1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id: Field_Tactic.v,v 1.2.2.1 2004/07/16 19:30:17 herbelin Exp $ *)
Require Ring.
Require Export Field_Compl.
Require Export Field_Theory.
(**** Interpretation A --> ExprA ****)
Recursive Tactic Definition MemAssoc var lvar :=
Match lvar With
| [(nilT ?)] -> false
| [(consT ? ?1 ?2)] ->
(Match ?1=var With
| [?1=?1] -> true
| _ -> (MemAssoc var ?2)).
Recursive Tactic Definition SeekVarAux FT lvar trm :=
Let AT = Eval Cbv Beta Delta [A] Iota in (A FT)
And AzeroT = Eval Cbv Beta Delta [Azero] Iota in (Azero FT)
And AoneT = Eval Cbv Beta Delta [Aone] Iota in (Aone FT)
And AplusT = Eval Cbv Beta Delta [Aplus] Iota in (Aplus FT)
And AmultT = Eval Cbv Beta Delta [Amult] Iota in (Amult FT)
And AoppT = Eval Cbv Beta Delta [Aopp] Iota in (Aopp FT)
And AinvT = Eval Cbv Beta Delta [Ainv] Iota in (Ainv FT) In
Match trm With
| [(AzeroT)] -> lvar
| [(AoneT)] -> lvar
| [(AplusT ?1 ?2)] ->
Let l1 = (SeekVarAux FT lvar ?1) In
(SeekVarAux FT l1 ?2)
| [(AmultT ?1 ?2)] ->
Let l1 = (SeekVarAux FT lvar ?1) In
(SeekVarAux FT l1 ?2)
| [(AoppT ?1)] -> (SeekVarAux FT lvar ?1)
| [(AinvT ?1)] -> (SeekVarAux FT lvar ?1)
| [?1] ->
Let res = (MemAssoc ?1 lvar) In
Match res With
| [(true)] -> lvar
| [(false)] -> '(consT AT ?1 lvar).
Tactic Definition SeekVar FT trm :=
Let AT = Eval Cbv Beta Delta [A] Iota in (A FT) In
(SeekVarAux FT '(nilT AT) trm).
Recursive Tactic Definition NumberAux lvar cpt :=
Match lvar With
| [(nilT ?1)] -> '(nilT (prodT ?1 nat))
| [(consT ?1 ?2 ?3)] ->
Let l2 = (NumberAux ?3 '(S cpt)) In
'(consT (prodT ?1 nat) (pairT ?1 nat ?2 cpt) l2).
Tactic Definition Number lvar := (NumberAux lvar O).
Tactic Definition BuildVarList FT trm :=
Let lvar = (SeekVar FT trm) In
(Number lvar).
V7only [
(*Used by contrib Maple *)
Tactic Definition build_var_list := BuildVarList.
].
Recursive Tactic Definition Assoc elt lst :=
Match lst With
| [(nilT ?)] -> Fail
| [(consT (prodT ? nat) (pairT ? nat ?1 ?2) ?3)] ->
Match elt= ?1 With
| [?1= ?1] -> ?2
| _ -> (Assoc elt ?3).
Recursive Meta Definition interp_A FT lvar trm :=
Let AT = Eval Cbv Beta Delta [A] Iota in (A FT)
And AzeroT = Eval Cbv Beta Delta [Azero] Iota in (Azero FT)
And AoneT = Eval Cbv Beta Delta [Aone] Iota in (Aone FT)
And AplusT = Eval Cbv Beta Delta [Aplus] Iota in (Aplus FT)
And AmultT = Eval Cbv Beta Delta [Amult] Iota in (Amult FT)
And AoppT = Eval Cbv Beta Delta [Aopp] Iota in (Aopp FT)
And AinvT = Eval Cbv Beta Delta [Ainv] Iota in (Ainv FT) In
Match trm With
| [(AzeroT)] -> EAzero
| [(AoneT)] -> EAone
| [(AplusT ?1 ?2)] ->
Let e1 = (interp_A FT lvar ?1)
And e2 = (interp_A FT lvar ?2) In
'(EAplus e1 e2)
| [(AmultT ?1 ?2)] ->
Let e1 = (interp_A FT lvar ?1)
And e2 = (interp_A FT lvar ?2) In
'(EAmult e1 e2)
| [(AoppT ?1)] ->
Let e = (interp_A FT lvar ?1) In
'(EAopp e)
| [(AinvT ?1)] ->
Let e = (interp_A FT lvar ?1) In
'(EAinv e)
| [?1] ->
Let idx = (Assoc ?1 lvar) In
'(EAvar idx).
