1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id: closure.ml,v 1.54.2.1 2004/07/16 19:30:23 herbelin Exp $ *)
open Util
open Pp
open Term
open Names
open Declarations
open Environ
open Esubst
let stats = ref false
let share = ref true
(* Profiling *)
let beta = ref 0
let delta = ref 0
let zeta = ref 0
let evar = ref 0
let iota = ref 0
let prune = ref 0
let reset () =
beta := 0; delta := 0; zeta := 0; evar := 0; iota := 0; prune := 0
let stop() =
msgnl (str "[Reds: beta=" ++ int !beta ++ str" delta=" ++ int !delta ++
str" zeta=" ++ int !zeta ++ str" evar=" ++ int !evar ++
str" iota=" ++ int !iota ++ str" prune=" ++ int !prune ++ str"]")
let incr_cnt red cnt =
if red then begin
if !stats then incr cnt;
true
end else
false
let with_stats c =
if !stats then begin
reset();
let r = Lazy.force c in
stop();
r
end else
Lazy.force c
type transparent_state = Idpred.t * KNpred.t
let all_opaque = (Idpred.empty, KNpred.empty)
let all_transparent = (Idpred.full, KNpred.full)
module type RedFlagsSig = sig
type reds
type red_kind
val fBETA : red_kind
val fDELTA : red_kind
val fIOTA : red_kind
val fZETA : red_kind
val fCONST : constant -> red_kind
val fVAR : identifier -> red_kind
val no_red : reds
val red_add : reds -> red_kind -> reds
val red_sub : reds -> red_kind -> reds
val red_add_transparent : reds -> transparent_state -> reds
val mkflags : red_kind list -> reds
val red_set : reds -> red_kind -> bool
val red_get_const : reds -> bool * evaluable_global_reference list
end
module RedFlags = (struct
(* [r_const=(true,cl)] means all constants but those in [cl] *)
(* [r_const=(false,cl)] means only those in [cl] *)
(* [r_delta=true] just mean [r_const=(true,[])] *)
type reds = {
r_beta : bool;
r_delta : bool;
r_const : transparent_state;
r_zeta : bool;
r_evar : bool;
r_iota : bool }
type red_kind = BETA | DELTA | IOTA | ZETA
| CONST of constant | VAR of identifier
let fBETA = BETA
let fDELTA = DELTA
let fIOTA = IOTA
let fZETA = ZETA
let fCONST kn = CONST kn
let fVAR id = VAR id
let no_red = {
r_beta = false;
r_delta = false;
r_const = all_opaque;
r_zeta = false;
r_evar = false;
r_iota = false }
let red_add red = function
| BETA -> { red with r_beta = true }
| DELTA -> { red with r_delta = true; r_const = all_transparent }
| CONST kn ->
let (l1,l2) = red.r_const in
{ red with r_const = l1, KNpred.add kn l2 }
| IOTA -> { red with r_iota = true }
| ZETA -> { red with r_zeta = true }
| VAR id ->
let (l1,l2) = red.r_const in
{ red with r_const = Idpred.add id l1, l2 }
let red_sub red = function
| BETA -> { red with r_beta = false }
| DELTA -> { red with r_delta = false }
| CONST kn ->
let (l1,l2) = red.r_const in
{ red with r_const = l1, KNpred.remove kn l2 }
| IOTA -> { red with r_iota = false }
| ZETA -> { red with r_zeta = false }
| VAR id ->
let (l1,l2) = red.r_const in
{ red with r_const = Idpred.remove id l1, l2 }
let red_add_transparent red tr =
{ red with r_const = tr }
let mkflags = List.fold_left red_add no_red
let red_set red = function
| BETA -> incr_cnt red.r_beta beta
| CONST kn ->
let (_,l) = red.r_const in
let c = KNpred.mem kn l in
incr_cnt c delta
| VAR id -> (* En attendant d'avoir des kn pour les Var *)
let (l,_) = red.r_const in
let c = Idpred.mem id l in
incr_cnt c delta
| ZETA -> incr_cnt red.r_zeta zeta
| IOTA -> incr_cnt red.r_iota iota
| DELTA -> (* Used for Rel/Var defined in context *)
incr_cnt red.r_delta delta
let red_get_const red =
let p1,p2 = red.r_const in
let (b1,l1) = Idpred.elements p1 in
let (b2,l2) = KNpred.elements p2 in
if b1=b2 then
let l1' = List.map (fun x -> EvalVarRef x) l1 in
let l2' = List.map (fun x -> EvalConstRef x) l2 in
(b1, l1' @ l2')
else error "unrepresentable pair of predicate"
end : RedFlagsSig)
open RedFlags
let betadeltaiota = mkflags [fBETA;fDELTA;fZETA;fIOTA]
let betadeltaiotanolet = mkflags [fBETA;fDELTA;fIOTA]
let betaiota = mkflags [fBETA;fIOTA]
let beta = mkflags [fBETA]
let betaiotazeta = mkflags [fBETA;fIOTA;fZETA]
let unfold_red kn =
let flag = match kn with
| EvalVarRef id -> fVAR id
| EvalConstRef kn -> fCONST kn
in (* Remove fZETA for finer behaviour ? *)
mkflags [fBETA;flag;fIOTA;fZETA]
(************************* Obsolte
(* [r_const=(true,cl)] means all constants but those in [cl] *)
(* [r_const=(false,cl)] means only those in [cl] *)
type reds = {
r_beta : bool;
r_const : bool * constant_path list * identifier list;
r_zeta : bool;
r_evar : bool;
r_iota : bool }
let betadeltaiota_red = {
r_beta = true;
r_const = true,[],[];
r_zeta = true;
r_evar = true;
r_iota = true }
let betaiota_red = {
r_beta = true;
r_const = false,[],[];
r_zeta = false;
r_evar = false;
r_iota = true }
let beta_red = {
r_beta = true;
r_const = false,[],[];
r_zeta = false;
r_evar = false;
r_iota = false }
let no_red = {
r_beta = false;
r_const = false,[],[];
r_zeta = false;
r_evar = false;
r_iota = false }
let betaiotazeta_red = {
r_beta = true;
r_const = false,[],[];
r_zeta = true;
r_evar = false;
r_iota = true }
let unfold_red kn =
let c = match kn with
| EvalVarRef id -> false,[],[id]
| EvalConstRef kn -> false,[kn],[]
in {
r_beta = true;
r_const = c;
r_zeta = true; (* false for finer behaviour ? *)
r_evar = false;
r_iota = true }
(* Sets of reduction kinds.
