1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id: Fourier_util.v,v 1.2.2.1 2004/07/16 19:30:17 herbelin Exp $ *)
Require Export Rbase.
Comments "Lemmas used by the tactic Fourier".
Open Scope R_scope.
Lemma Rfourier_lt:
(x1, y1, a : R) (Rlt x1 y1) -> (Rlt R0 a) -> (Rlt (Rmult a x1) (Rmult a y1)).
Intros; Apply Rlt_monotony; Assumption.
Qed.
Lemma Rfourier_le:
(x1, y1, a : R) (Rle x1 y1) -> (Rlt R0 a) -> (Rle (Rmult a x1) (Rmult a y1)).
Red.
Intros.
Case H; Auto with real.
Qed.
Lemma Rfourier_lt_lt:
(x1, y1, x2, y2, a : R)
(Rlt x1 y1) ->
(Rlt x2 y2) ->
(Rlt R0 a) -> (Rlt (Rplus x1 (Rmult a x2)) (Rplus y1 (Rmult a y2))).
Intros x1 y1 x2 y2 a H H0 H1; Try Assumption.
Apply Rplus_lt.
Try Exact H.
Apply Rfourier_lt.
Try Exact H0.
Try Exact H1.
Qed.
Lemma Rfourier_lt_le:
(x1, y1, x2, y2, a : R)
(Rlt x1 y1) ->
(Rle x2 y2) ->
(Rlt R0 a) -> (Rlt (Rplus x1 (Rmult a x2)) (Rplus y1 (Rmult a y2))).
Intros x1 y1 x2 y2 a H H0 H1; Try Assumption.
Case H0; Intros.
Apply Rplus_lt.
Try Exact H.
Apply Rfourier_lt; Auto with real.
Rewrite H2.
Rewrite (Rplus_sym y1 (Rmult a y2)).
Rewrite (Rplus_sym x1 (Rmult a y2)).
Apply Rlt_compatibility.
Try Exact H.
Qed.
Lemma Rfourier_le_lt:
(x1, y1, x2, y2, a : R)
(Rle x1 y1) ->
(Rlt x2 y2) ->
(Rlt R0 a) -> (Rlt (Rplus x1 (Rmult a x2)) (Rplus y1 (Rmult a y2))).
Intros x1 y1 x2 y2 a H H0 H1; Try Assumption.
Case H; Intros.
Apply Rfourier_lt_le; Auto with real.
Rewrite H2.
Apply Rlt_compatibility.
Apply Rfourier_lt; Auto with real.
Qed.
Lemma Rfourier_le_le:
(x1, y1, x2, y2, a : R)
(Rle x1 y1) ->
(Rle x2 y2) ->
(Rlt R0 a) -> (Rle (Rplus x1 (Rmult a x2)) (Rplus y1 (Rmult a y2))).
Intros x1 y1 x2 y2 a H H0 H1; Try Assumption.
Case H0; Intros.
Red.
Left; Try Assumption.
Apply Rfourier_le_lt; Auto with real.
Rewrite H2.
Case H; Intros.
Red.
Left; Try Assumption.
Rewrite (Rplus_sym x1 (Rmult a y2)).
Rewrite (Rplus_sym y1 (Rmult a y2)).
Apply Rlt_compatibility.
Try Exact H3.
Rewrite H3.
Red.
Right; Try Assumption.
Auto with real.
Qed.
Lemma Rlt_zero_pos_plus1: (x : R) (Rlt R0 x) -> (Rlt R0 (Rplus R1 x)).
Intros x H; Try Assumption.
Rewrite Rplus_sym.
Apply Rlt_r_plus_R1.
Red; Auto with real.
Qed.
Lemma Rlt_mult_inv_pos:
(x, y : R) (Rlt R0 x) -> (Rlt R0 y) -> (Rlt R0 (Rmult x (Rinv y))).
Intros x y H H0; Try Assumption.
Replace R0 with (Rmult x R0).
Apply Rlt_monotony; Auto with real.
Ring.
Qed.
Lemma Rlt_zero_1: (Rlt R0 R1).
Exact Rlt_R0_R1.
Qed.
Lemma Rle_zero_pos_plus1: (x : R) (Rle R0 x) -> (Rle R0 (Rplus R1 x)).
Intros x H; Try Assumption.
Case H; Intros.
Red.
Left; Try Assumption.
Apply Rlt_zero_pos_plus1; Auto with real.
