkInd (inductive_of_constructor c))
| Case(_,x,t,a)
-> nsortrec vl x
| Cast(x,t)-> nsortrec vl t
| Const c -> nsortrec vl (lookup_constant c vl).const_type
| _ -> nsortrec vl (type_of vl Evd.empty x)
;;
let nsort x =
nsortrec (Global.env()) (strip_outer_cast x)
;;
let sort_of_hyp h =
(sort_of_type h.hyp_type (nsort h.hyp_full_type))
;;
(* grouper les hypotheses successives de meme type, ou logiques.
donne une liste de liste *)
let rec group_lhyp lh =
match lh with
[] -> []
|[h] -> [[h]]
|h::lh ->
match group_lhyp lh with
(h1::lh1)::lh2 ->
if h.hyp_type=h1.hyp_type
|| ((sort_of_hyp h)=(sort_of_hyp h1) && (sort_of_hyp h1)=Nformula)
then (h::(h1::lh1))::lh2
else [h]::((h1::lh1)::lh2)
|_-> assert false
;;
(* ln noms des hypotheses, lt leurs types *)
let natural_ghyp (sort,ln,lt) intro =
let t=List.hd lt in
let nh=List.length ln in
let ns=List.hd ln in
match sort with
Nprop -> soit_A_une_proposition nh ln t
| Ntype -> soit_X_un_element_de_T nh ln t
| Nfunction -> soit_F_une_fonction_de_type_T nh ln t
| Nformula ->
sphv ((sps intro)::(enumerate (fun (n,t) -> tag_hypt n t)
(List.combine ln lt)))
;;
(* Cas d'une hypothese *)
let natural_hyp h =
let ns= string_of_id h.hyp_name in
let t=h.hyp_type in
let ts= (nsort h.hyp_full_type) in
natural_ghyp ((sort_of_type t ts),[ns],[t]) (supposons ())
;;
let rec pr_ghyp lh intro=
match lh with
[] -> []
| [(sort,ln,t)]->
(match sort with
Nformula -> [natural_ghyp(sort,ln,t) intro; sps ". "]
| _ -> [natural_ghyp(sort,ln,t) ""; sps ". "])
| (sort,ln,t)::lh ->
let hp=
([natural_ghyp(sort,ln,t) intro]
@(match lh with
[] -> [sps ". "]
|(sort1,ln1,t1)::lh1 ->
match sort1 with
Nformula ->
(let nh=List.length ln in
match sort with
Nprop -> telle_que nh
|Nfunction -> telle_que nh
|Ntype -> tel_que nh
|Nformula -> [sps ". "])
| _ -> [sps ". "])) in
(sphv hp)::(pr_ghyp lh "")
;;
(* traduction d'une liste d'hypotheses groupees. *)
let prnatural_ghyp llh intro=
if llh=[]
then spe
else
sphv (pr_ghyp (List.map
(fun lh ->
let h=(List.hd lh) in
let sh = sort_of_hyp h in
let lhname = (List.map (fun h ->
string_of_id h.hyp_name) lh) in
let lhtype = (List.map (fun h -> h.hyp_type) lh) in
(sh,lhname,lhtype))
llh) intro)
;;
(*****************************************************************************)
(*
Liste des hypotheses.
*)
type type_info_subgoals_hyp=
All_subgoals_hyp
| Reduce_hyp
| No_subgoals_hyp
| Case_subgoals_hyp of string (* word for introduction *)
* Term.constr (* variable *)
* string (* constructor *)
* int (* arity *)
* int (* number of constructors *)
| Case_prop_subgoals_hyp of string (* word for introduction *)
* Term.constr (* variable *)
* int (* index of constructor *)
* int (* arity *)
* int (* number of constructors *)
| Elim_subgoals_hyp of Term.constr (* variable *)
* string (* constructor *)
* int (* arity *)
* (string list) (* rec hyp *)
* int (* number of constructors *)
| Elim_prop_subgoals_hyp of Term.constr (* variable *)
* int (* index of constructor *)
* int (* arity *)
* (string list) (* rec hyp *)
* int (* number of constructors *)
;;
let rec nrem l n =
if n<=0 then l else nrem (list_rem l) (n-1)
;;
let rec nhd l n =
if n<=0 then [] else (List.hd l)::(nhd (list_rem l) (n-1))
;;
let par_hypothese_de_recurrence () = match !natural_language with
French -> sphv [(prls ["par";"hypothse";"de";"rcurrence";","])]
| English -> sphv [(prls ["by";"induction";"hypothesis";","])]
;;
let natural_lhyp lh hi =
match hi with
All_subgoals_hyp ->
( match lh with
[] -> spe
|_-> prnatural_ghyp (group_lhyp lh) (supposons ()))
| Reduce_hyp ->
(match lh with