Main rule: delta implies all consts (both global (= by
kernel_name) and local (= by Rel or Var)), all evars, and zeta (= letin's).
Rem: reduction of a Rel/Var bound to a term is Delta, but reduction of
a LetIn expression is Letin reduction *)
type red_kind =
BETA | DELTA | ZETA | IOTA
| CONST of constant_path list | CONSTBUT of constant_path list
| VAR of identifier | VARBUT of identifier
let rec red_add red = function
| BETA -> { red with r_beta = true }
| DELTA ->
(match red.r_const with
| _,_::_,[] | _,[],_::_ -> error "Conflict in the reduction flags"
| _ -> { red with r_const = true,[],[]; r_zeta = true; r_evar = true })
| CONST cl ->
(match red.r_const with
| true,_,_ -> error "Conflict in the reduction flags"
| _,l1,l2 -> { red with r_const = false, list_union cl l1, l2 })
| CONSTBUT cl ->
(match red.r_const with
| false,_::_,_ | false,_,_::_ ->
error "Conflict in the reduction flags"
| _,l1,l2 ->
{ red with r_const = true, list_union cl l1, l2;
r_zeta = true; r_evar = true })
| IOTA -> { red with r_iota = true }
| ZETA -> { red with r_zeta = true }
| VAR id ->
(match red.r_const with
| true,_,_ -> error "Conflict in the reduction flags"
| _,l1,l2 -> { red with r_const = false, l1, list_union [id] l2 })
| VARBUT cl ->
(match red.r_const with
| false,_::_,_ | false,_,_::_ ->
error "Conflict in the reduction flags"
| _,l1,l2 ->
{ red with r_const = true, l1, list_union [cl] l2;
r_zeta = true; r_evar = true })
let red_delta_set red =
let b,_,_ = red.r_const in b
let red_local_const = red_delta_set
(* to know if a redex is allowed, only a subset of red_kind is used ... *)
let red_set red = function
| BETA -> incr_cnt red.r_beta beta
| CONST [kn] ->
let (b,l,_) = red.r_const in
let c = List.mem kn l in
incr_cnt ((b & not c) or (c & not b)) delta
| VAR id -> (* En attendant d'avoir des kn pour les Var *)
let (b,_,l) = red.r_const in
let c = List.mem id l in
incr_cnt ((b & not c) or (c & not b)) delta
| ZETA -> incr_cnt red.r_zeta zeta
| EVAR -> incr_cnt red.r_zeta evar
| IOTA -> incr_cnt red.r_iota iota
| DELTA -> red_delta_set red (*Used for Rel/Var defined in context*)
(* Not for internal use *)
| CONST _ | CONSTBUT _ | VAR _ | VARBUT _ -> failwith "not implemented"
(* Gives the constant list *)
let red_get_const red =
let b,l1,l2 = red.r_const in
let l1' = List.map (fun x -> EvalConstRef x) l1 in
let l2' = List.map (fun x -> EvalVarRef x) l2 in
b, l1' @ l2'
fin obsolte **************)
(* specification of the reduction function *)
(* Flags of reduction and cache of constants: 'a is a type that may be
* mapped to constr. 'a infos implements a cache for constants and
* abstractions, storing a representation (of type 'a) of the body of
* this constant or abstraction.
* * i_tab is the cache table of the results
* * i_repr is the function to get the representation from the current
* state of the cache and the body of the constant. The result
* is stored in the table.
* * i_rels = (4,[(1,c);(3,d)]) means there are 4 free rel variables
* and only those with index 1 and 3 have bodies which are c and d resp.
* * i_vars is the list of _defined_ named variables.
*
* ref_value_cache searchs in the tab, otherwise uses i_repr to
* compute the result and store it in the table. If the constant can't
* be unfolded, returns None, but does not store this failure. * This
* doesn't take the RESET into account. You mustn't keep such a table
* after a Reset. * This type is not exported. Only its two
* instantiations (cbv or lazy) are.
