1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: closure.mli,v 1.42.2.1 2004/07/16 19:30:24 herbelin Exp $ i*)
(*i*)
open Pp
open Names
open Term
open Environ
open Esubst
(*i*)
(* Flags for profiling reductions. *)
val stats : bool ref
val share : bool ref
val with_stats: 'a Lazy.t -> 'a
(*s Delta implies all consts (both global (= by
[kernel_name]) and local (= by [Rel] or [Var])), all evars, and letin's.
Rem: reduction of a Rel/Var bound to a term is Delta, but reduction of
a LetIn expression is Letin reduction *)
type transparent_state = Idpred.t * KNpred.t
val all_opaque : transparent_state
val all_transparent : transparent_state
(* Sets of reduction kinds. *)
module type RedFlagsSig = sig
type reds
type red_kind
(* The different kind of reduction *)
(* Const/Var means the reference as argument should be unfolded *)
(* Constbut/Varbut means all references except the ones as argument
of Constbut/Varbut should be unfolded (there may be several such
Constbut/Varbut *)
val fBETA : red_kind
val fDELTA : red_kind
val fIOTA : red_kind
val fZETA : red_kind
val fCONST : constant -> red_kind
val fVAR : identifier -> red_kind
(* No reduction at all *)
val no_red : reds
(* Adds a reduction kind to a set *)
val red_add : reds -> red_kind -> reds
(* Removes a reduction kind to a set *)
val red_sub : reds -> red_kind -> reds
(* Adds a reduction kind to a set *)
val red_add_transparent : reds -> transparent_state -> reds
(* Build a reduction set from scratch = iter [red_add] on [no_red] *)
val mkflags : red_kind list -> reds
(* Tests if a reduction kind is set *)
val red_set : reds -> red_kind -> bool
(* Gives the constant list *)
val red_get_const : reds -> bool * evaluable_global_reference list
end
module RedFlags : RedFlagsSig
open RedFlags
val beta : reds
val betaiota : reds
val betadeltaiota : reds
val betaiotazeta : reds
val betadeltaiotanolet : reds
val unfold_red : evaluable_global_reference -> reds
(************************************************************************)
type table_key =
| ConstKey of constant
| VarKey of identifier
| FarRelKey of int
(* FarRel: index in the [rel_context] part of {\em initial} environment *)
type 'a infos
val ref_value_cache: 'a infos -> table_key -> 'a option
val info_flags: 'a infos -> reds
val create: ('a infos -> constr -> 'a) -> reds -> env -> 'a infos
(************************************************************************)
(*s A [stack] is a context of arguments, arguments are pushed by
[append_stack] one array at a time but popped with [decomp_stack]
one by one *)
type 'a stack_member =
| Zapp of 'a list
| Zcase of case_info * 'a * 'a array
| Zfix of 'a * 'a stack
| Zshift of int
| Zupdate of 'a
and 'a stack = 'a stack_member list
val empty_stack : 'a stack
val append_stack : 'a array -> 'a stack -> 'a stack
val decomp_stack : 'a stack -> ('a * 'a stack) option
val list_of_stack : 'a stack -> 'a list
val array_of_stack : 'a stack -> 'a array
val stack_assign : 'a stack -> int -> 'a -> 'a stack
val stack_args_size : 'a stack -> int
val app_stack : constr * constr stack -> constr
val stack_tail : int -> 'a stack -> 'a stack
val stack_nth : 'a stack -> int -> 'a
(************************************************************************)
(*s Lazy reduction. *)
(* [fconstr] is the type of frozen constr *)
type fconstr
(* [fconstr] can be accessed by using the function [fterm_of] and by
matching on type [fterm] *)
type fterm =
| FRel of int
| FAtom of constr (* Metas and Sorts *)
| FCast of fconstr * fconstr
| FFlex of table_key
| FInd of inductive
| FConstruct of constructor
| FApp of fconstr * fconstr array
| FFix of fixpoint * fconstr subs
| FCoFix of cofixpoint * fconstr subs
| FCases of case_info * fconstr * fconstr * fconstr array
| FLambda of int * (name * constr) list * constr * fconstr subs
| FProd of name * fconstr * fconstr
| FLetIn of name * fconstr * fconstr * constr * fconstr subs
| FEvar of existential_key * fconstr array
| FLIFT of int * fconstr
| FCLOS of constr * fconstr subs
| FLOCKED
(* To lazy reduce a constr, create a [clos_infos] with
[create_clos_infos], inject the term to reduce with [inject]; then use
a reduction function *)
val inject : constr -> fconstr
val fterm_of : fconstr -> fterm
val term_of_fconstr : fconstr -> constr
val destFLambda :
(fconstr subs -> constr -> fconstr) -> fconstr -> name * fconstr * fconstr
(* Global and local constant cache *)
type clos_infos
val create_clos_infos : reds -> env -> clos_infos
(* Reduction function *)
(* [norm_val] is for strong normalization *)
val norm_val : clos_infos -> fconstr -> constr
(* [whd_val] is for weak head normalization *)
val whd_val : clos_infos -> fconstr -> constr
(* [whd_stack] performs weak head normalization in a given stack. It
stops whenever a reduction is blocked. *)
val whd_stack :
clos_infos -> fconstr -> fconstr stack -> fconstr * fconstr stack
(* Conversion auxiliary functions to do step by step normalisation *)
(* [unfold_reference] unfolds references in a [fconstr] *)
val unfold_reference : clos_infos -> table_key -> fconstr option
(* [mind_equiv] checks whether two mutual inductives are intentionally equal *)
val mind_equiv : clos_infos -> mutual_inductive -> mutual_inductive -> bool
(************************************************************************)
(*i This is for lazy debug *)
val lift_fconstr : int -> fconstr -> fconstr
val lift_fconstr_vect : int -> fconstr array -> fconstr array
val mk_clos : fconstr subs -> constr -> fconstr
val mk_clos_vect : fconstr subs -> constr array -> fconstr array
val mk_clos_deep :
(fconstr subs -> constr -> fconstr) ->
fconstr subs -> constr -> fconstr
val kni: clos_infos -> fconstr -> fconstr stack -> fconstr * fconstr stack
val knr: clos_infos -> fconstr -> fconstr stack -> fconstr * fconstr stack
val kl : clos_infos -> fconstr -> constr
val to_constr : (lift -> fconstr -> constr) -> lift -> fconstr -> constr
val optimise_closure : fconstr subs -> constr -> fconstr subs * constr
(* End of cbn debug section i*)
|