(************************)
(* Simplification *)
(************************)
(**** Generation of the multiplier ****)
Recursive Tactic Definition Remove e l :=
Match l With
| [(nilT ?)] -> l
| [(consT ?1 e ?2)] -> ?2
| [(consT ?1 ?2 ?3)] ->
Let nl = (Remove e ?3) In
'(consT ?1 ?2 nl).
Recursive Tactic Definition Union l1 l2 :=
Match l1 With
| [(nilT ?)] -> l2
| [(consT ?1 ?2 ?3)] ->
Let nl2 = (Remove ?2 l2) In
Let nl = (Union ?3 nl2) In
'(consT ?1 ?2 nl).
Recursive Tactic Definition RawGiveMult trm :=
Match trm With
| [(EAinv ?1)] -> '(consT ExprA ?1 (nilT ExprA))
| [(EAopp ?1)] -> (RawGiveMult ?1)
| [(EAplus ?1 ?2)] ->
Let l1 = (RawGiveMult ?1)
And l2 = (RawGiveMult ?2) In
(Union l1 l2)
| [(EAmult ?1 ?2)] ->
Let l1 = (RawGiveMult ?1)
And l2 = (RawGiveMult ?2) In
Eval Compute in (appT ExprA l1 l2)
| _ -> '(nilT ExprA).
Tactic Definition GiveMult trm :=
Let ltrm = (RawGiveMult trm) In
'(mult_of_list ltrm).
(**** Associativity ****)
Tactic Definition ApplyAssoc FT lvar trm :=
Let t=Eval Compute in (assoc trm) In
Match t=trm With
| [ ?1=?1 ] -> Idtac
| _ -> Rewrite <- (assoc_correct FT trm); Change (assoc trm) with t.
(**** Distribution *****)
Tactic Definition ApplyDistrib FT lvar trm :=
Let t=Eval Compute in (distrib trm) In
Match t=trm With
| [ ?1=?1 ] -> Idtac
| _ -> Rewrite <- (distrib_correct FT trm); Change (distrib trm) with t.
(**** Multiplication by the inverse product ****)
Tactic Definition GrepMult :=
Match Context With
| [ id: ~(interp_ExprA ? ? ?)= ? |- ?] -> id.
Tactic Definition WeakReduce :=
Match Context With
| [|-[(interp_ExprA ?1 ?2 ?)]] ->
Cbv Beta Delta [interp_ExprA assoc_2nd eq_nat_dec mult_of_list ?1 ?2 A
Azero Aone Aplus Amult Aopp Ainv] Zeta Iota.
Tactic Definition Multiply mul :=
Match Context With
| [|-(interp_ExprA ?1 ?2 ?3)=(interp_ExprA ?1 ?2 ?4)] ->
Let AzeroT = Eval Cbv Beta Delta [Azero ?1] Iota in (Azero ?1) In
Cut ~(interp_ExprA ?1 ?2 mul)=AzeroT;
[Intro;
Let id = GrepMult In
Apply (mult_eq ?1 ?3 ?4 mul ?2 id)
|WeakReduce;
Let AoneT = Eval Cbv Beta Delta [Aone ?1] Iota in (Aone ?1)
And AmultT = Eval Cbv Beta Delta [Amult ?1] Iota in (Amult ?1) In
Try (Match Context With
| [|-[(AmultT ? AoneT)]] -> Rewrite (AmultT_1r ?1));Clear ?1 ?2].
Tactic Definition ApplyMultiply FT lvar trm :=
Let t=Eval Compute in (multiply trm) In
Match t=trm With
| [ ?1=?1 ] -> Idtac
| _ -> Rewrite <- (multiply_correct FT trm); Change (multiply trm) with t.
(**** Permutations and simplification ****)
Tactic Definition ApplyInverse mul FT lvar trm :=
Let t=Eval Compute in (inverse_simplif mul trm) In
Match t=trm With
| [ ?1=?1 ] -> Idtac
| _ -> Rewrite <- (inverse_correct FT trm mul);
[Change (inverse_simplif mul trm) with t|Assumption].
(**** Inverse test ****)
Tactic Definition StrongFail tac := First [tac|Fail 2].