Rewrite <- H0.
Replace (Rplus R1 R0) with R1.
Red; Left.
Exact Rlt_zero_1.
Ring.
Qed.
Lemma Rle_mult_inv_pos:
(x, y : R) (Rle R0 x) -> (Rlt R0 y) -> (Rle R0 (Rmult x (Rinv y))).
Intros x y H H0; Try Assumption.
Case H; Intros.
Red; Left.
Apply Rlt_mult_inv_pos; Auto with real.
Rewrite <- H1.
Red; Right; Ring.
Qed.
Lemma Rle_zero_1: (Rle R0 R1).
Red; Left.
Exact Rlt_zero_1.
Qed.
Lemma Rle_not_lt:
(n, d : R) (Rle R0 (Rmult n (Rinv d))) -> ~ (Rlt R0 (Rmult (Ropp n) (Rinv d))).
Intros n d H; Red; Intros H0; Try Exact H0.
Generalize (Rle_not R0 (Rmult n (Rinv d))).
Intros H1; Elim H1; Try Assumption.
Replace (Rmult n (Rinv d)) with (Ropp (Ropp (Rmult n (Rinv d)))).
Replace R0 with (Ropp (Ropp R0)).
Replace (Ropp (Rmult n (Rinv d))) with (Rmult (Ropp n) (Rinv d)).
Replace (Ropp R0) with R0.
Red.
Apply Rgt_Ropp.
Red.
Exact H0.
Ring.
Ring.
Ring.
Ring.
Qed.
Lemma Rnot_lt0: (x : R) ~ (Rlt R0 (Rmult R0 x)).
Intros x; Try Assumption.
Replace (Rmult R0 x) with R0.
Apply Rlt_antirefl.
Ring.
Qed.
Lemma Rlt_not_le:
(n, d : R) (Rlt R0 (Rmult n (Rinv d))) -> ~ (Rle R0 (Rmult (Ropp n) (Rinv d))).
Intros n d H; Try Assumption.
Apply Rle_not.
Replace R0 with (Ropp R0).
Replace (Rmult (Ropp n) (Rinv d)) with (Ropp (Rmult n (Rinv d))).
Apply Rlt_Ropp.
Try Exact H.
Ring.
Ring.
Qed.
Lemma Rnot_lt_lt: (x, y : R) ~ (Rlt R0 (Rminus y x)) -> ~ (Rlt x y).
Unfold not; Intros.
Apply H.
Apply Rlt_anti_compatibility with x.
Replace (Rplus x R0) with x.
Replace (Rplus x (Rminus y x)) with y.
Try Exact H0.
Ring.
Ring.
Qed.
Lemma Rnot_le_le: (x, y : R) ~ (Rle R0 (Rminus y x)) -> ~ (Rle x y).
Unfold not; Intros.
Apply H.
Case H0; Intros.
Left.
Apply Rlt_anti_compatibility with x.
Replace (Rplus x R0) with x.
Replace (Rplus x (Rminus y x)) with y.
Try Exact H1.
Ring.
Ring.
Right.
Rewrite H1; Ring.
Qed.
Lemma Rfourier_gt_to_lt: (x, y : R) (Rgt y x) -> (Rlt x y).
Unfold Rgt; Intros; Assumption.
Qed.
Lemma Rfourier_ge_to_le: (x, y : R) (Rge y x) -> (Rle x y).
Intros x y; Exact (Rge_le y x).
Qed.
Lemma Rfourier_eqLR_to_le: (x, y : R) x == y -> (Rle x y).
Exact eq_Rle.
Qed.
Lemma Rfourier_eqRL_to_le: (x, y : R) y == x -> (Rle x y).
Exact eq_Rle_sym.
Qed.
Lemma Rfourier_not_ge_lt: (x, y : R) ((Rge x y) -> False) -> (Rlt x y).
Exact not_Rge.
Qed.
Lemma Rfourier_not_gt_le: (x, y : R) ((Rgt x y) -> False) -> (Rle x y).
Exact Rgt_not_le.
Qed.
Lemma Rfourier_not_le_gt: (x, y : R) ((Rle x y) -> False) -> (Rgt x y).
Exact not_Rle.
Qed.
Lemma Rfourier_not_lt_ge: (x, y : R) ((Rlt x y) -> False) -> (Rge x y).
Exact Rlt_not_ge.
Qed.
|