[h] -> simplifions_H_T (string_of_id h.hyp_name) h.hyp_type
| _-> spe)
| No_subgoals_hyp -> spe
|Case_subgoals_hyp (sintro,var,c,a,ncase) -> (* sintro pas encore utilisee *)
let s=ref c in
for i=1 to a do
let nh=(List.nth lh (i-1)) in
s:=(!s)^" "^(string_of_id nh.hyp_name);
done;
if a>0 then s:="("^(!s)^")";
sphv [ (if ncase>1
then sph[ sps ("-"^(cas ()));spb]
else spe);
(* spt var;sps "="; *) sps !s; sps ":";
(prphrases (natural_hyp) (nrem lh a))]
|Case_prop_subgoals_hyp (sintro,var,c,a,ncase) ->
prnatural_ghyp (group_lhyp lh) sintro
|Elim_subgoals_hyp (var,c,a,lhci,ncase) ->
let nlh = List.length lh in
let nlhci = List.length lhci in
let lh0 = ref [] in
for i=1 to (nlh-nlhci) do
lh0:=(!lh0)@[List.nth lh (i-1)];
done;
let lh=nrem lh (nlh-nlhci) in
let s=ref c in
let lh1=ref [] in
for i=1 to nlhci do
let targ=(List.nth lhci (i-1))in
let nh=(List.nth lh (i-1)) in
if targ="arg" || targ="argrec"
then
(s:=(!s)^" "^(string_of_id nh.hyp_name);
lh0:=(!lh0)@[nh])
else lh1:=(!lh1)@[nh];
done;
let introhyprec=
(if (!lh1)=[] then spe
else par_hypothese_de_recurrence () )
in
if a>0 then s:="("^(!s)^")";
spv [sphv [(if ncase>1
then sph[ sps ("-"^(cas ()));spb]
else spe);
sps !s; sps ":"];
prnatural_ghyp (group_lhyp !lh0) (supposons ());
introhyprec;
prl (natural_hyp) !lh1]
|Elim_prop_subgoals_hyp (var,c,a,lhci,ncase) ->
sphv [ (if ncase>1
then sph[ sps ("-"^(cas ()));spb;sps (string_of_int c);
sps ":";spb]
else spe);
(prphrases (natural_hyp) lh )]
;;
(*****************************************************************************)
(*
Analyse des tactiques.
*)
(*
let name_tactic tac =
match tac with
(Node(_,"Interp",
(Node(_,_,
(Node(_,t,_))::_))::_))::_ -> t
|(Node(_,t,_))::_ -> t
| _ -> assert false
;;
*)
let name_tactic = function
| TacIntroPattern _ -> "Intro"
| TacAssumption -> "Assumption"
| _ -> failwith "TODO"
;;
(*
let arg1_tactic tac =
match tac with
(Node(_,"Interp",
(Node(_,_,
(Node(_,_,x::_))::_))::_))::_ ->x
| (Node(_,_,x::_))::_ -> x
| x::_ -> x
| _ -> assert false
;;
*)
let arg1_tactic tac = failwith "TODO"
let arg2_tactic tac =
match tac with
(Node(_,"Interp",
(Node(_,_,
(Node(_,_,_::x::_))::_))::_))::_ -> x
| (Node(_,_,_::x::_))::_ -> x
| _ -> assert false
;;
(*
type nat_tactic =
Split of (Coqast.t list)
| Generalize of (Coqast.t list)
| Reduce of string*(Coqast.t list)
| Other of string*(Coqast.t list)
;;
let analyse_tac tac =
match tac with
[Node (_, "Split", [Node (_, "BINDINGS", [])])]
-> Split []
| [Node (_, "Split",[Node(_, "BINDINGS",[Node(_, "BINDING",
[Node (_, "COMMAND", x)])])])]
-> Split x
| [Node (_, "Generalize", [Node (_, "COMMAND", x)])]
->Generalize x
| [Node (_, "Reduce", [Node (_, "REDEXP", [Node (_, mode, _)]);
Node (_, "CLAUSE", lhyp)])]
-> Reduce(mode,lhyp)
| [Node (_, x,la)] -> Other (x,la)
| _ -> assert false
;;
*)
let id_of_command x =
match x with
Node(_,_,Node(_,_,y::_)::_) -> y
|_ -> assert false
;;
type type_info_subgoals =
{ihsg: type_info_subgoals_hyp;
isgintro : string}
;;
let rec show_goal lh ig g gs =
match ig with
"intros" ->
if lh = []
then spe
else show_goal lh "standard" g gs
|"standard" ->
(match (sort_of_type g gs) with
Nprop -> donnons_une_proposition ()
| Nformula -> montrons g
| Ntype -> calculons_un_element_de g
| Nfunction ->calculons_une_fonction_de_type g)
| "apply" -> show_goal lh "" g gs
| "simpl" ->en_simplifiant_on_obtient g
| "rewrite" -> on_obtient g
| "equality" -> reste_a_montrer g
| "trivial_equality" -> reste_a_montrer g
| "" -> spe
|_ -> sph[ sps "A faire ..."; spb; spt g; sps ". " ]
;;
let show_goal2 lh {ihsg=hi;isgintro=ig} g gs s =
if ig="" && lh = []