Recursive Tactic Definition InverseTestAux FT trm :=
Let AplusT = Eval Cbv Beta Delta [Aplus] Iota in (Aplus FT)
And AmultT = Eval Cbv Beta Delta [Amult] Iota in (Amult FT)
And AoppT = Eval Cbv Beta Delta [Aopp] Iota in (Aopp FT)
And AinvT = Eval Cbv Beta Delta [Ainv] Iota in (Ainv FT) In
Match trm With
| [(AinvT ?)] -> Fail 1
| [(AoppT ?1)] -> StrongFail ((InverseTestAux FT ?1);Idtac)
| [(AplusT ?1 ?2)] ->
StrongFail ((InverseTestAux FT ?1);(InverseTestAux FT ?2))
| [(AmultT ?1 ?2)] ->
StrongFail ((InverseTestAux FT ?1);(InverseTestAux FT ?2))
| _ -> Idtac.
Tactic Definition InverseTest FT :=
Let AplusT = Eval Cbv Beta Delta [Aplus] Iota in (Aplus FT) In
Match Context With
| [|- ?1=?2] -> (InverseTestAux FT '(AplusT ?1 ?2)).
(**** Field itself ****)
Tactic Definition ApplySimplif sfun :=
(Match Context With
| [|- (interp_ExprA ?1 ?2 ?3)=(interp_ExprA ? ? ?)] ->
(sfun ?1 ?2 ?3));
(Match Context With
| [|- (interp_ExprA ? ? ?)=(interp_ExprA ?1 ?2 ?3)] ->
(sfun ?1 ?2 ?3)).
Tactic Definition Unfolds FT :=
(Match Eval Cbv Beta Delta [Aminus] Iota in (Aminus FT) With
| [(Field_Some ? ?1)] -> Unfold ?1
| _ -> Idtac);
(Match Eval Cbv Beta Delta [Adiv] Iota in (Adiv FT) With
| [(Field_Some ? ?1)] -> Unfold ?1
| _ -> Idtac).
Tactic Definition Reduce FT :=
Let AzeroT = Eval Cbv Beta Delta [Azero] Iota in (Azero FT)
And AoneT = Eval Cbv Beta Delta [Aone] Iota in (Aone FT)
And AplusT = Eval Cbv Beta Delta [Aplus] Iota in (Aplus FT)
And AmultT = Eval Cbv Beta Delta [Amult] Iota in (Amult FT)
And AoppT = Eval Cbv Beta Delta [Aopp] Iota in (Aopp FT)
And AinvT = Eval Cbv Beta Delta [Ainv] Iota in (Ainv FT) In
Cbv Beta Delta -[AzeroT AoneT AplusT AmultT AoppT AinvT] Zeta Iota
Orelse Compute.
Recursive Tactic Definition Field_Gen_Aux FT :=
Let AplusT = Eval Cbv Beta Delta [Aplus] Iota in (Aplus FT) In
Match Context With
| [|- ?1=?2] ->
Let lvar = (BuildVarList FT '(AplusT ?1 ?2)) In
Let trm1 = (interp_A FT lvar ?1)
And trm2 = (interp_A FT lvar ?2) In
Let mul = (GiveMult '(EAplus trm1 trm2)) In
Cut [ft:=FT][vm:=lvar](interp_ExprA ft vm trm1)=(interp_ExprA ft vm trm2);
[Compute;Auto
|Intros ft vm;(ApplySimplif ApplyDistrib);(ApplySimplif ApplyAssoc);
(Multiply mul);[(ApplySimplif ApplyMultiply);
(ApplySimplif (ApplyInverse mul));
(Let id = GrepMult In Clear id);WeakReduce;Clear ft vm;
First [(InverseTest FT);Ring|(Field_Gen_Aux FT)]|Idtac]].
Tactic Definition Field_Gen FT :=
Unfolds FT;((InverseTest FT);Ring) Orelse (Field_Gen_Aux FT).
V7only [Tactic Definition field_gen := Field_Gen.].
(*****************************)
(* Term Simplification *)
(*****************************)
(**** Minus and division expansions ****)
Meta Definition InitExp FT trm :=
Let e =
(Match Eval Cbv Beta Delta [Aminus] Iota in (Aminus FT) With
| [(Field_Some ? ?1)] -> Eval Cbv Beta Delta [?1] in trm
| _ -> trm) In
Match Eval Cbv Beta Delta [Adiv] Iota in (Adiv FT) With
| [(Field_Some ? ?1)] -> Eval Cbv Beta Delta [?1] in e
| _ -> e.
V7only [
(*Used by contrib Maple *)
Tactic Definition init_exp := InitExp.
].
