1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Certification of Imperative Programs / Jean-Christophe Fillitre *)
(* $Id: Exchange.v,v 1.1.2.1 2004/07/16 19:30:16 herbelin Exp $ *)
(****************************************************************************)
(* Exchange of two elements in an array *)
(* Definition and properties *)
(****************************************************************************)
Require ProgInt.
Require Arrays.
Set Implicit Arguments.
(* Definition *)
Inductive exchange [n:Z; A:Set; t,t':(array n A); i,j:Z] : Prop :=
exchange_c :
`0<=i<n` -> `0<=j<n` ->
(#t[i] = #t'[j]) ->
(#t[j] = #t'[i]) ->
((k:Z)`0<=k<n` -> `k<>i` -> `k<>j` -> #t[k] = #t'[k]) ->
(exchange t t' i j).
(* Properties about exchanges *)
Lemma exchange_1 : (n:Z)(A:Set)(t:(array n A))
(i,j:Z) `0<=i<n` -> `0<=j<n` ->
(access (store (store t i #t[j]) j #t[i]) i) = #t[j].
Proof.
Intros n A t i j H_i H_j.
Case (dec_eq j i).
Intro eq_i_j. Rewrite eq_i_j.
Auto with datatypes.
Intro not_j_i.
Rewrite (store_def_2 (store t i #t[j]) #t[i] H_j H_i not_j_i).
Auto with datatypes.
Save.
Hints Resolve exchange_1 : v62 datatypes.
Lemma exchange_proof :
(n:Z)(A:Set)(t:(array n A))
(i,j:Z) `0<=i<n` -> `0<=j<n` ->
(exchange (store (store t i (access t j)) j (access t i)) t i j).
Proof.
Intros n A t i j H_i H_j.
Apply exchange_c; Auto with datatypes.
Intros k H_k not_k_i not_k_j.
Cut ~j=k; Auto with datatypes. Intro not_j_k.
Rewrite (store_def_2 (store t i (access t j)) (access t i) H_j H_k not_j_k).
Auto with datatypes.
Save.
Hints Resolve exchange_proof : v62 datatypes.
Lemma exchange_sym :
(n:Z)(A:Set)(t,t':(array n A))(i,j:Z)
(exchange t t' i j) -> (exchange t' t i j).
Proof.
Intros n A t t' i j H1.
Elim H1. Clear H1. Intros.
Constructor 1; Auto with datatypes.
Intros. Rewrite (H3 k); Auto with datatypes.
Save.
Hints Resolve exchange_sym : v62 datatypes.
Lemma exchange_id :
(n:Z)(A:Set)(t,t':(array n A))(i,j:Z)
(exchange t t' i j) ->
i=j ->
(k:Z) `0 <= k < n` -> (access t k)=(access t' k).
Proof.
Intros n A t t' i j Hex Heq k Hk.
Elim Hex. Clear Hex. Intros.
Rewrite Heq in H1. Rewrite Heq in H2.
Case (Z_eq_dec k j).
Intro Heq'. Rewrite Heq'. Assumption.
Intro Hnoteq. Apply (H3 k); Auto with datatypes. Rewrite Heq. Assumption.
Save.
Hints Resolve exchange_id : v62 datatypes.
|