then spe
else sphv [ show_goal lh ig g gs; sps s]
;;
let imaginez_une_preuve_de () = match !natural_language with
French -> "Imaginez une preuve de"
| English -> "Imagine a proof of"
;;
let donnez_un_element_de () = match !natural_language with
French -> "Donnez un element de"
| English -> "Give an element of";;
let intro_not_proved_goal gs =
match gs with
Prop(Null) -> imaginez_une_preuve_de ()
|_ -> donnez_un_element_de ()
;;
let first_name_hyp_of_ntree {t_goal={newhyp=lh}}=
match lh with
{hyp_name=n}::_ -> n
| _ -> assert false
;;
let rec find_type x t=
match (kind_of_term (strip_outer_cast t)) with
Prod(y,ty,t) ->
(match y with
Name y ->
if x=(string_of_id y) then ty
else find_type x t
| _ -> find_type x t)
|_-> assert false
;;
(***********************************************************************
Traitement des galits
*)
(*
let is_equality e =
match (kind_of_term e) with
AppL args ->
(match (kind_of_term args.(0)) with
Const (c,_) ->
(match (string_of_sp c) with
"Equal" -> true
| "eq" -> true
| "eqT" -> true
| "identityT" -> true
| _ -> false)
| _ -> false)
| _ -> false
;;
*)
let is_equality e =
let e= (strip_outer_cast e) in
match (kind_of_term e) with
App (f,args) -> (Array.length args) >= 3
| _ -> false
;;
let terms_of_equality e =
let e= (strip_outer_cast e) in
match (kind_of_term e) with
App (f,args) -> (args.(1) , args.(2))
| _ -> assert false
;;
let eq_term = eq_constr;;
let is_equality_tac = function
| TacAtom (_,
(TacExtend
(_,("ERewriteLR"|"ERewriteRL"|"ERewriteLRocc"|"ERewriteRLocc"
|"ERewriteParallel"|"ERewriteNormal"
|"RewriteLR"|"RewriteRL"|"Replace"),_)
| TacReduce _
| TacSymmetry _ | TacReflexivity
| TacExact _ | TacIntroPattern _ | TacIntroMove _ | TacAuto _)) -> true
| _ -> false
let equalities_ntree ig ntree =
let rec equalities_ntree ig ntree =
if not (is_equality (concl ntree))
then []
else
match (proof ntree) with
Notproved -> [(ig,ntree)]
| Proof (tac,ltree) ->
if is_equality_tac tac
then (match ltree with
[] -> [(ig,ntree)]
| t::_ -> let res=(equalities_ntree ig t) in
if eq_term (concl ntree) (concl t)
then res
else (ig,ntree)::res)
else [(ig,ntree)]
in
equalities_ntree ig ntree
;;
let remove_seq_of_terms l =
let rec remove_seq_of_terms l = match l with
a::b::l -> if (eq_term (fst a) (fst b))
then remove_seq_of_terms (b::l)
else a::(remove_seq_of_terms (b::l))
| _ -> l
in remove_seq_of_terms l
;;
let list_to_eq l o=
let switch = fun h h' -> (if o then h else h') in
match l with
[a] -> spt (fst a)
| (a,h)::(b,h')::l ->
let rec list_to_eq h l =
match l with
[] -> []
| (b,h')::l ->
(sph [sps "="; spb; spt b; spb;tag_uselemma (switch h h') spe])
:: (list_to_eq (switch h' h) l)
in sph [spt a; spb;
spv ((sph [sps "="; spb; spt b; spb;
tag_uselemma (switch h h') spe])
::(list_to_eq (switch h' h) l))]
| _ -> assert false
;;
let stde = Global.env;;
let dbize env = Constrintern.interp_constr Evd.empty env;;
(**********************************************************************)
let rec natural_ntree ig ntree =
let {t_info=info;
t_goal={newhyp=lh;t_concl=g;t_full_concl=gf;t_full_env=ge};
t_proof=p} = ntree in
let leq = List.rev (equalities_ntree ig ntree) in
if List.length leq > 1
then (* Several equalities to treate ... *)
(
print_string("Several equalities to treate ...\n");
let l1 = ref [] in
let l2 = ref [] in
List.iter
(fun (_,ntree) ->
let lemma = match (proof ntree) with
Proof (tac,ltree) ->
(try (sph [spt (dbize (gLOB ge) (arg1_tactic tac));(* TODO *)
(match ltree with
[] ->spe
| [_] -> spe
| _::l -> sphv[sps ": ";
prli (natural_ntree
{ihsg=All_subgoals_hyp;