*)
type table_key =
| ConstKey of constant
| VarKey of identifier
| FarRelKey of int
(* FarRel: index in the rel_context part of _initial_ environment *)
type 'a infos = {
i_flags : reds;
i_repr : 'a infos -> constr -> 'a;
i_env : env;
i_rels : int * (int * constr) list;
i_vars : (identifier * constr) list;
i_tab : (table_key, 'a) Hashtbl.t }
let info_flags info = info.i_flags
let ref_value_cache info ref =
try
Some (Hashtbl.find info.i_tab ref)
with Not_found ->
try
let body =
match ref with
| FarRelKey n ->
let (s,l) = info.i_rels in lift n (List.assoc (s-n) l)
| VarKey id -> List.assoc id info.i_vars
| ConstKey cst -> constant_value info.i_env cst
in
let v = info.i_repr info body in
Hashtbl.add info.i_tab ref v;
Some v
with
| Not_found (* List.assoc *)
| NotEvaluableConst _ (* Const *)
-> None
let defined_vars flags env =
(* if red_local_const (snd flags) then*)
fold_named_context
(fun env (id,b,t) e ->
match b with
| None -> e
| Some body -> (id, body)::e)
env ~init:[]
(* else []*)
let defined_rels flags env =
(* if red_local_const (snd flags) then*)
fold_rel_context
(fun env (id,b,t) (i,subs) ->
match b with
| None -> (i+1, subs)
| Some body -> (i+1, (i,body) :: subs))
env ~init:(0,[])
(* else (0,[])*)
let rec mind_equiv info kn1 kn2 =
kn1 = kn2 ||
match (lookup_mind kn1 info.i_env).mind_equiv with
Some kn1' -> mind_equiv info kn2 kn1'
| None -> match (lookup_mind kn2 info.i_env).mind_equiv with
Some kn2' -> mind_equiv info kn2' kn1
| None -> false
let create mk_cl flgs env =
{ i_flags = flgs;
i_repr = mk_cl;
i_env = env;
i_rels = defined_rels flgs env;
i_vars = defined_vars flgs env;
i_tab = Hashtbl.create 17 }
(**********************************************************************)
(* The type of (machine) stacks (= lambda-bar-calculus' contexts) *)
type 'a stack_member =
| Zapp of 'a list
| Zcase of case_info * 'a * 'a array
| Zfix of 'a * 'a stack
| Zshift of int
| Zupdate of 'a
and 'a stack = 'a stack_member list
let empty_stack = []
let append_stack_list = function
| ([],s) -> s
| (l1, Zapp l :: s) -> Zapp (l1@l) :: s
| (l1, s) -> Zapp l1 :: s
let append_stack v s = append_stack_list (Array.to_list v, s)
(* Collapse the shifts in the stack *)
let zshift n s =
match (n,s) with
(0,_) -> s
| (_,Zshift(k)::s) -> Zshift(n+k)::s
| _ -> Zshift(n)::s
let rec stack_args_size = function
| Zapp l::s -> List.length l + stack_args_size s
| Zshift(_)::s -> stack_args_size s
| Zupdate(_)::s -> stack_args_size s
| _ -> 0
(* When used as an argument stack (only Zapp can appear) *)
let rec decomp_stack = function
| Zapp[v]::s -> Some (v, s)
| Zapp(v::l)::s -> Some (v, (Zapp l :: s))
| Zapp [] :: s -> decomp_stack s
| _ -> None
let rec decomp_stackn = function
| Zapp [] :: s -> decomp_stackn s
| Zapp l :: s -> (Array.of_list l, s)
| _ -> assert false
let array_of_stack s =
let rec stackrec = function
| [] -> []
| Zapp args :: s -> args :: (stackrec s)
| _ -> assert false
in Array.of_list (List.concat (stackrec s))
let rec list_of_stack = function
| [] -> []
| Zapp args :: s -> args @ (list_of_stack s)
| _ -> assert false
let rec app_stack = function
| f, [] -> f
| f, (Zapp [] :: s) -> app_stack (f, s)
| f, (Zapp args :: s) ->
app_stack (applist (f, args), s)
| _ -> assert false
let rec stack_assign s p c = match s with
| Zapp args :: s ->
let q = List.length args in
if p >= q then
Zapp args :: stack_assign s (p-q) c
else
(match list_chop p args with
(bef, _::aft) -> Zapp (bef@c::aft) :: s
| _ -> assert false)
| _ -> s
let rec stack_tail p s =
if p = 0 then s else
match s with
| Zapp args :: s ->
let q = List.length args in
if p >= q then stack_tail (p-q) s
else Zapp (list_skipn p args) :: s
| _ -> failwith "stack_tail"
let rec stack_nth s p = match s with
| Zapp args :: s ->
let q = List.length args in
if p >= q then stack_nth s (p-q)
else List.nth args p
| _ -> raise Not_found
(**********************************************************************)
(* Lazy reduction: the one used in kernel operations *)
(* type of shared terms. fconstr and frterm are mutually recursive.
* Clone of the constr structure, but completely mutable, and
* annotated with reduction state (reducible or not).
* - FLIFT is a delayed shift; allows sharing between 2 lifted copies
* of a given term.
* - FCLOS is a delayed substitution applied to a constr
* - FLOCKED is used to erase the content of a reference that must
* be updated. This is to allow the garbage collector to work
* before the term is computed.
