1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id: declare.ml,v 1.128.2.1 2004/07/16 19:30:34 herbelin Exp $ *)
open Pp
open Util
open Names
open Libnames
open Nameops
open Term
open Sign
open Declarations
open Entries
open Inductive
open Indtypes
open Reduction
open Type_errors
open Typeops
open Libobject
open Lib
open Impargs
open Nametab
open Safe_typing
open Decl_kinds
(**********************************************)
(* For [DischargeAt (dir,n)], [dir] is the minimum prefix that a
construction keeps in its name (if persistent), or the section name
beyond which it is discharged (if volatile); the integer [n]
(useful only for persistent constructions), is the length of the section
part in [dir] *)
open Nametab
let strength_min (stre1,stre2) =
if stre1 = Local or stre2 = Local then Local else Global
let string_of_strength = function
| Local -> "(local)"
| Global -> "(global)"
(* XML output hooks *)
let xml_declare_variable = ref (fun sp -> ())
let xml_declare_constant = ref (fun sp -> ())
let xml_declare_inductive = ref (fun sp -> ())
let if_xml f x = if !Options.xml_export then f x else ()
let set_xml_declare_variable f = xml_declare_variable := if_xml f
let set_xml_declare_constant f = xml_declare_constant := if_xml f
let set_xml_declare_inductive f = xml_declare_inductive := if_xml f
(* Section variables. *)
type section_variable_entry =
| SectionLocalDef of constr * types option * bool (* opacity *)
| SectionLocalAssum of types
type variable_declaration = dir_path * section_variable_entry * local_kind
type checked_section_variable =
| CheckedSectionLocalDef of constr * types * Univ.constraints * bool
| CheckedSectionLocalAssum of types * Univ.constraints
type checked_variable_declaration =
dir_path * checked_section_variable * local_kind
let vartab = ref (Idmap.empty : checked_variable_declaration Idmap.t)
let _ = Summary.declare_summary "VARIABLE"
{ Summary.freeze_function = (fun () -> !vartab);
Summary.unfreeze_function = (fun ft -> vartab := ft);
Summary.init_function = (fun () -> vartab := Idmap.empty);
Summary.survive_module = false;
Summary.survive_section = false }
let cache_variable ((sp,_),(id,(p,d,mk))) =
(* Constr raisonne sur les noms courts *)
if Idmap.mem id !vartab then
errorlabstrm "cache_variable" (pr_id id ++ str " already exists");
let vd = match d with (* Fails if not well-typed *)
| SectionLocalAssum ty ->
let cst = Global.push_named_assum (id,ty) in
let (_,bd,ty) = Global.lookup_named id in
CheckedSectionLocalAssum (ty,cst)
| SectionLocalDef (c,t,opaq) ->
let cst = Global.push_named_def (id,c,t) in
let (_,bd,ty) = Global.lookup_named id in
CheckedSectionLocalDef (out_some bd,ty,cst,opaq) in
Nametab.push (Nametab.Until 1) (restrict_path 0 sp) (VarRef id);
vartab := Idmap.add id (p,vd,mk) !vartab
let (in_variable, out_variable) =
declare_object { (default_object "VARIABLE") with
cache_function = cache_variable;
classify_function = (fun _ -> Dispose) }
let declare_variable_common id obj =
let oname = add_leaf id (in_variable (id,obj)) in
declare_var_implicits id;
Symbols.declare_ref_arguments_scope (VarRef id);
oname
(* for initial declaration *)
let declare_variable id obj =
let (sp,kn as oname) = declare_variable_common id obj in
!xml_declare_variable oname;
Dischargedhypsmap.set_discharged_hyps sp [];
oname
(* when coming from discharge: no xml output *)
let redeclare_variable id discharged_hyps obj =
let oname = declare_variable_common id obj in
Dischargedhypsmap.set_discharged_hyps (fst oname) discharged_hyps
(* Globals: constants and parameters *)
type constant_declaration = constant_entry * global_kind
let csttab = ref (Spmap.empty : global_kind Spmap.t)
let _ = Summary.declare_summary "CONSTANT"
{ Summary.freeze_function = (fun () -> !csttab);
Summary.unfreeze_function = (fun ft -> csttab := ft);
Summary.init_function = (fun () -> csttab := Spmap.empty);
Summary.survive_module = false;
Summary.survive_section = false }
let cache_constant ((sp,kn),(cdt,kind)) =
(if Idmap.mem (basename sp) !vartab then
errorlabstrm "cache_constant"
