1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
Require Arith.
Require PolyList.
(*** STANDARD EXAMPLES *)
(** Functions. *)
Definition idnat := [x:nat]x.
Extraction idnat.
(* let idnat x = x *)
Definition id := [X:Type][x:X]x.
Extraction id. (* let id x = x *)
Definition id' := (id Set nat).
Extraction id'. (* type id' = nat *)
Definition test2 := [f:nat->nat][x:nat](f x).
Extraction test2.
(* let test2 f x = f x *)
Definition test3 := [f:nat->Set->nat][x:nat](f x nat).
Extraction test3.
(* let test3 f x = f x __ *)
Definition test4 := [f:(nat->nat)->nat][x:nat][g:nat->nat](f g).
Extraction test4.
(* let test4 f x g = f g *)
Definition test5 := ((1),(0)).
Extraction test5.
(* let test5 = Pair ((S O), O) *)
Definition cf := [x:nat][_:(le x O)](S x).
Extraction NoInline cf.
Definition test6 := (cf O (le_n O)).
Extraction test6.
(* let test6 = cf O *)
Definition test7 := ([X:Set][x:X]x nat).
Extraction test7.
(* let test7 x = x *)
Definition d := [X:Type]X.
Extraction d. (* type 'x d = 'x *)
Definition d2 := (d Set).
Extraction d2. (* type d2 = __ d *)
Definition d3 := [x:(d Set)]O.
Extraction d3. (* let d3 _ = O *)
Definition d4 := (d nat).
Extraction d4. (* type d4 = nat d *)
Definition d5 := ([x:(d Type)]O Type).
Extraction d5. (* let d5 = O *)
Definition d6 := ([x:(d Type)]x).
Extraction d6. (* type 'x d6 = 'x *)
Definition test8 := ([X:Type][x:X]x Set nat).
Extraction test8. (* type test8 = nat *)
Definition test9 := let t = nat in (id Set t).
Extraction test9. (* type test9 = nat *)
Definition test10 := ([X:Type][x:X]O Type Type).
Extraction test10. (* let test10 = O *)
Definition test11 := let n=O in let p=(S n) in (S p).
Extraction test11. (* let test11 = S (S O) *)
Definition test12 := (x:(X:Type)X->X)(x Type Type).
Extraction test12.
(* type test12 = (__ -> __ -> __) -> __ *)
Definition test13 := Cases (left True True I) of (left x)=>(S O) | (right x)=>O end.
Extraction test13. (* let test13 = S O *)
(** example with more arguments that given by the type *)
Definition test19 := (nat_rec [n:nat]nat->nat [n:nat]O [n:nat][f:nat->nat]f O O).
Extraction test19.
(* let test19 =
let rec f = function
| O -> (fun n0 -> O)
| S n0 -> f n0
in f O O
*)
(** casts *)
Definition test20 := (True :: Type).
Extraction test20.
(* type test20 = __ *)
(** Simple inductive type and recursor. *)
Extraction nat.
(*
type nat =
| O
| S of nat
*)
Extraction sumbool_rect.
(*
let sumbool_rect f f0 = function
| Left -> f __
| Right -> f0 __
*)
(** Less simple inductive type. *)
Inductive c [x:nat] : nat -> Set :=
refl : (c x x)
| trans : (y,z:nat)(c x y)->(le y z)->(c x z).
Extraction c.
(*
type c =
| Refl
| Trans of nat * nat * c
*)
Definition Ensemble := [U:Type]U->Prop.
Definition Empty_set := [U:Type][x:U]False.
Definition Add := [U:Type][A:(Ensemble U)][x:U][y:U](A y) \/ x==y.
Inductive Finite [U:Type] : (Ensemble U) -> Set :=
Empty_is_finite: (Finite U (Empty_set U))
| Union_is_finite:
(A: (Ensemble U)) (Finite U A) ->
(x: U) ~ (A x) -> (Finite U (Add U A x)).
Extraction Finite.
(*
type 'u finite =
| Empty_is_finite
| Union_is_finite of 'u finite * 'u
*)
(** Mutual Inductive *)
Inductive tree : Set :=
Node : nat -> forest -> tree
with forest : Set :=
| Leaf : nat -> forest
| Cons : tree -> forest -> forest .
Extraction tree.
(*
type tree =
| Node of nat * forest
and forest =
| Leaf of nat
| Cons of tree * forest
*)
Fixpoint tree_size [t:tree] : nat :=
Cases t of (Node a f) => (S (forest_size f)) end
with forest_size [f:forest] : nat :=
Cases f of
| (Leaf b) => (S O)
| (Cons t f') => (plus (tree_size t) (forest_size f'))
end.
Extraction tree_size.
(*
let rec tree_size = function
| Node (a, f) -> S (forest_size f)
and forest_size = function
| Leaf b -> S O
| Cons (t, f') -> plus (tree_size t) (forest_size f')
*)
(** Eta-expansions of inductive constructor *)
Inductive titi : Set := tata : nat->nat->nat->nat->titi.