isgintro="standard"})
l])])
with _ -> sps "simplification" )
| Notproved -> spe
in
let (t1,t2)= terms_of_equality (concl ntree) in
l2:=(t2,lemma)::(!l2);
l1:=(t1,lemma)::(!l1))
leq;
l1:=remove_seq_of_terms !l1;
l2:=remove_seq_of_terms !l2;
l2:=List.rev !l2;
let ltext=ref [] in
if List.length !l1 > 1
then (ltext:=(!ltext)@[list_to_eq !l1 true];
if List.length !l2 > 1 then
(ltext:=(!ltext)@[_et()];
ltext:=(!ltext)@[list_to_eq !l2 false]))
else if List.length !l2 > 1 then ltext:=(!ltext)@[list_to_eq !l2 false];
if !ltext<>[] then ltext:=[sps (bon_a ()); spv !ltext];
let (ig,ntree)=(List.hd leq) in
spv [(natural_lhyp lh ig.ihsg);
(show_goal2 lh ig g (nsort gf) "");
sph !ltext;
natural_ntree {ihsg=All_subgoals_hyp;
isgintro=
let (t1,t2)= terms_of_equality (concl ntree) in
if eq_term t1 t2
then "trivial_equality"
else "equality"}
ntree]
)
else
let ntext =
let gs=nsort gf in
match p with
Notproved -> spv [ (natural_lhyp lh ig.ihsg);
sph [spi; sps (intro_not_proved_goal gs); spb;
tag_toprove g ]
]
| Proof (TacId _,ltree) -> natural_ntree ig (List.hd ltree)
| Proof (TacAtom (_,tac),ltree) ->
(let ntext =
match tac with
(* Pas besoin de l'argument ventuel de la tactique *)
TacIntroPattern _ -> natural_intros ig lh g gs ltree
| TacIntroMove _ -> natural_intros ig lh g gs ltree
| TacFix (_,n) -> natural_fix ig lh g gs n ltree
| TacSplit (_,NoBindings) -> natural_split ig lh g gs ge [] ltree
| TacSplit(_,ImplicitBindings l) -> natural_split ig lh g gs ge l ltree
| TacGeneralize l -> natural_generalize ig lh g gs ge l ltree
| TacRight _ -> natural_right ig lh g gs ltree
| TacLeft _ -> natural_left ig lh g gs ltree
| (* "Simpl" *)TacReduce (r,cl) ->
natural_reduce ig lh g gs ge r cl ltree
| TacExtend (_,"InfoAuto",[]) -> natural_infoauto ig lh g gs ltree
| TacAuto _ -> natural_auto ig lh g gs ltree
| TacExtend (_,"EAuto",_) -> natural_auto ig lh g gs ltree
| TacTrivial _ -> natural_trivial ig lh g gs ltree
| TacAssumption -> natural_trivial ig lh g gs ltree
| TacClear _ -> natural_clear ig lh g gs ltree
(* Besoin de l'argument de la tactique *)
| TacSimpleInduction (NamedHyp id,_) ->
natural_induction ig lh g gs ge id ltree false
| TacExtend (_,"InductionIntro",[a]) ->
let id=(out_gen wit_ident a) in
natural_induction ig lh g gs ge id ltree true
| TacApply (c,_) -> natural_apply ig lh g gs c ltree
| TacExact c -> natural_exact ig lh g gs c ltree
| TacCut c -> natural_cut ig lh g gs c ltree
| TacExtend (_,"CutIntro",[a]) ->
let c = out_gen wit_constr a in
natural_cutintro ig lh g gs a ltree
| TacCase (c,_) -> natural_case ig lh g gs ge c ltree false
| TacExtend (_,"CaseIntro",[a]) ->
let c = out_gen wit_constr a in
natural_case ig lh g gs ge c ltree true
| TacElim ((c,_),_) -> natural_elim ig lh g gs ge c ltree false
| TacExtend (_,"ElimIntro",[a]) ->
let c = out_gen wit_constr a in
natural_elim ig lh g gs ge c ltree true
| TacExtend (_,"Rewrite",[_;a]) ->
let (c,_) = out_gen wit_constr_with_bindings a in
natural_rewrite ig lh g gs c ltree
| TacExtend (_,"ERewriteRL",[a]) ->
let c = out_gen wit_constr a in (* TODO *)
natural_rewrite ig lh g gs c ltree
| TacExtend (_,"ERewriteLR",[a]) ->
let c = out_gen wit_constr a in (* TODO *)
natural_rewrite ig lh g gs c ltree
|_ -> natural_generic ig lh g gs (sps (name_tactic tac)) (prl sp_tac [tac]) ltree
in
ntext (* spwithtac ntext tactic*)
)
| Proof _ -> failwith "Don't know what to do with that"
in
if info<>"not_proved"
then spshrink info ntext
else ntext
and natural_generic ig lh g gs tactic tac ltree =
spv
[ (natural_lhyp lh ig.ihsg);
(show_goal2 lh ig g gs "");