(pr_id (basename sp) ++ str " already exists"));
(if Nametab.exists_cci sp then
let (_,id) = repr_path sp in
errorlabstrm "cache_constant" (pr_id id ++ str " already exists"));
let _,dir,_ = repr_kn kn in
let kn' = Global.add_constant dir (basename sp) cdt in
if kn' <> kn then
anomaly "Kernel and Library names do not match";
Nametab.push (Nametab.Until 1) sp (ConstRef kn);
csttab := Spmap.add sp kind !csttab
(* At load-time, the segment starting from the module name to the discharge *)
(* section (if Remark or Fact) is needed to access a construction *)
let load_constant i ((sp,kn),(_,kind)) =
(if Nametab.exists_cci sp then
let (_,id) = repr_path sp in
errorlabstrm "cache_constant" (pr_id id ++ str " already exists"));
csttab := Spmap.add sp kind !csttab;
Nametab.push (Nametab.Until i) sp (ConstRef kn)
(* Opening means making the name without its module qualification available *)
let open_constant i ((sp,kn),_) =
Nametab.push (Nametab.Exactly i) sp (ConstRef kn)
(* Hack to reduce the size of .vo: we keep only what load/open needs *)
let dummy_constant_entry = ConstantEntry (ParameterEntry mkProp)
let dummy_constant (ce,mk) = dummy_constant_entry,mk
let export_constant cst = Some (dummy_constant cst)
let classify_constant (_,cst) = Substitute (dummy_constant cst)
let (in_constant, out_constant) =
declare_object { (default_object "CONSTANT") with
cache_function = cache_constant;
load_function = load_constant;
open_function = open_constant;
classify_function = classify_constant;
subst_function = ident_subst_function;
export_function = export_constant }
let hcons_constant_declaration = function
| DefinitionEntry ce ->
let (hcons1_constr,_) = hcons_constr (hcons_names()) in
DefinitionEntry
{ const_entry_body = hcons1_constr ce.const_entry_body;
const_entry_type = option_app hcons1_constr ce.const_entry_type;
const_entry_opaque = ce.const_entry_opaque }
| cd -> cd
let declare_constant_common id discharged_hyps (cd,kind) =
let (sp,kn as oname) = add_leaf id (in_constant (cd,kind)) in
declare_constant_implicits kn;
Symbols.declare_ref_arguments_scope (ConstRef kn);
Dischargedhypsmap.set_discharged_hyps sp discharged_hyps;
oname
let declare_constant_gen internal id (cd,kind) =
let cd = hcons_constant_declaration cd in
let oname = declare_constant_common id [] (ConstantEntry cd,kind) in
!xml_declare_constant (internal,oname);
oname
let declare_internal_constant = declare_constant_gen true
let declare_constant = declare_constant_gen false
(* when coming from discharge *)
let redeclare_constant id discharged_hyps (cd,kind) =
let _ = declare_constant_common id discharged_hyps (GlobalRecipe cd,kind) in
()
(* Inductives. *)
let inductive_names sp kn mie =
let (dp,_) = repr_path sp in
let names, _ =
List.fold_left
(fun (names, n) ind ->
let ind_p = (kn,n) in
let names, _ =
List.fold_left
(fun (names, p) l ->
let sp =
Libnames.make_path dp l
in
((sp, ConstructRef (ind_p,p)) :: names, p+1))
(names, 1) ind.mind_entry_consnames in
let sp = Libnames.make_path dp ind.mind_entry_typename
in
((sp, IndRef ind_p) :: names, n+1))
([], 0) mie.mind_entry_inds
in names
let check_exists_inductive (sp,_) =
(if Idmap.mem (basename sp) !vartab then
errorlabstrm "cache_inductive"
(pr_id (basename sp) ++ str " already exists"));
if Nametab.exists_cci sp then
let (_,id) = repr_path sp in
errorlabstrm "cache_inductive" (pr_id id ++ str " already exists")
let cache_inductive ((sp,kn),mie) =
let names = inductive_names sp kn mie in
List.iter check_exists_inductive names;
let _,dir,_ = repr_kn kn in
let kn' = Global.add_mind dir (basename sp) mie in
if kn' <> kn then
anomaly "Kernel and Library names do not match";
List.iter
(fun (sp, ref) -> Nametab.push (Nametab.Until 1) sp ref)
names
let load_inductive i ((sp,kn),mie) =
let names = inductive_names sp kn mie in
List.iter check_exists_inductive names;
List.iter (fun (sp, ref) -> Nametab.push (Nametab.Until i) sp ref) names
let open_inductive i ((sp,kn),mie) =
let names = inductive_names sp kn mie in
(* List.iter (fun (sp, ref) -> Nametab.push 0 (restrict_path 0 sp) ref) names*)