(**** Inverses simplification ****)
Recursive Meta Definition SimplInv trm:=
Match trm With
| [(EAplus ?1 ?2)] ->
Let e1 = (SimplInv ?1)
And e2 = (SimplInv ?2) In
'(EAplus e1 e2)
| [(EAmult ?1 ?2)] ->
Let e1 = (SimplInv ?1)
And e2 = (SimplInv ?2) In
'(EAmult e1 e2)
| [(EAopp ?1)] -> Let e = (SimplInv ?1) In '(EAopp e)
| [(EAinv ?1)] -> (SimplInvAux ?1)
| [?1] -> ?1
And SimplInvAux trm :=
Match trm With
| [(EAinv ?1)] -> (SimplInv ?1)
| [(EAmult ?1 ?2)] ->
Let e1 = (SimplInv '(EAinv ?1))
And e2 = (SimplInv '(EAinv ?2)) In
'(EAmult e1 e2)
| [?1] -> Let e = (SimplInv ?1) In '(EAinv e).
(**** Monom simplification ****)
Recursive Meta Definition Map fcn lst :=
Match lst With
| [(nilT ?)] -> lst
| [(consT ?1 ?2 ?3)] ->
Let r = (fcn ?2)
And t = (Map fcn ?3) In
'(consT ?1 r t).
Recursive Meta Definition BuildMonomAux lst trm :=
Match lst With
| [(nilT ?)] -> Eval Compute in (assoc trm)
| [(consT ? ?1 ?2)] -> BuildMonomAux ?2 '(EAmult trm ?1).
Recursive Meta Definition BuildMonom lnum lden :=
Let ildn = (Map (Fun e -> '(EAinv e)) lden) In
Let ltot = Eval Compute in (appT ExprA lnum ildn) In
Let trm = (BuildMonomAux ltot EAone) In
Match trm With
| [(EAmult ? ?1)] -> ?1
| [?1] -> ?1.
Recursive Meta Definition SimplMonomAux lnum lden trm :=
Match trm With
| [(EAmult (EAinv ?1) ?2)] ->
Let mma = (MemAssoc ?1 lnum) In
(Match mma With
| [true] ->
Let newlnum = (Remove ?1 lnum) In SimplMonomAux newlnum lden ?2
| [false] -> SimplMonomAux lnum '(consT ExprA ?1 lden) ?2)
| [(EAmult ?1 ?2)] ->
Let mma = (MemAssoc ?1 lden) In
(Match mma With
| [true] ->
Let newlden = (Remove ?1 lden) In SimplMonomAux lnum newlden ?2
| [false] -> SimplMonomAux '(consT ExprA ?1 lnum) lden ?2)
| [(EAinv ?1)] ->
Let mma = (MemAssoc ?1 lnum) In
(Match mma With
| [true] ->
Let newlnum = (Remove ?1 lnum) In BuildMonom newlnum lden
| [false] -> BuildMonom lnum '(consT ExprA ?1 lden))
| [?1] ->
Let mma = (MemAssoc ?1 lden) In
(Match mma With
| [true] ->
Let newlden = (Remove ?1 lden) In BuildMonom lnum newlden
| [false] -> BuildMonom '(consT ExprA ?1 lnum) lden).
Meta Definition SimplMonom trm :=
SimplMonomAux '(nilT ExprA) '(nilT ExprA) trm.
Recursive Meta Definition SimplAllMonoms trm :=
Match trm With
| [(EAplus ?1 ?2)] ->
Let e1 = (SimplMonom ?1)
And e2 = (SimplAllMonoms ?2) In
'(EAplus e1 e2)
| [?1] -> SimplMonom ?1.
(**** Associativity and distribution ****)
Meta Definition AssocDistrib trm := Eval Compute in (assoc (distrib trm)).
(**** The tactic Field_Term ****)
Tactic Definition EvalWeakReduce trm :=
Eval Cbv Beta Delta [interp_ExprA assoc_2nd eq_nat_dec mult_of_list A Azero
Aone Aplus Amult Aopp Ainv] Zeta Iota in trm.
Tactic Definition Field_Term FT exp :=
Let newexp = (InitExp FT exp) In
Let lvar = (BuildVarList FT newexp) In
Let trm = (interp_A FT lvar newexp) In
Let tma = Eval Compute in (assoc trm) In
Let tsmp = (SimplAllMonoms (AssocDistrib (SimplAllMonoms
(SimplInv tma)))) In
Let trep = (EvalWeakReduce '(interp_ExprA FT lvar tsmp)) In
Replace exp with trep;[Ring trep|Field_Gen FT].
|