on_applique_la_tactique tactic tac ;
(prli(natural_ntree
{ihsg=All_subgoals_hyp;
isgintro="standard"})
ltree)
]
and natural_clear ig lh g gs ltree = natural_ntree ig (List.hd ltree)
(*
spv
[ (natural_lhyp lh ig.ihsg);
(show_goal2 lh ig g gs "");
(prl (natural_ntree ig) ltree)
]
*)
and natural_intros ig lh g gs ltree =
spv
[ (natural_lhyp lh ig.ihsg);
(show_goal2 lh ig g gs "");
(prl (natural_ntree
{ihsg=All_subgoals_hyp;
isgintro="intros"})
ltree)
]
and natural_apply ig lh g gs arg ltree =
let lg = List.map concl ltree in
match lg with
[] ->
spv
[ (natural_lhyp lh ig.ihsg);
de_A_il_vient_B arg g
]
| [sg]->
spv
[ (natural_lhyp lh ig.ihsg);
(show_goal2 lh
{ihsg=ig.ihsg; isgintro= if ig.isgintro<>"apply"
then "standard"
else ""}
g gs "");
grace_a_A_il_suffit_de_montrer_LA arg [spt sg];
sph [spi ; natural_ntree
{ihsg=All_subgoals_hyp;
isgintro="apply"} (List.hd ltree)]
]
| _ ->
let ln = List.map (fun _ -> new_name()) lg in
spv
[ (natural_lhyp lh ig.ihsg);
(show_goal2 lh
{ihsg=ig.ihsg; isgintro= if ig.isgintro<>"apply"
then "standard"
else ""}
g gs "");
grace_a_A_il_suffit_de_montrer_LA arg
(List.map2 (fun g n -> sph [sps ("("^n^")"); spb; spt g])
lg ln);
sph [spi; spv (List.map2
(fun x n -> sph [sps ("("^n^"):"); spb;
natural_ntree
{ihsg=All_subgoals_hyp;
isgintro="apply"} x])
ltree ln)]
]
and natural_rem_goals ltree =
let lg = List.map concl ltree in
match lg with
[] -> spe
| [sg]->
spv
[ reste_a_montrer_LA [spt sg];
sph [spi ; natural_ntree
{ihsg=All_subgoals_hyp;
isgintro="apply"} (List.hd ltree)]
]
| _ ->
let ln = List.map (fun _ -> new_name()) lg in
spv
[ reste_a_montrer_LA
(List.map2 (fun g n -> sph [sps ("("^n^")"); spb; spt g])
lg ln);
sph [spi; spv (List.map2
(fun x n -> sph [sps ("("^n^"):"); spb;
natural_ntree
{ihsg=All_subgoals_hyp;
isgintro="apply"} x])
ltree ln)]
]
and natural_exact ig lh g gs arg ltree =
spv
[
(natural_lhyp lh ig.ihsg);
(let {ihsg=pi;isgintro=ig}= ig in
(show_goal2 lh {ihsg=pi;isgintro=""}
g gs ""));
(match gs with
Prop(Null) -> _A_est_immediat_par_B g arg
|_ -> le_resultat_est arg)
]
and natural_cut ig lh g gs arg ltree =
spv
[ (natural_lhyp lh ig.ihsg);
(show_goal2 lh ig g gs "");
(prli(natural_ntree
{ihsg=All_subgoals_hyp;isgintro="standard"})
(List.rev ltree));
de_A_on_deduit_donc_B arg g
]
and natural_cutintro ig lh g gs arg ltree =
spv
[ (natural_lhyp lh ig.ihsg);
(show_goal2 lh ig g gs "");
sph [spi;
(natural_ntree
{ihsg=All_subgoals_hyp;isgintro=""}
(List.nth ltree 1))];
sph [spi;
(natural_ntree
{ihsg=No_subgoals_hyp;isgintro=""}
(List.nth ltree 0))]
]
and whd_betadeltaiota x = whd_betaiotaevar (Global.env()) Evd.empty x
and type_of_ast s c = type_of (Global.env()) Evd.empty (constr_of_ast c)
and prod_head t =
match (kind_of_term (strip_outer_cast t)) with
Prod(_,_,c) -> prod_head c
(* |App(f,a) -> f *)
| _ -> t
and string_of_sp sp = string_of_id (basename sp)
and constr_of_mind mip i =
(string_of_id mip.mind_consnames.(i-1))
and arity_of_constr_of_mind env indf i =
(get_constructors env indf).(i-1).cs_nargs
and gLOB ge = Global.env_of_context ge (* (Global.env()) *)
and natural_case ig lh g gs ge arg1 ltree with_intros =
let env= (gLOB ge) in
let targ1 = prod_head (type_of env Evd.empty arg1) in
let IndType (indf,targ) = find_rectype env Evd.empty targ1 in
let ncti= Array.length(get_constructors env indf) in
let (ind,_) = dest_ind_family indf in
let (mib,mip) = lookup_mind_specif env ind in
let ti =(string_of_id mip.mind_typename) in
let type_arg= targ1 (* List.nth targ (mis_index dmi)*) in
if ncti<>1
(* Zro ou Plusieurs constructeurs *)
then (
spv
[ (natural_lhyp lh ig.ihsg);