Definition test14 := (tata O).
Extraction test14.
(* let test14 x x0 x1 = Tata (O, x, x0, x1) *)
Definition test15 := (tata O (S O)).
Extraction test15.
(* let test15 x x0 = Tata (O, (S O), x, x0) *)
Inductive eta : Set := eta_c : nat->Prop->nat->Prop->eta.
Extraction eta_c.
(*
type eta =
| Eta_c of nat * nat
*)
Definition test16 := (eta_c O).
Extraction test16.
(* let test16 x = Eta_c (O, x) *)
Definition test17 := (eta_c O True).
Extraction test17.
(* let test17 x = Eta_c (O, x) *)
Definition test18 := (eta_c O True O).
Extraction test18.
(* let test18 _ = Eta_c (O, O) *)
(** Example of singleton inductive type *)
Inductive bidon [A:Prop;B:Type] : Set := tb : (x:A)(y:B)(bidon A B).
Definition fbidon := [A,B:Type][f:A->B->(bidon True nat)][x:A][y:B](f x y).
Extraction bidon.
(* type 'b bidon = 'b *)
Extraction tb.
(* tb : singleton inductive constructor *)
Extraction fbidon.
(* let fbidon f x y =
f x y
*)
Definition fbidon2 := (fbidon True nat (tb True nat)).
Extraction fbidon2. (* let fbidon2 y = y *)
Extraction NoInline fbidon.
Extraction fbidon2.
(* let fbidon2 y = fbidon (fun _ x -> x) __ y *)
(* NB: first argument of fbidon2 has type [True], so it disappears. *)
(** mutual inductive on many sorts *)
Inductive
test_0 : Prop := ctest0 : test_0
with
test_1 : Set := ctest1 : test_0-> test_1.
Extraction test_0.
(* test0 : logical inductive *)
Extraction test_1.
(*
type test1 =
| Ctest1
*)
(** logical singleton *)
Extraction eq.
(* eq : logical inductive *)
Extraction eq_rect.
(* let eq_rect x f y =
f
*)
(** No more propagation of type parameters. Obj.t instead. *)
Inductive tp1 : Set :=
T : (C:Set)(c:C)tp2 -> tp1 with tp2 : Set := T' : tp1->tp2.
Extraction tp1.
(*
type tp1 =
| T of __ * tp2
and tp2 =
| T' of tp1
*)
Inductive tp1bis : Set :=
Tbis : tp2bis -> tp1bis
with tp2bis : Set := T'bis : (C:Set)(c:C)tp1bis->tp2bis.
Extraction tp1bis.
(*
type tp1bis =
| Tbis of tp2bis
and tp2bis =
| T'bis of __ * tp1bis
*)
(** Strange inductive type. *)
Inductive Truc : Set->Set :=
chose : (A:Set)(Truc A)
| machin : (A:Set)A->(Truc bool)->(Truc A).
Extraction Truc.
(*
type 'x truc =
| Chose
| Machin of 'x * bool truc
*)
(** Dependant type over Type *)
Definition test24:= (sigT Set [a:Set](option a)).
Extraction test24.
(* type test24 = (__, __ option) sigT *)
(** Coq term non strongly-normalizable after extraction *)
Require Gt.
Definition loop :=
[Ax:(Acc nat gt O)]
(Fix F {F [a:nat;b:(Acc nat gt a)] : nat :=
(F (S a) (Acc_inv nat gt a b (S a) (gt_Sn_n a)))}
O Ax).
Extraction loop.
(* let loop _ =
let rec f a =
f (S a)
in f O
*)
(*** EXAMPLES NEEDING OBJ.MAGIC *)
(** False conversion of type: *)
Lemma oups : (H:(nat==(list nat)))nat -> nat.
Intros.
Generalize H0;Intros.
Rewrite H in H1.
Case H1.
Exact H0.
Intros.
Exact n.
Qed.
Extraction oups.
(*
let oups h0 =
match Obj.magic h0 with
| Nil -> h0
| Cons0 (n, l) -> n
*)
(** hybrids *)
Definition horibilis := [b:bool]<[b:bool]if b then Type else nat>if b then Set else O.
Extraction horibilis.
(*
let horibilis = function
| True -> Obj.magic __
| False -> Obj.magic O
*)
Definition PropSet := [b:bool]if b then Prop else Set.
Extraction PropSet. (* type propSet = __ *)
Definition natbool := [b:bool]if b then nat else bool.
Extraction natbool. (* type natbool = __ *)
Definition zerotrue := [b:bool]<natbool>if b then O else true.
Extraction zerotrue.
(*
let zerotrue = function
| True -> Obj.magic O
| False -> Obj.magic True
*)
Definition natProp := [b:bool]<[_:bool]Type>if b then nat else Prop.
Definition natTrue := [b:bool]<[_:bool]Type>if b then nat else True.