*)
(* Norm means the term is fully normalized and cannot create a redex
when substituted
Cstr means the term is in head normal form and that it can
create a redex when substituted (i.e. constructor, fix, lambda)
Whnf means we reached the head normal form and that it cannot
create a redex when substituted
Red is used for terms that might be reduced
*)
type red_state = Norm | Cstr | Whnf | Red
let neutr = function
| (Whnf|Norm) -> Whnf
| (Red|Cstr) -> Red
type fconstr = {
mutable norm: red_state;
mutable term: fterm }
and fterm =
| FRel of int
| FAtom of constr (* Metas and Sorts *)
| FCast of fconstr * fconstr
| FFlex of table_key
| FInd of inductive
| FConstruct of constructor
| FApp of fconstr * fconstr array
| FFix of fixpoint * fconstr subs
| FCoFix of cofixpoint * fconstr subs
| FCases of case_info * fconstr * fconstr * fconstr array
| FLambda of int * (name * constr) list * constr * fconstr subs
| FProd of name * fconstr * fconstr
| FLetIn of name * fconstr * fconstr * constr * fconstr subs
| FEvar of existential_key * fconstr array
| FLIFT of int * fconstr
| FCLOS of constr * fconstr subs
| FLOCKED
let fterm_of v = v.term
let set_norm v = v.norm <- Norm
let is_val v = v.norm = Norm
(* Could issue a warning if no is still Red, pointing out that we loose
sharing. *)
let update v1 (no,t) =
if !share then
(v1.norm <- no;
v1.term <- t;
v1)
else {norm=no;term=t}
(* Lifting. Preserves sharing (useful only for cell with norm=Red).
lft_fconstr always create a new cell, while lift_fconstr avoids it
when the lift is 0. *)
let rec lft_fconstr n ft =
match ft.term with
| (FInd _|FConstruct _|FFlex(ConstKey _|VarKey _)|FAtom _) -> ft
| FRel i -> {norm=Norm;term=FRel(i+n)}
| FLambda(k,tys,f,e) -> {norm=Cstr; term=FLambda(k,tys,f,subs_shft(n,e))}
| FFix(fx,e) -> {norm=Cstr; term=FFix(fx,subs_shft(n,e))}
| FCoFix(cfx,e) -> {norm=Cstr; term=FCoFix(cfx,subs_shft(n,e))}
| FLIFT(k,m) -> lft_fconstr (n+k) m
| FLOCKED -> anomaly "lft_constr found locked term"
| _ -> {norm=ft.norm; term=FLIFT(n,ft)}
let lift_fconstr k f =
if k=0 then f else lft_fconstr k f
let lift_fconstr_vect k v =
if k=0 then v else Array.map (fun f -> lft_fconstr k f) v
let lift_fconstr_list k l =
if k=0 then l else List.map (fun f -> lft_fconstr k f) l
let clos_rel e i =
match expand_rel i e with
| Inl(n,mt) -> lift_fconstr n mt
| Inr(k,None) -> {norm=Norm; term= FRel k}
| Inr(k,Some p) ->
lift_fconstr (k-p) {norm=Norm;term=FFlex(FarRelKey p)}
(* since the head may be reducible, we might introduce lifts of 0 *)
let compact_stack head stk =
let rec strip_rec depth = function
| Zshift(k)::s -> strip_rec (depth+k) s
| Zupdate(m)::s ->
(* Be sure to create a new cell otherwise sharing would be
lost by the update operation *)
let h' = lft_fconstr depth head in
let _ = update m (h'.norm,h'.term) in
strip_rec depth s
| stk -> zshift depth stk in
strip_rec 0 stk
(* Put an update mark in the stack, only if needed *)
let zupdate m s =
if !share & m.norm = Red
then
let s' = compact_stack m s in
let _ = m.term <- FLOCKED in
Zupdate(m)::s'
else s
(* Closure optimization: *)
let rec compact_constr (lg, subs as s) c k =
match kind_of_term c with
Rel i ->
if i < k then c,s else
(try mkRel (k + lg - list_index (i-k+1) subs), (lg,subs)
with Not_found -> mkRel (k+lg), (lg+1, (i-k+1)::subs))
| (Sort _|Var _|Meta _|Ind _|Const _|Construct _) -> c,s
| Evar(ev,v) ->
let (v',s) = compact_vect s v k in
if v==v' then c,s else mkEvar(ev,v'),s
| Cast(a,b) ->
let (a',s) = compact_constr s a k in
let (b',s) = compact_constr s b k in
if a==a' && b==b' then c,s else mkCast(a',b'), s
| App(f,v) ->
let (f',s) = compact_constr s f k in
let (v',s) = compact_vect s v k in
if f==f' && v==v' then c,s else mkApp(f',v'), s
| Lambda(n,a,b) ->
let (a',s) = compact_constr s a k in
let (b',s) = compact_constr s b (k+1) in
if a==a' && b==b' then c,s else mkLambda(n,a',b'), s
| Prod(n,a,b) ->
let (a',s) = compact_constr s a k in
let (b',s) = compact_constr s b (k+1) in
if a==a' && b==b' then c,s else mkProd(n,a',b'), s
| LetIn(n,a,ty,b) ->
let (a',s) = compact_constr s a k in
let (ty',s) = compact_constr s ty k in
let (b',s) = compact_constr s b (k+1) in
if a==a' && ty==ty' && b==b' then c,s else mkLetIn(n,a',ty',b'), s
| Fix(fi,(na,ty,bd)) ->
let (ty',s) = compact_vect s ty k in
let (bd',s) = compact_vect s bd (k+Array.length ty) in
if ty==ty' && bd==bd' then c,s else mkFix(fi,(na,ty',bd')), s
| CoFix(i,(na,ty,bd)) ->
let (ty',s) = compact_vect s ty k in
let (bd',s) = compact_vect s bd (k+Array.length ty) in
if ty==ty' && bd==bd' then c,s else mkCoFix(i,(na,ty',bd')), s
| Case(ci,p,a,br) ->
let (p',s) = compact_constr s p k in
let (a',s) = compact_constr s a k in
let (br',s) = compact_vect s br k in
if p==p' && a==a' && br==br' then c,s else mkCase(ci,p',a',br'),s
and compact_vect s v k = compact_v [] s v k (Array.length v - 1)
and compact_v acc s v k i =
if i < 0 then
let v' = Array.of_list acc in
if array_for_all2 (==) v v' then v,s else v',s
else
let (a',s') = compact_constr s v.(i) k in
compact_v (a'::acc) s' v k (i-1)
(* Computes the minimal environment of a closure.