List.iter (fun (sp, ref) -> Nametab.push (Nametab.Exactly i) sp ref) names
let dummy_one_inductive_entry mie = {
mind_entry_params = [];
mind_entry_typename = mie.mind_entry_typename;
mind_entry_arity = mkProp;
mind_entry_consnames = mie.mind_entry_consnames;
mind_entry_lc = []
}
(* Hack to reduce the size of .vo: we keep only what load/open needs *)
let dummy_inductive_entry m = {
mind_entry_finite = true;
mind_entry_inds = List.map dummy_one_inductive_entry m.mind_entry_inds }
let export_inductive x = Some (dummy_inductive_entry x)
let (in_inductive, out_inductive) =
declare_object {(default_object "INDUCTIVE") with
cache_function = cache_inductive;
load_function = load_inductive;
open_function = open_inductive;
classify_function = (fun (_,a) -> Substitute (dummy_inductive_entry a));
subst_function = ident_subst_function;
export_function = export_inductive }
let declare_inductive_argument_scopes kn mie =
list_iter_i (fun i {mind_entry_consnames=lc} ->
Symbols.declare_ref_arguments_scope (IndRef (kn,i));
for j=1 to List.length lc do
Symbols.declare_ref_arguments_scope (ConstructRef ((kn,i),j));
done) mie.mind_entry_inds
let declare_inductive_common mie =
let id = match mie.mind_entry_inds with
| ind::_ -> ind.mind_entry_typename
| [] -> anomaly "cannot declare an empty list of inductives"
in
let oname = add_leaf id (in_inductive mie) in
declare_mib_implicits (snd oname);
declare_inductive_argument_scopes (snd oname) mie;
oname
(* for initial declaration *)
let declare_mind isrecord mie =
let (sp,kn as oname) = declare_inductive_common mie in
Dischargedhypsmap.set_discharged_hyps sp [] ;
!xml_declare_inductive (isrecord,oname);
oname
(* when coming from discharge: no xml output *)
let redeclare_inductive discharged_hyps mie =
let oname = declare_inductive_common mie in
Dischargedhypsmap.set_discharged_hyps (fst oname) discharged_hyps ;
oname
(*s Test and access functions. *)
let is_constant sp =
try let _ = Spmap.find sp !csttab in true with Not_found -> false
let constant_strength sp = Global
let constant_kind sp = Spmap.find sp !csttab
let get_variable id =
let (p,x,_) = Idmap.find id !vartab in
match x with
| CheckedSectionLocalDef (c,ty,cst,opaq) -> (id,Some c,ty)
| CheckedSectionLocalAssum (ty,cst) -> (id,None,ty)
let get_variable_with_constraints id =
let (p,x,_) = Idmap.find id !vartab in
match x with
| CheckedSectionLocalDef (c,ty,cst,opaq) -> ((id,Some c,ty),cst)
| CheckedSectionLocalAssum (ty,cst) -> ((id,None,ty),cst)
let variable_strength _ = Local
let find_section_variable id =
let (p,_,_) = Idmap.find id !vartab in Libnames.make_path p id
let variable_opacity id =
let (_,x,_) = Idmap.find id !vartab in
match x with
| CheckedSectionLocalDef (c,ty,cst,opaq) -> opaq
| CheckedSectionLocalAssum (ty,cst) -> false (* any.. *)
let variable_kind id =
pi3 (Idmap.find id !vartab)
let clear_proofs sign =
List.map
(fun (id,c,t as d) -> if variable_opacity id then (id,None,t) else d) sign
(* Global references. *)
let first f v =
let n = Array.length v in
let rec look_for i =
if i = n then raise Not_found;
try f i v.(i) with Not_found -> look_for (succ i)
in
look_for 0
let mind_oper_of_id sp id mib =
first
(fun tyi mip ->
if id = mip.mind_typename then
IndRef (sp,tyi)
else
first
(fun cj cid ->
if id = cid then
ConstructRef ((sp,tyi),succ cj)
else raise Not_found)
mip.mind_consnames)
mib.mind_packets
let context_of_global_reference = function
| VarRef id -> []
| ConstRef sp -> (Global.lookup_constant sp).const_hyps
| IndRef (sp,_) -> (Global.lookup_mind sp).mind_hyps
| ConstructRef ((sp,_),_) -> (Global.lookup_mind sp).mind_hyps
let last_section_hyps dir =
fold_named_context
(fun (id,_,_) sec_ids ->
try
let (p,_,_) = Idmap.find id !vartab in
if dir=p then id::sec_ids else sec_ids
with Not_found -> sec_ids)
(Environ.named_context (Global.env()))
~init:[]
let is_section_variable = function
| VarRef _ -> true
| _ -> false
let strength_of_global = function
| VarRef _ -> Local
| IndRef _ | ConstructRef _ | ConstRef _ -> Global
|