1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
|
(*
* Unification procedures for JProver. See jall.mli for more
* information on JProver.
*
* ----------------------------------------------------------------
*
* This file is part of MetaPRL, a modular, higher order
* logical framework that provides a logical programming
* environment for OCaml and other languages.
*
* See the file doc/index.html for information on Nuprl,
* OCaml, and more information about this system.
*
* Copyright (C) 2000 Stephan Schmitt
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Author: Stephan Schmitt <schmitts@spmail.slu.edu>
* Modified by: Aleksey Nogin <nogin@cs.cornell.edu>
*)
exception Not_unifiable
exception Failed
let jprover_bug = Invalid_argument "Jprover bug (Jtunify module)"
(* ************ T-STRING UNIFICATION *********************************)
(* ******* printing ********** *)
let rec list_to_string s =
match s with
[] -> ""
| f::r ->
f^"."^(list_to_string r)
let rec print_eqlist eqlist =
match eqlist with
[] ->
print_endline ""
| (atnames,f)::r ->
let (s,t) = f in
let ls = list_to_string s
and lt = list_to_string t in
begin
print_endline ("Atom names: "^(list_to_string atnames));
print_endline (ls^" = "^lt);
print_eqlist r
end
let print_equations eqlist =
begin
Format.open_box 0;
Format.force_newline ();
print_endline "Equations:";
print_eqlist eqlist;
Format.force_newline ();
end
let rec print_subst sigma =
match sigma with
[] ->
print_endline ""
| f::r ->
let (v,s) = f in
let ls = list_to_string s in
begin
print_endline (v^" = "^ls);
print_subst r
end
let print_tunify sigma =
let (n,subst) = sigma in
begin
print_endline " ";
print_endline ("MaxVar = "^(string_of_int (n-1)));
print_endline " ";
print_endline "Substitution:";
print_subst subst;
print_endline " "
end
(*****************************************************)
let is_const name =
(String.get name 0) = 'c'
let is_var name =
(String.get name 0) = 'v'
let r_1 s ft rt =
(s = []) && (ft = []) && (rt = [])
let r_2 s ft rt =
(s = []) && (ft = []) && (List.length rt >= 1)
let r_3 s ft rt =
ft=[] && (List.length s >= 1) && (List.length rt >= 1) && (List.hd s = List.hd rt)
let r_4 s ft rt =
ft=[]
&& (List.length s >= 1)
&& (List.length rt >= 1)
&& is_const (List.hd s)
&& is_var (List.hd rt)
let r_5 s ft rt =
rt=[]
&& (List.length s >= 1)
&& is_var (List.hd s)
let r_6 s ft rt =
ft=[]
&& (List.length s >= 1)
&& (List.length rt >= 1)
&& is_var (List.hd s)
&& is_const (List.hd rt)
let r_7 s ft rt =
List.length s >= 1
&& (List.length rt >= 2)
&& is_var (List.hd s)
&& is_const (List.hd rt)
&& is_const (List.hd (List.tl rt))
let r_8 s ft rt =
ft=[]
&& List.length s >= 2
&& List.length rt >= 1
&& let v = List.hd s
and v1 = List.hd rt in
(is_var v) & (is_var v1) & (v <> v1)
let r_9 s ft rt =
(List.length s >= 2) && (List.length ft >= 1) && (List.length rt >= 1)
&& let v = (List.hd s)
and v1 = (List.hd rt) in
(is_var v) & (is_var v1) & (v <> v1)
let r_10 s ft rt =
(List.length s >= 1) && (List.length rt >= 1)
&& let v = List.hd s
and x = List.hd rt in
(is_var v) && (v <> x)