(show_goal2 lh ig g gs "");
(match (nsort targ1) with
Prop(Null) ->
(match ti with
"or" -> discutons_avec_A type_arg
| _ -> utilisons_A arg1)
|_ -> selon_les_valeurs_de_A arg1);
(let ci=ref 0 in
(prli
(fun treearg -> ci:=!ci+1;
let nci=(constr_of_mind mip !ci) in
let aci=if with_intros
then (arity_of_constr_of_mind env indf !ci)
else 0 in
let ici= (!ci) in
sph[ (natural_ntree
{ihsg=
(match (nsort targ1) with
Prop(Null) ->
Case_prop_subgoals_hyp (supposons (),arg1,ici,aci,
(List.length ltree))
|_-> Case_subgoals_hyp ("",arg1,nci,aci,
(List.length ltree)));
isgintro= if with_intros then "" else "standard"}
treearg)
])
(nrem ltree ((List.length ltree)- ncti))));
(sph [spi; (natural_rem_goals
(nhd ltree ((List.length ltree)- ncti)))])
] )
(* Cas d'un seul constructeur *)
else (
spv
[ (natural_lhyp lh ig.ihsg);
(show_goal2 lh ig g gs "");
de_A_on_a arg1;
(let treearg=List.hd ltree in
let nci=(constr_of_mind mip 1) in
let aci=
if with_intros
then (arity_of_constr_of_mind env indf 1)
else 0 in
let ici= 1 in
sph[ (natural_ntree
{ihsg=
(match (nsort targ1) with
Prop(Null) ->
Case_prop_subgoals_hyp ("",arg1,1,aci,
(List.length ltree))
|_-> Case_subgoals_hyp ("",arg1,nci,aci,
(List.length ltree)));
isgintro=""}
treearg)
]);
(sph [spi; (natural_rem_goals
(nhd ltree ((List.length ltree)- 1)))])
]
)
(* with _ ->natural_generic ig lh g gs (sps "Case") (spt arg1) ltree *)
(*****************************************************************************)
(*
Elim
*)
and prod_list_var t =
match (kind_of_term (strip_outer_cast t)) with
Prod(_,t,c) -> t::(prod_list_var c)
|_ -> []
and hd_is_mind t ti =
try (let env = Global.env() in
let IndType (indf,targ) = find_rectype env Evd.empty t in
let ncti= Array.length(get_constructors env indf) in
let (ind,_) = dest_ind_family indf in
let (mib,mip) = lookup_mind_specif env ind in
(string_of_id mip.mind_typename) = ti)
with _ -> false
and mind_ind_info_hyp_constr indf c =
let env = Global.env() in
let (ind,_) = dest_ind_family indf in
let (mib,mip) = lookup_mind_specif env ind in
let p = mip.mind_nparams in
let a = arity_of_constr_of_mind env indf c in
let lp=ref (get_constructors env indf).(c).cs_args in
let lr=ref [] in
let ti = (string_of_id mip.mind_typename) in
for i=1 to a do
match !lp with
((_,_,t)::lp1)->
if hd_is_mind t ti
then (lr:=(!lr)@["argrec";"hyprec"]; lp:=List.tl lp1)
else (lr:=(!lr)@["arg"];lp:=lp1)
| _ -> raise (Failure "mind_ind_info_hyp_constr")
done;
!lr
(*
mind_ind_info_hyp_constr "le" 2;;
donne ["arg"; "argrec"]
mind_ind_info_hyp_constr "le" 1;;
donne []
mind_ind_info_hyp_constr "nat" 2;;
donne ["argrec"]
*)
and natural_elim ig lh g gs ge arg1 ltree with_intros=
let env= (gLOB ge) in
let targ1 = prod_head (type_of env Evd.empty arg1) in
let IndType (indf,targ) = find_rectype env Evd.empty targ1 in
let ncti= Array.length(get_constructors env indf) in
let (ind,_) = dest_ind_family indf in
let (mib,mip) = lookup_mind_specif env ind in
let ti =(string_of_id mip.mind_typename) in
let type_arg=targ1 (* List.nth targ (mis_index dmi) *) in
spv
[ (natural_lhyp lh ig.ihsg);
(show_goal2 lh ig g gs "");
(match (nsort targ1) with
Prop(Null) -> utilisons_A arg1
|_ ->procedons_par_recurrence_sur_A arg1);
(let ci=ref 0 in
(prli
(fun treearg -> ci:=!ci+1;
let nci=(constr_of_mind mip !ci) in
let aci=(arity_of_constr_of_mind env indf !ci) in
let hci=
if with_intros
then mind_ind_info_hyp_constr indf !ci
else [] in
let ici= (!ci) in
sph[ (natural_ntree
{ihsg=
(match (nsort targ1) with
Prop(Null) ->
Elim_prop_subgoals_hyp (arg1,ici,aci,hci,
(List.length ltree))