Idea: if the subs is not identity, the term will have to be
reallocated entirely (to propagate the substitution). So,
computing the set of free variables does not change the
complexity. *)
let optimise_closure env c =
if is_subs_id env then (env,c) else
let (c',(_,s)) = compact_constr (0,[]) c 1 in
let env' = List.fold_left
(fun subs i -> subs_cons (clos_rel env i, subs)) (ESID 0) s in
(env',c')
let mk_lambda env t =
(* let (env,t) = optimise_closure env t in*)
let (rvars,t') = decompose_lam t in
FLambda(List.length rvars, List.rev rvars, t', env)
let destFLambda clos_fun t =
match t.term with
FLambda(_,[(na,ty)],b,e) -> (na,clos_fun e ty,clos_fun (subs_lift e) b)
| FLambda(n,(na,ty)::tys,b,e) ->
(na,clos_fun e ty,{norm=Cstr;term=FLambda(n-1,tys,b,subs_lift e)})
| _ -> assert false
(* Optimization: do not enclose variables in a closure.
Makes variable access much faster *)
let mk_clos e t =
match kind_of_term t with
| Rel i -> clos_rel e i
| Var x -> { norm = Red; term = FFlex (VarKey x) }
| Const c -> { norm = Red; term = FFlex (ConstKey c) }
| Meta _ | Sort _ -> { norm = Norm; term = FAtom t }
| Ind kn -> { norm = Norm; term = FInd kn }
| Construct kn -> { norm = Cstr; term = FConstruct kn }
| (CoFix _|Lambda _|Fix _|Prod _|Evar _|App _|Case _|Cast _|LetIn _) ->
{norm = Red; term = FCLOS(t,e)}
let mk_clos_vect env v = Array.map (mk_clos env) v
(* Translate the head constructor of t from constr to fconstr. This
function is parameterized by the function to apply on the direct
subterms.
Could be used insted of mk_clos. *)
let mk_clos_deep clos_fun env t =
match kind_of_term t with
| (Rel _|Ind _|Const _|Construct _|Var _|Meta _ | Sort _) ->
mk_clos env t
| Cast (a,b) ->
{ norm = Red;
term = FCast (clos_fun env a, clos_fun env b)}
| App (f,v) ->
{ norm = Red;
term = FApp (clos_fun env f, Array.map (clos_fun env) v) }
| Case (ci,p,c,v) ->
{ norm = Red;
term = FCases (ci, clos_fun env p, clos_fun env c,
Array.map (clos_fun env) v) }
| Fix fx ->
{ norm = Cstr; term = FFix (fx, env) }
| CoFix cfx ->
{ norm = Cstr; term = FCoFix(cfx,env) }
| Lambda _ ->
{ norm = Cstr; term = mk_lambda env t }
| Prod (n,t,c) ->
{ norm = Whnf;
term = FProd (n, clos_fun env t, clos_fun (subs_lift env) c) }
| LetIn (n,b,t,c) ->
{ norm = Red;
term = FLetIn (n, clos_fun env b, clos_fun env t, c, env) }
| Evar(ev,args) ->
{ norm = Whnf; term = FEvar(ev,Array.map (clos_fun env) args) }
(* A better mk_clos? *)
let mk_clos2 = mk_clos_deep mk_clos
(* The inverse of mk_clos_deep: move back to constr *)
let rec to_constr constr_fun lfts v =
match v.term with
| FRel i -> mkRel (reloc_rel i lfts)
| FFlex (FarRelKey p) -> mkRel (reloc_rel p lfts)
| FFlex (VarKey x) -> mkVar x
| FAtom c ->
(match kind_of_term c with
| Sort s -> mkSort s
| Meta m -> mkMeta m
| _ -> assert false)
| FCast (a,b) ->
mkCast (constr_fun lfts a, constr_fun lfts b)
| FFlex (ConstKey op) -> mkConst op
| FInd op -> mkInd op
| FConstruct op -> mkConstruct op
| FCases (ci,p,c,ve) ->
mkCase (ci, constr_fun lfts p,
constr_fun lfts c,
Array.map (constr_fun lfts) ve)
| FFix ((op,(lna,tys,bds)),e) ->
let n = Array.length bds in
let ftys = Array.map (mk_clos e) tys in
let fbds = Array.map (mk_clos (subs_liftn n e)) bds in
let lfts' = el_liftn n lfts in
mkFix (op, (lna, Array.map (constr_fun lfts) ftys,
Array.map (constr_fun lfts') fbds))
| FCoFix ((op,(lna,tys,bds)),e) ->
let n = Array.length bds in
let ftys = Array.map (mk_clos e) tys in
let fbds = Array.map (mk_clos (subs_liftn n e)) bds in
let lfts' = el_liftn (Array.length bds) lfts in
mkCoFix (op, (lna, Array.map (constr_fun lfts) ftys,
Array.map (constr_fun lfts') fbds))
| FApp (f,ve) ->
mkApp (constr_fun lfts f,
Array.map (constr_fun lfts) ve)
| FLambda _ ->
let (na,ty,bd) = destFLambda mk_clos2 v in
mkLambda (na, constr_fun lfts ty,
