1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: symbols.mli,v 1.22.2.3 2005/01/21 17:14:10 herbelin Exp $ i*)
(*i*)
open Util
open Pp
open Bignat
open Names
open Nametab
open Libnames
open Rawterm
open Topconstr
open Ppextend
(*i*)
(**********************************************************************)
(* Scopes *)
(*s A scope is a set of interpreters for symbols + optional
interpreter and printers for integers + optional delimiters *)
type level = precedence * tolerability list
type delimiters = string
type scope
type scopes (* = [scope_name list] *)
val type_scope : scope_name
val declare_scope : scope_name -> unit
(* Open scope *)
val current_scopes : unit -> scopes
val open_close_scope :
(* locality *) bool * (* open *) bool * scope_name -> unit
(* Extend a list of scopes *)
val empty_scope_stack : scopes
val push_scope : scope_name -> scopes -> scopes
(* Declare delimiters for printing *)
val declare_delimiters : scope_name -> delimiters -> unit
val find_delimiters_scope : loc -> delimiters -> scope_name
(*s Declare and uses back and forth a numeral interpretation *)
(* A numeral interpreter is the pair of an interpreter for **integer**
numbers in terms and an optional interpreter in pattern, if
negative numbers are not supported, the interpreter must fail with
an appropriate error message *)
type num_interpreter =
(loc -> bigint -> rawconstr)
* (loc -> bigint -> name -> cases_pattern) option
type num_uninterpreter =
rawconstr list * (rawconstr -> bigint option)
* (cases_pattern -> bigint option) option
type required_module = global_reference * string list
val declare_numeral_interpreter : scope_name -> required_module ->
num_interpreter -> num_uninterpreter -> unit
(* Return the [term]/[cases_pattern] bound to a numeral in a given scope context*)
val interp_numeral : loc -> bigint -> scope_name list -> rawconstr
val interp_numeral_as_pattern : loc -> bigint -> name -> scope_name list ->
cases_pattern
(* Return the numeral bound to a [term]/[cases_pattern]; raise [No_match] if no *)
(* such numeral *)
val uninterp_numeral : rawconstr -> scope_name * bigint
val uninterp_cases_numeral : cases_pattern -> scope_name * bigint
val availability_of_numeral : scope_name -> scopes -> delimiters option option
(*s Declare and interpret back and forth a notation *)
(* Binds a notation in a given scope to an interpretation *)
type interp_rule =
| NotationRule of scope_name option * notation
| SynDefRule of kernel_name
val declare_notation_interpretation : notation -> scope_name option ->
interpretation -> dir_path * string -> bool -> unit
val declare_uninterpretation : interp_rule -> interpretation -> unit
(* Return the interpretation bound to a notation *)
val interp_notation : loc -> notation -> scope_name list ->
interpretation * ((dir_path * string) * scope_name option)
(* Return the possible notations for a given term *)
val uninterp_notations : rawconstr ->
(interp_rule * interpretation * int option) list
val uninterp_cases_pattern_notations : cases_pattern ->
(interp_rule * interpretation * int option) list
(* Test if a notation is available in the scopes *)
(* context [scopes] if available, the result is not None; the first *)
(* argument is itself not None if a delimiters is needed; the second *)
(* argument is a numeral printer if the *)
val availability_of_notation : scope_name option * notation -> scopes ->
(scope_name option * delimiters option) option
(*s Declare and test the level of a (possibly uninterpreted) notation *)
val declare_notation_level : notation -> level option * level -> unit
val level_of_notation : notation -> level option * level
(* raise [Not_found] if no level *)
(*s** Miscellaneous *)
(* Checks for already existing notations *)
val exists_notation_in_scope : scope_name option -> notation ->
interpretation -> bool * bool
(* Declares and looks for scopes associated to arguments of a global ref *)
val declare_arguments_scope: global_reference -> scope_name option list -> unit
val find_arguments_scope : global_reference -> scope_name option list
val declare_class_scope : scope_name -> Classops.cl_typ -> unit
val declare_ref_arguments_scope : global_reference -> unit
val compute_arguments_scope : Term.types -> scope_name option list
(* Building notation key *)
type symbol =
| Terminal of string
| NonTerminal of identifier
| SProdList of identifier * symbol list
| Break of int
val make_notation_key : symbol list -> notation
val decompose_notation_key : notation -> symbol list
(* Prints scopes (expect a pure aconstr printer *)
val pr_scope : (rawconstr -> std_ppcmds) -> scope_name -> std_ppcmds
val pr_scopes : (rawconstr -> std_ppcmds) -> std_ppcmds
val locate_notation : (rawconstr -> std_ppcmds) -> notation -> std_ppcmds
val pr_visibility: (rawconstr -> std_ppcmds) -> scope_name option -> std_ppcmds
(**********************************************************************)
(*s Printing rules for notations *)
(* Declare and look for the printing rule for symbolic notations *)
type unparsing_rule = unparsing list * precedence
val declare_notation_printing_rule : notation -> unparsing_rule -> unit
val find_notation_printing_rule : notation -> unparsing_rule
(**********************************************************************)
(* Rem: printing rules for numerals are trivial *)
|