|_-> Elim_subgoals_hyp (arg1,nci,aci,hci,
(List.length ltree)));
isgintro= ""}
treearg)
])
(nhd ltree ncti)));
(sph [spi; (natural_rem_goals (nrem ltree ncti))])
]
(* )
with _ ->natural_generic ig lh g gs (sps "Elim") (spt arg1) ltree *)
(*****************************************************************************)
(*
InductionIntro n
*)
and natural_induction ig lh g gs ge arg2 ltree with_intros=
let env = (gLOB (g_env (List.hd ltree))) in
let arg1= mkVar arg2 in
let targ1 = prod_head (type_of env Evd.empty arg1) in
let IndType (indf,targ) = find_rectype env Evd.empty targ1 in
let ncti= Array.length(get_constructors env indf) in
let (ind,_) = dest_ind_family indf in
let (mib,mip) = lookup_mind_specif env ind in
let ti =(string_of_id mip.mind_typename) in
let type_arg= targ1(*List.nth targ (mis_index dmi)*) in
let lh1= hyps (List.hd ltree) in (* la liste des hyp jusqu'a n *)
(* on les enleve des hypotheses des sous-buts *)
let ltree = List.map
(fun {t_info=info;
t_goal={newhyp=lh;t_concl=g;t_full_concl=gf;t_full_env=ge};
t_proof=p} ->
{t_info=info;
t_goal={newhyp=(nrem lh (List.length lh1));
t_concl=g;t_full_concl=gf;t_full_env=ge};
t_proof=p}) ltree in
spv
[ (natural_lhyp lh ig.ihsg);
(show_goal2 lh ig g gs "");
(natural_lhyp lh1 All_subgoals_hyp);
(match (print_string "targ1------------\n";(nsort targ1)) with
Prop(Null) -> utilisons_A arg1
|_ -> procedons_par_recurrence_sur_A arg1);
(let ci=ref 0 in
(prli
(fun treearg -> ci:=!ci+1;
let nci=(constr_of_mind mip !ci) in
let aci=(arity_of_constr_of_mind env indf !ci) in
let hci=
if with_intros
then mind_ind_info_hyp_constr indf !ci
else [] in
let ici= (!ci) in
sph[ (natural_ntree
{ihsg=
(match (nsort targ1) with
Prop(Null) ->
Elim_prop_subgoals_hyp (arg1,ici,aci,hci,
(List.length ltree))
|_-> Elim_subgoals_hyp (arg1,nci,aci,hci,
(List.length ltree)));
isgintro= "standard"}
treearg)
])
ltree))
]
(************************************************************************)
(* Points fixes *)
and natural_fix ig lh g gs narg ltree =
let {t_info=info;
t_goal={newhyp=lh1;t_concl=g1;t_full_concl=gf1;
t_full_env=ge1};t_proof=p1}=(List.hd ltree) in
match lh1 with
{hyp_name=nfun;hyp_type=tfun}::lh2 ->
let ltree=[{t_info=info;
t_goal={newhyp=lh2;t_concl=g1;t_full_concl=gf1;
t_full_env=ge1};
t_proof=p1}] in
spv
[ (natural_lhyp lh ig.ihsg);
calculons_la_fonction_F_de_type_T_par_recurrence_sur_son_argument_A nfun tfun narg;
(prli(natural_ntree
{ihsg=All_subgoals_hyp;isgintro=""})
ltree)
]
| _ -> assert false
and natural_reduce ig lh g gs ge mode la ltree =
match la with
{onhyps=Some[];onconcl=true} ->
spv
[ (natural_lhyp lh ig.ihsg);
(show_goal2 lh ig g gs "");
(prl (natural_ntree
{ihsg=All_subgoals_hyp;isgintro="simpl"})
ltree)
]
| {onhyps=Some[hyp]; onconcl=false} ->
spv
[ (natural_lhyp lh ig.ihsg);
(show_goal2 lh ig g gs "");
(prl (natural_ntree
{ihsg=Reduce_hyp;isgintro=""})
ltree)
]
| _ -> assert false
and natural_split ig lh g gs ge la ltree =
match la with
[arg] ->
let env= (gLOB ge) in
let arg1= (*dbize env*) arg in
spv
[ (natural_lhyp lh ig.ihsg);
(show_goal2 lh ig g gs "");
pour_montrer_G_la_valeur_recherchee_est_A g arg1;
(prl (natural_ntree
{ihsg=All_subgoals_hyp;isgintro="standard"})
ltree)
]
| [] ->
spv
[ (natural_lhyp lh ig.ihsg);
(prli(natural_ntree
{ihsg=All_subgoals_hyp;isgintro="standard"})
ltree)
]
| _ -> assert false
and natural_generalize ig lh g gs ge la ltree =
match la with
[arg] ->
let env= (gLOB ge) in
let arg1= (*dbize env*) arg in
let type_arg=type_of (Global.env()) Evd.empty arg in
(* let type_arg=type_of_ast ge arg in*)
spv