Definition zeroTrue := [b:bool]<natProp>if b then O else True.
Extraction zeroTrue.
(*
let zeroTrue = function
| True -> Obj.magic O
| False -> Obj.magic __
*)
Definition natTrue2 := [b:bool]<[_:bool]Type>if b then nat else True.
Definition zeroprop := [b:bool]<natTrue>if b then O else I.
Extraction zeroprop.
(*
let zeroprop = function
| True -> Obj.magic O
| False -> Obj.magic __
*)
(** polymorphic f applied several times *)
Definition test21 := (id nat O, id bool true).
Extraction test21.
(* let test21 = Pair ((id O), (id True)) *)
(** ok *)
Definition test22 := ([f:(X:Type)X->X](f nat O, f bool true) [X:Type][x:X]x).
Extraction test22.
(* let test22 =
let f = fun x -> x in Pair ((f O), (f True)) *)
(* still ok via optim beta -> let *)
Definition test23 := [f:(X:Type)X->X](f nat O, f bool true).
Extraction test23.
(* let test23 f = Pair ((Obj.magic f __ O), (Obj.magic f __ True)) *)
(* problem: fun f -> (f 0, f true) not legal in ocaml *)
(* solution: magic ... *)
(** Dummy constant __ can be applied.... *)
Definition f : (X:Type)(nat->X)->(X->bool)->bool :=
[X:Type;x:nat->X;y:X->bool](y (x O)).
Extraction f.
(* let f x y =
y (x O)
*)
Definition f_prop := (f (O=O) [_](refl_equal ? O) [_]true).
Extraction NoInline f.
Extraction f_prop.
(* let f_prop =
f (Obj.magic __) (fun _ -> True)
*)
Definition f_arity := (f Set [_:nat]nat [_:Set]true).
Extraction f_arity.
(* let f_arity =
f (Obj.magic __) (fun _ -> True)
*)
Definition f_normal := (f nat [x]x [x](Cases x of O => true | _ => false end)).
Extraction f_normal.
(* let f_normal =
f (fun x -> x) (fun x -> match x with
| O -> True
| S n -> False)
*)
(* inductive with magic needed *)
Inductive Boite : Set :=
boite : (b:bool)(if b then nat else nat*nat)->Boite.
Extraction Boite.
(*
type boite =
| Boite of bool * __
*)
Definition boite1 := (boite true O).
Extraction boite1.
(* let boite1 = Boite (True, (Obj.magic O)) *)
Definition boite2 := (boite false (O,O)).
Extraction boite2.
(* let boite2 = Boite (False, (Obj.magic (Pair (O, O)))) *)
Definition test_boite := [B:Boite]<nat>Cases B of
(boite true n) => n
| (boite false n) => (plus (fst ? ? n) (snd ? ? n))
end.
Extraction test_boite.
(*
let test_boite = function
| Boite (b0, n) ->
(match b0 with
| True -> Obj.magic n
| False -> plus (fst (Obj.magic n)) (snd (Obj.magic n)))
*)
(* singleton inductive with magic needed *)
Inductive Box : Set :=
box : (A:Set)A -> Box.
Extraction Box.
(* type box = __ *)
Definition box1 := (box nat O).
Extraction box1. (* let box1 = Obj.magic O *)
(* applied constant, magic needed *)
Definition idzarb := [b:bool][x:(if b then nat else bool)]x.
Definition zarb := (idzarb true O).
Extraction NoInline idzarb.
Extraction zarb.
(* let zarb = Obj.magic idzarb True (Obj.magic O) *)
(** function of variable arity. *)
(** Fun n = nat -> nat -> ... -> nat *)
Fixpoint Fun [n:nat] : Set :=
Cases n of
O => nat
| (S n) => nat -> (Fun n)
end.
Fixpoint Const [k,n:nat] : (Fun n) :=
<Fun>Cases n of
O => k
| (S n) => [p:nat](Const k n)
end.
Fixpoint proj [k,n:nat] : (Fun n) :=
<Fun>Cases n of
O => O (* ou assert false ....*)
| (S n) => Cases k of
O => [x](Const x n)
| (S k) => [x](proj k n)
end
end.
Definition test_proj := (proj (2) (4) (0) (1) (2) (3)).
Eval Compute in test_proj.
Recursive Extraction test_proj.
(*** TO SUM UP: ***)
Extraction "test_extraction.ml"
idnat id id' test2 test3 test4 test5 test6 test7
d d2 d3 d4 d5 d6 test8 id id' test9 test10 test11
test12 test13 test19 test20
nat sumbool_rect c Finite tree tree_size
test14 test15 eta_c test16 test17 test18 bidon tb fbidon fbidon2
fbidon2 test_0 test_1 eq eq_rect tp1 tp1bis Truc oups test24 loop
horibilis PropSet natbool zerotrue zeroTrue zeroprop test21 test22
test23 f f_prop f_arity f_normal
Boite boite1 boite2 test_boite
Box box1 zarb test_proj.
|