constr_fun (el_lift lfts) bd)
| FProd (n,t,c) ->
mkProd (n, constr_fun lfts t,
constr_fun (el_lift lfts) c)
| FLetIn (n,b,t,f,e) ->
let fc = mk_clos2 (subs_lift e) f in
mkLetIn (n, constr_fun lfts b,
constr_fun lfts t,
constr_fun (el_lift lfts) fc)
| FEvar (ev,args) -> mkEvar(ev,Array.map (constr_fun lfts) args)
| FLIFT (k,a) -> to_constr constr_fun (el_shft k lfts) a
| FCLOS (t,env) ->
let fr = mk_clos2 env t in
let unfv = update v (fr.norm,fr.term) in
to_constr constr_fun lfts unfv
| FLOCKED -> (*anomaly "Closure.to_constr: found locked term"*)
mkVar(id_of_string"_LOCK_")
(* This function defines the correspondance between constr and
fconstr. When we find a closure whose substitution is the identity,
then we directly return the constr to avoid possibly huge
reallocation. *)
let term_of_fconstr =
let rec term_of_fconstr_lift lfts v =
match v.term with
| FCLOS(t,env) when is_subs_id env & is_lift_id lfts -> t
| FLambda(_,tys,f,e) when is_subs_id e & is_lift_id lfts ->
compose_lam (List.rev tys) f
| FFix(fx,e) when is_subs_id e & is_lift_id lfts -> mkFix fx
| FCoFix(cfx,e) when is_subs_id e & is_lift_id lfts -> mkCoFix cfx
| _ -> to_constr term_of_fconstr_lift lfts v in
term_of_fconstr_lift ELID
(* fstrong applies unfreeze_fun recursively on the (freeze) term and
* yields a term. Assumes that the unfreeze_fun never returns a
* FCLOS term.
let rec fstrong unfreeze_fun lfts v =
to_constr (fstrong unfreeze_fun) lfts (unfreeze_fun v)
*)
let rec zip zfun m stk =
match stk with
| [] -> m
| Zapp args :: s ->
let args = Array.of_list args in
zip zfun {norm=neutr m.norm; term=FApp(m, Array.map zfun args)} s
| Zcase(ci,p,br)::s ->
let t = FCases(ci, zfun p, m, Array.map zfun br) in
zip zfun {norm=neutr m.norm; term=t} s
| Zfix(fx,par)::s ->
zip zfun fx (par @ append_stack_list ([m], s))
| Zshift(n)::s ->
zip zfun (lift_fconstr n m) s
| Zupdate(rf)::s ->
zip zfun (update rf (m.norm,m.term)) s
let fapp_stack (m,stk) = zip (fun x -> x) m stk
(*********************************************************************)
(* The assertions in the functions below are granted because they are
called only when m is a constructor, a cofix
(strip_update_shift_app), a fix (get_nth_arg) or an abstraction
(strip_update_shift, through get_arg). *)
(* optimised for the case where there are no shifts... *)
let strip_update_shift head stk =
assert (head.norm <> Red);
let rec strip_rec h depth = function
| Zshift(k)::s -> strip_rec (lift_fconstr k h) (depth+k) s
| Zupdate(m)::s ->
strip_rec (update m (h.norm,h.term)) depth s
| stk -> (depth,stk) in
strip_rec head 0 stk
(* optimised for the case where there are no shifts... *)
let strip_update_shift_app head stk =
assert (head.norm <> Red);
let rec strip_rec rstk h depth = function
| Zshift(k) as e :: s ->
strip_rec (e::rstk) (lift_fconstr k h) (depth+k) s
| (Zapp args :: s) as stk ->
strip_rec (Zapp args :: rstk)
{norm=h.norm;term=FApp(h,Array.of_list args)} depth s
| Zupdate(m)::s ->
strip_rec rstk (update m (h.norm,h.term)) depth s
| stk -> (depth,List.rev rstk, stk) in
strip_rec [] head 0 stk
let rec get_nth_arg head n stk =
assert (head.norm <> Red);
let rec strip_rec rstk h depth n = function
| Zshift(k) as e :: s ->
strip_rec (e::rstk) (lift_fconstr k h) (depth+k) n s
| Zapp args::s' ->
let q = List.length args in
if n >= q
then
strip_rec (Zapp args::rstk)
{norm=h.norm;term=FApp(h,Array.of_list args)} depth (n-q) s'
else
(match list_chop n args with
(bef, v::aft) ->
let stk' =
List.rev (if n = 0 then rstk else (Zapp bef :: rstk)) in
(Some (stk', v), append_stack_list (aft,s'))
| _ -> assert false)
| Zupdate(m)::s ->
strip_rec rstk (update m (h.norm,h.term)) depth n s
| s -> (None, List.rev rstk @ s) in
strip_rec [] head 0 n stk
(* Beta reduction: look for an applied argument in the stack.