&& (((List.tl s) =[]) or (is_const x) or ((List.tl rt) <> []))
let rec com_subst slist ((ov,ovlist) as one_subst) =
match slist with
[] -> raise jprover_bug
| f::r ->
if f = ov then
(ovlist @ r)
else
f::(com_subst r one_subst)
let rec combine subst ((ov,oslist) as one_subst) =
match subst with
[] -> []
| ((v, slist) as f) :: r ->
let rest_combine = (combine r one_subst) in
if (List.mem ov slist) then (* subst assumed to be idemponent *)
let com_element = com_subst slist one_subst in
((v,com_element)::rest_combine)
else
(f::rest_combine)
let compose ((n,subst) as sigma) ((ov,oslist) as one_subst) =
let com = combine subst one_subst in
(* begin
print_endline "!!!!!!!!!test print!!!!!!!!!!";
print_subst [one_subst];
print_subst subst;
print_endline "!!!!!!!!! END test print!!!!!!!!!!";
*)
if List.mem one_subst subst then
(n,com)
else
(* ov may multiply as variable in subst with DIFFERENT values *)
(* in order to avoid explicit atom instances!!! *)
(n,(com @ [one_subst]))
(* end *)
let rec apply_element fs ft (v,slist) =
match (fs,ft) with
([],[]) ->
([],[])
| ([],(ft_first::ft_rest)) ->
let new_ft_first =
if ft_first = v then
slist
else
[ft_first]
in
let (emptylist,new_ft_rest) = apply_element [] ft_rest (v,slist) in
(emptylist,(new_ft_first @ new_ft_rest))
| ((fs_first::fs_rest),[]) ->
let new_fs_first =
if fs_first = v then
slist
else
[fs_first]
in
let (new_fs_rest,emptylist) = apply_element fs_rest [] (v,slist) in
((new_fs_first @ new_fs_rest),emptylist)
| ((fs_first::fs_rest),(ft_first::ft_rest)) ->
let new_fs_first =
if fs_first = v then
slist
else
[fs_first]
and new_ft_first =
if ft_first = v then
slist
else
[ft_first]
in
let (new_fs_rest,new_ft_rest) = apply_element fs_rest ft_rest (v,slist) in
((new_fs_first @ new_fs_rest),(new_ft_first @ new_ft_rest))
let rec shorten us ut =
match (us,ut) with
([],_) | (_,[]) -> (us,ut) (*raise jprover_bug*)
| ((fs::rs),(ft::rt)) ->
if fs = ft then
shorten rs rt
else
(us,ut)
let rec apply_subst_list eq_rest (v,slist) =
match eq_rest with
[] ->
(true,[])
| (atomnames,(fs,ft))::r ->
let (n_fs,n_ft) = apply_element fs ft (v,slist) in
let (new_fs,new_ft) = shorten n_fs n_ft in (* delete equal first elements *)
match (new_fs,new_ft) with
[],[] ->
let (bool,new_eq_rest) = apply_subst_list r (v,slist) in
(bool,((atomnames,([],[]))::new_eq_rest))
| [],(fft::rft) ->
if (is_const fft) then
(false,[])
else
let (bool,new_eq_rest) = apply_subst_list r (v,slist) in
(bool,((atomnames,([],new_ft))::new_eq_rest))
| (ffs::rfs),[] ->
if (is_const ffs) then
(false,[])
else
let (bool,new_eq_rest) = apply_subst_list r (v,slist) in
(bool,((atomnames,(new_fs,[]))::new_eq_rest))
| (ffs::rfs),(fft::rft) ->
if (is_const ffs) & (is_const fft) then
(false,[])
(* different first constants cause local fail *)
else
(* at least one of firsts is a variable *)
let (bool,new_eq_rest) = apply_subst_list r (v,slist) in
(bool,((atomnames,(new_fs,new_ft))::new_eq_rest))
let apply_subst eq_rest (v,slist) atomnames =
if (List.mem v atomnames) then (* don't apply subst to atom variables !! *)
(true,eq_rest)
else