[ (natural_lhyp lh ig.ihsg);
(show_goal2 lh ig g gs "");
on_se_sert_de_A arg1;
(prl (natural_ntree
{ihsg=All_subgoals_hyp;isgintro=""})
ltree)
]
| _ -> assert false
and natural_right ig lh g gs ltree =
spv
[ (natural_lhyp lh ig.ihsg);
(prli(natural_ntree
{ihsg=All_subgoals_hyp;isgintro="standard"})
ltree);
d_ou_A g
]
and natural_left ig lh g gs ltree =
spv
[ (natural_lhyp lh ig.ihsg);
(prli(natural_ntree
{ihsg=All_subgoals_hyp;isgintro="standard"})
ltree);
d_ou_A g
]
and natural_auto ig lh g gs ltree =
match ig.isgintro with
"trivial_equality" -> spe
| _ ->
if ltree=[]
then sphv [(natural_lhyp lh ig.ihsg);
(show_goal2 lh ig g gs "");
coq_le_demontre_seul ()]
else spv [(natural_lhyp lh ig.ihsg);
(show_goal2 lh ig g gs "");
(prli (natural_ntree {ihsg=All_subgoals_hyp;isgintro=""}
)
ltree)]
and natural_infoauto ig lh g gs ltree =
match ig.isgintro with
"trivial_equality" ->
spshrink "trivial_equality"
(natural_ntree {ihsg=All_subgoals_hyp;isgintro="standard"}
(List.hd ltree))
| _ -> sphv [(natural_lhyp lh ig.ihsg);
(show_goal2 lh ig g gs "");
coq_le_demontre_seul ();
spshrink "auto"
(sph [spi;
(natural_ntree
{ihsg=All_subgoals_hyp;isgintro=""}
(List.hd ltree))])]
and natural_trivial ig lh g gs ltree =
if ltree=[]
then sphv [(natural_lhyp lh ig.ihsg);
(show_goal2 lh ig g gs "");
ce_qui_est_trivial () ]
else spv [(natural_lhyp lh ig.ihsg);
(show_goal2 lh ig g gs ". ");
(prli(natural_ntree
{ihsg=All_subgoals_hyp;isgintro="standard"})
ltree)]
and natural_rewrite ig lh g gs arg ltree =
spv
[ (natural_lhyp lh ig.ihsg);
(show_goal2 lh ig g gs "");
en_utilisant_l_egalite_A arg;
(prli(natural_ntree
{ihsg=All_subgoals_hyp;isgintro="rewrite"})
ltree)
]
;;
let natural_ntree_path ig g =
Random.init(0);
natural_ntree ig g
;;
let show_proof lang gpath =
(match lang with
"fr" -> natural_language:=French
|"en" -> natural_language:=English
| _ -> natural_language:=English);
path:=List.rev gpath;
name_count:=0;
let ntree=(get_nproof ()) in
let {t_info=i;t_goal=g;t_proof=p} =ntree in
root_of_text_proof
(sph [(natural_ntree_path {ihsg=All_subgoals_hyp;
isgintro="standard"}
{t_info="not_proved";t_goal=g;t_proof=p});
spr])
;;
let show_nproof path =
pp (sp_print (sph [spi; show_proof "fr" path]));;
vinterp_add "ShowNaturalProof"
(fun _ ->
(fun () ->show_nproof[];()));;
(***********************************************************************
debug sous cygwin:
PATH=/usr/local/bin:/usr/bin:$PATH
COQTOP=d:/Tools/coq-7avril
CAMLLIB=/usr/local/lib/ocaml
CAMLP4LIB=/usr/local/lib/camlp4
export CAMLLIB
export COQTOP
export CAMLP4LIB
cd d:/Tools/pcoq/src/text
d:/Tools/coq-7avril/bin/coqtop.byte.exe -I /cygdrive/D/Tools/pcoq/src/abs_syntax -I /cygdrive/D/Tools/pcoq/src/text -I /cygdrive/D/Tools/pcoq/src/coq -I /cygdrive/D/Tools/pcoq/src/pbp -I /cygdrive/D/Tools/pcoq/src/dad -I /cygdrive/D/Tools/pcoq/src/history
Lemma l1: (A, B : Prop) A \/ B -> B -> A.
Intros.
Elim H.
Auto.
Qed.
Drop.
#use "/cygdrive/D/Tools/coq-7avril/dev/base_include";;
#load "xlate.cmo";;
#load "translate.cmo";;
#load "showproof_ct.cmo";;
#load "showproof.cmo";;
#load "pbp.cmo";;
#load "debug_tac.cmo";;
#load "name_to_ast.cmo";;
#load "paths.cmo";;
#load "dad.cmo";;
#load "vtp.cmo";;
#load "history.cmo";;
#load "centaur.cmo";;
Xlate.set_xlate_mut_stuff Centaur.globcv;;
Xlate.declare_in_coq();;
#use "showproof.ml";;
let pproof x = pP (sp_print x);;
Pp_control.set_depth_boxes 100;;
#install_printer pproof;;
ep();;
let bidon = ref (constr_of_string "O");;
#trace to_nproof;;
***********************************************************************)
let ep()=show_proof "fr" [];;
|