Since the encountered update marks are removed, h must be a whnf *)
let get_arg h stk =
let (depth,stk') = strip_update_shift h stk in
match decomp_stack stk' with
Some (v, s') -> (Some (depth,v), s')
| None -> (None, zshift depth stk')
let rec get_args n tys f e stk =
match stk with
Zupdate r :: s ->
let hd = update r (Cstr,FLambda(n,tys,f,e)) in
get_args n tys f e s
| Zshift k :: s ->
get_args n tys f (subs_shft (k,e)) s
| Zapp l :: s ->
let na = List.length l in
if n == na then
let e' = List.fold_left (fun e arg -> subs_cons(arg,e)) e l in
(Inl e',s)
else if n < na then (* more arguments *)
let (args,eargs) = list_chop n l in
let e' = List.fold_left (fun e arg -> subs_cons(arg,e)) e args in
(Inl e', Zapp eargs :: s)
else (* more lambdas *)
let (_,etys) = list_chop na tys in
let e' = List.fold_left (fun e arg -> subs_cons(arg,e)) e l in
get_args (n-na) etys f e' s
| _ -> (Inr {norm=Cstr;term=FLambda(n,tys,f,e)}, stk)
(* Iota reduction: extract the arguments to be passed to the Case
branches *)
let rec reloc_rargs_rec depth stk =
match stk with
Zapp args :: s ->
Zapp (lift_fconstr_list depth args) :: reloc_rargs_rec depth s
| Zshift(k)::s -> if k=depth then s else reloc_rargs_rec (depth-k) s
| _ -> stk
let reloc_rargs depth stk =
if depth = 0 then stk else reloc_rargs_rec depth stk
let rec drop_parameters depth n stk =
match stk with
Zapp args::s ->
let q = List.length args in
if n > q then drop_parameters depth (n-q) s
else if n = q then reloc_rargs depth s
else
let aft = list_skipn n args in
reloc_rargs depth (append_stack_list (aft,s))
| Zshift(k)::s -> drop_parameters (depth-k) n s
| [] -> assert (n=0); []
| _ -> assert false (* we know that n < stack_args_size(stk) *)
(* Iota reduction: expansion of a fixpoint.
* Given a fixpoint and a substitution, returns the corresponding
* fixpoint body, and the substitution in which it should be
* evaluated: its first variables are the fixpoint bodies
*
* FCLOS(fix Fi {F0 := T0 .. Fn-1 := Tn-1}, S)
* -> (S. FCLOS(F0,S) . ... . FCLOS(Fn-1,S), Ti)
*)
(* does not deal with FLIFT *)
let contract_fix_vect fix =
let (thisbody, make_body, env, nfix) =
match fix with
| FFix (((reci,i),(_,_,bds as rdcl)),env) ->
(bds.(i),
(fun j -> { norm = Cstr; term = FFix (((reci,j),rdcl),env) }),
env, Array.length bds)
| FCoFix ((i,(_,_,bds as rdcl)),env) ->
(bds.(i),
(fun j -> { norm = Cstr; term = FCoFix ((j,rdcl),env) }),
env, Array.length bds)
| _ -> anomaly "Closure.contract_fix_vect: not a (co)fixpoint"
in
let rec subst_bodies_from_i i env =
if i = nfix then
(env, thisbody)
else
subst_bodies_from_i (i+1) (subs_cons (make_body i, env))
in
subst_bodies_from_i 0 env
(*********************************************************************)
(* A machine that inspects the head of a term until it finds an
atom or a subterm that may produce a redex (abstraction,
constructor, cofix, letin, constant), or a neutral term (product,
inductive) *)
let rec knh m stk =
match m.term with
| FLIFT(k,a) -> knh a (zshift k stk)
| FCLOS(t,e) -> knht e t (zupdate m stk)
| FLOCKED -> anomaly "Closure.knh: found lock"
| FApp(a,b) -> knh a (append_stack b (zupdate m stk))
| FCases(ci,p,t,br) -> knh t (Zcase(ci,p,br)::zupdate m stk)
| FFix(((ri,n),(_,_,_)),_) ->
(match get_nth_arg m ri.(n) stk with
(Some(pars,arg),stk') -> knh arg (Zfix(m,pars)::stk')
| (None, stk') -> (m,stk'))
| FCast(t,_) -> knh t stk
(* cases where knh stops *)
| (FFlex _|FLetIn _|FConstruct _|FEvar _|
FCoFix _|FLambda _|FRel _|FAtom _|FInd _|FProd _) ->
(m, stk)
(* The same for pure terms *)
and knht e t stk =
match kind_of_term t with
| App(a,b) ->
knht e a (append_stack (mk_clos_vect e b) stk)
| Case(ci,p,t,br) ->
knht e t (Zcase(ci, mk_clos e p, mk_clos_vect e br)::stk)
| Fix _ -> knh (mk_clos2 e t) stk
| Cast(a,b) -> knht e a stk
| Rel n -> knh (clos_rel e n) stk
| (Lambda _|Prod _|Construct _|CoFix _|Ind _|
LetIn _|Const _|Var _|Evar _|Meta _|Sort _) ->
(mk_clos2 e t, stk)
(************************************************************************)