apply_subst_list eq_rest (v,slist)
(* let all_variable_check eqlist = false needs some discussion with Jens! -- NOT done *)
(*
let rec all_variable_check eqlist =
match eqlist with
[] -> true
| ((_,(fs,ft))::rest_eq) ->
if (fs <> []) & (ft <> []) then
let fs_first = List.hd fs
and ft_first = List.hd ft
in
if (is_const fs_first) or (is_const ft_first) then
false
else
all_variable_check rest_eq
else
false
*)
let rec tunify_list eqlist init_sigma =
let rec tunify atomnames fs ft rt rest_eq sigma =
let apply_r1 fs ft rt rest_eq sigma =
(* print_endline "r1"; *)
tunify_list rest_eq sigma
in
let apply_r2 fs ft rt rest_eq sigma =
(* print_endline "r2"; *)
tunify atomnames rt fs ft rest_eq sigma
in
let apply_r3 fs ft rt rest_eq sigma =
(* print_endline "r3"; *)
let rfs = (List.tl fs)
and rft = (List.tl rt) in
tunify atomnames rfs ft rft rest_eq sigma
in
let apply_r4 fs ft rt rest_eq sigma =
(* print_endline "r4"; *)
tunify atomnames rt ft fs rest_eq sigma
in
let apply_r5 fs ft rt rest_eq sigma =
(* print_endline "r5"; *)
let v = (List.hd fs) in
let new_sigma = compose sigma (v,ft) in
let (bool,new_rest_eq) = apply_subst rest_eq (v,ft) atomnames in
if (bool=false) then
raise Not_unifiable
else
tunify atomnames (List.tl fs) rt rt new_rest_eq new_sigma
in
let apply_r6 fs ft rt rest_eq sigma =
(* print_endline "r6"; *)
let v = (List.hd fs) in
let new_sigma = (compose sigma (v,[])) in
let (bool,new_rest_eq) = apply_subst rest_eq (v,[]) atomnames in
if (bool=false) then
raise Not_unifiable
else
tunify atomnames (List.tl fs) ft rt new_rest_eq new_sigma
in
let apply_r7 fs ft rt rest_eq sigma =
(* print_endline "r7"; *)
let v = (List.hd fs)
and c1 = (List.hd rt)
and c2t =(List.tl rt) in
let new_sigma = (compose sigma (v,(ft @ [c1]))) in
let (bool,new_rest_eq) = apply_subst rest_eq (v,(ft @ [c1])) atomnames in
if bool=false then
raise Not_unifiable
else
tunify atomnames (List.tl fs) [] c2t new_rest_eq new_sigma
in
let apply_r8 fs ft rt rest_eq sigma =
(* print_endline "r8"; *)
tunify atomnames rt [(List.hd fs)] (List.tl fs) rest_eq sigma
in
let apply_r9 fs ft rt rest_eq sigma =
(* print_endline "r9"; *)
let v = (List.hd fs)
and (max,subst) = sigma in
let v_new = ("vnew"^(string_of_int max)) in
let new_sigma = (compose ((max+1),subst) (v,(ft @ [v_new]))) in
let (bool,new_rest_eq) = apply_subst rest_eq (v,(ft @ [v_new])) atomnames in
if (bool=false) then
raise Not_unifiable
else
tunify atomnames rt [v_new] (List.tl fs) new_rest_eq new_sigma
in
let apply_r10 fs ft rt rest_eq sigma =
(* print_endline "r10"; *)
let x = List.hd rt in
tunify atomnames fs (ft @ [x]) (List.tl rt) rest_eq sigma
in
if r_1 fs ft rt then
apply_r1 fs ft rt rest_eq sigma
else if r_2 fs ft rt then
apply_r2 fs ft rt rest_eq sigma
else if r_3 fs ft rt then
apply_r3 fs ft rt rest_eq sigma
else if r_4 fs ft rt then
apply_r4 fs ft rt rest_eq sigma
else if r_5 fs ft rt then
apply_r5 fs ft rt rest_eq sigma
else if r_6 fs ft rt then
(try
apply_r6 fs ft rt rest_eq sigma
with Not_unifiable ->
if r_7 fs ft rt then (* r7 applicable if r6 was and tr6 = C2t' *)
(try
apply_r7 fs ft rt rest_eq sigma