(* Computes a normal form from the result of knh. *)
let rec knr info m stk =
match m.term with
| FLambda(n,tys,f,e) when red_set info.i_flags fBETA ->
(match get_args n tys f e stk with
Inl e', s -> knit info e' f s
| Inr lam, s -> (lam,s))
| FFlex(ConstKey kn) when red_set info.i_flags (fCONST kn) ->
(match ref_value_cache info (ConstKey kn) with
Some v -> kni info v stk
| None -> (set_norm m; (m,stk)))
| FFlex(VarKey id) when red_set info.i_flags (fVAR id) ->
(match ref_value_cache info (VarKey id) with
Some v -> kni info v stk
| None -> (set_norm m; (m,stk)))
| FFlex(FarRelKey k) when red_set info.i_flags fDELTA ->
(match ref_value_cache info (FarRelKey k) with
Some v -> kni info v stk
| None -> (set_norm m; (m,stk)))
| FConstruct(ind,c) when red_set info.i_flags fIOTA ->
(match strip_update_shift_app m stk with
(depth, args, Zcase(ci,_,br)::s) ->
assert (ci.ci_npar>=0);
let rargs = drop_parameters depth ci.ci_npar args in
kni info br.(c-1) (rargs@s)
| (_, cargs, Zfix(fx,par)::s) ->
let rarg = fapp_stack(m,cargs) in
let stk' = par @ append_stack [|rarg|] s in
let (fxe,fxbd) = contract_fix_vect fx.term in
knit info fxe fxbd stk'
| (_,args,s) -> (m,args@s))
| FCoFix _ when red_set info.i_flags fIOTA ->
(match strip_update_shift_app m stk with
(_, args, ((Zcase _::_) as stk')) ->
let (fxe,fxbd) = contract_fix_vect m.term in
knit info fxe fxbd (args@stk')
| (_,args,s) -> (m,args@s))
| FLetIn (_,v,_,bd,e) when red_set info.i_flags fZETA ->
knit info (subs_cons(v,e)) bd stk
| _ -> (m,stk)
(* Computes the weak head normal form of a term *)
and kni info m stk =
let (hm,s) = knh m stk in
knr info hm s
and knit info e t stk =
let (ht,s) = knht e t stk in
knr info ht s
let kh info v stk = fapp_stack(kni info v stk)
(************************************************************************)
let rec zip_term zfun m stk =
match stk with
| [] -> m
| Zapp args :: s ->
let args = Array.of_list args in
zip_term zfun (mkApp(m, Array.map zfun args)) s
| Zcase(ci,p,br)::s ->
let t = mkCase(ci, zfun p, m, Array.map zfun br) in
zip_term zfun t s
| Zfix(fx,par)::s ->
let h = mkApp(zip_term zfun (zfun fx) par,[|m|]) in
zip_term zfun h s
| Zshift(n)::s ->
zip_term zfun (lift n m) s
| Zupdate(rf)::s ->
zip_term zfun m s
(* Computes the strong normal form of a term.
1- Calls kni
2- tries to rebuild the term. If a closure still has to be computed,
calls itself recursively. *)
let rec kl info m =
if is_val m then (incr prune; term_of_fconstr m)
else
let (nm,s) = kni info m [] in
let _ = fapp_stack(nm,s) in (* to unlock Zupdates! *)
zip_term (kl info) (norm_head info nm) s
(* no redex: go up for atoms and already normalized terms, go down
otherwise. *)
and norm_head info m =
if is_val m then (incr prune; term_of_fconstr m) else
match m.term with
| FLambda(n,tys,f,e) ->
let (e',rvtys) =
List.fold_left (fun (e,ctxt) (na,ty) ->
(subs_lift e, (na,kl info (mk_clos e ty))::ctxt))
(e,[]) tys in
let bd = kl info (mk_clos e' f) in
List.fold_left (fun b (na,ty) -> mkLambda(na,ty,b)) bd rvtys
| FLetIn(na,a,b,f,e) ->
let c = mk_clos (subs_lift e) f in
mkLetIn(na, kl info a, kl info b, kl info c)
| FProd(na,dom,rng) ->
mkProd(na, kl info dom, kl info rng)
| FCoFix((n,(na,tys,bds)),e) ->
let ftys = Array.map (mk_clos e) tys in
let fbds =
Array.map (mk_clos (subs_liftn (Array.length na) e)) bds in
mkCoFix(n,(na, Array.map (kl info) ftys, Array.map (kl info) fbds))
| FEvar(i,args) -> mkEvar(i, Array.map (kl info) args)
| t -> term_of_fconstr m
(* Initialization and then normalization *)
(* weak reduction *)
let whd_val info v =
with_stats (lazy (term_of_fconstr (kh info v [])))
(* strong reduction *)
let norm_val info v =
with_stats (lazy (kl info v))
let inject = mk_clos (ESID 0)
let whd_stack infos m stk =
let k = kni infos m stk in
let _ = fapp_stack k in (* to unlock Zupdates! *)
k
(* cache of constants: the body is computed only when needed. *)
type clos_infos = fconstr infos
let create_clos_infos flgs env =
create (fun _ -> inject) flgs env
let unfold_reference = ref_value_cache
|