with Not_unifiable ->
apply_r10 fs ft rt rest_eq sigma (* r10 always applicable if r6 was *)
)
else
(* r10 could be represented only once if we would try it before r7.*)
(* but looking at the transformation rules, r10 should be tried at last in any case *)
apply_r10 fs ft rt rest_eq sigma (* r10 always applicable r6 was *)
)
else if r_7 fs ft rt then (* not r6 and r7 possible if z <> [] *)
(try
apply_r7 fs ft rt rest_eq sigma
with Not_unifiable ->
apply_r10 fs ft rt rest_eq sigma (* r10 always applicable if r7 was *)
)
else if r_8 fs ft rt then
(try
apply_r8 fs ft rt rest_eq sigma
with Not_unifiable ->
if r_10 fs ft rt then (* r10 applicable if r8 was and tr8 <> [] *)
apply_r10 fs ft rt rest_eq sigma
else
raise Not_unifiable (* simply back propagation *)
)
else if r_9 fs ft rt then
(try
apply_r9 fs ft rt rest_eq sigma
with Not_unifiable ->
if r_10 fs ft rt then (* r10 applicable if r9 was and tr9 <> [] *)
apply_r10 fs ft rt rest_eq sigma
else
raise Not_unifiable (* simply back propagation *)
)
else if r_10 fs ft rt then (* not ri, i<10, and r10 possible if for instance *)
(* (s=[] and x=v1) or (z<>[] and xt=C1V1t') *)
apply_r10 fs ft rt rest_eq sigma
else (* NO rule applicable *)
raise Not_unifiable
in
match eqlist with
[] ->
init_sigma
| f::rest_eq ->
let (atomnames,(fs,ft)) = f in
tunify atomnames fs [] ft rest_eq init_sigma
let rec test_apply_eq atomnames eqs eqt subst =
match subst with
[] -> (eqs,eqt)
| (f,flist)::r ->
let (first_appl_eqs,first_appl_eqt) =
if List.mem f atomnames then
(eqs,eqt)
else
(apply_element eqs eqt (f,flist))
in
test_apply_eq atomnames first_appl_eqs first_appl_eqt r
let rec test_apply_eqsubst eqlist subst =
match eqlist with
[] -> []
| f::r ->
let (atomnames,(eqs,eqt)) = f in
let applied_element = test_apply_eq atomnames eqs eqt subst in
(atomnames,applied_element)::(test_apply_eqsubst r subst)
let ttest us ut ns nt eqlist orderingQ atom_rel =
let (short_us,short_ut) = shorten us ut in (* apply intial rule R3 *)
(* to eliminate common beginning *)
let new_element = ([ns;nt],(short_us,short_ut)) in
let full_eqlist =
if List.mem new_element eqlist then
eqlist
else
new_element::eqlist
in
let sigma = tunify_list full_eqlist (1,[]) in
let (n,subst) = sigma in
let test_apply = test_apply_eqsubst full_eqlist subst in
begin
print_endline "";
print_endline "Final equations:";
print_equations full_eqlist;
print_endline "";
print_endline "Final substitution:";
print_tunify sigma;
print_endline "";
print_endline "Applied equations:";
print_equations test_apply
end
let do_stringunify us ut ns nt equations =
let (short_us,short_ut) = shorten us ut in (* apply intial rule R3 to eliminate common beginning *)
let new_element = ([ns;nt],(short_us,short_ut)) in
let full_eqlist =
if List.mem new_element equations then
equations
else
new_element::equations
in
(* print_equations full_eqlist; *)
(try
let new_sigma = tunify_list full_eqlist (1,[]) in
(new_sigma,(1,full_eqlist))
with Not_unifiable ->
raise Failed (* new connection please *)
)
(* type of one unifier: int * (string * string) list *)
|