1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id: esyntax.ml,v 1.21.2.1 2004/07/16 19:30:37 herbelin Exp $ *)
open Pp
open Util
open Names
open Libnames
open Coqast
open Ast
open Extend
open Ppextend
open Names
open Nametab
open Topconstr
open Symbols
(*** Syntax keys ***)
(* We define keys for ast and astpats. This is a kind of hash
* function. An ast may have several keys, but astpat only one. The
* idea is that if an ast A matches a pattern P, then the key of P
* is in the set of keys of A. Thus, we can split the syntax entries
* according to the key of the pattern. *)
type key =
| Cst of Names.constant (* keys for global constants rules *)
| SecVar of Names.variable
| Ind of Names.inductive
| Cstr of Names.constructor
| Nod of string (* keys for other constructed asts rules *)
| Oth (* key for other syntax rules *)
| All (* key for catch-all rules (i.e. with a pattern such as $x .. *)
let warning_verbose = ref true
let ast_keys = function
| Node(_,"APPLIST", Node(_,"CONST", [Path (_,sl)]) ::_) ->
[Cst sl; Nod "APPLIST"; All]
| Node(_,"APPLIST", Node(_,"SECVAR", [Nvar (_,s)]) ::_) ->
[SecVar s; Nod "APPLIST"; All]
| Node(_,"APPLIST", Node(_,"MUTIND", [Path (_,sl); Num (_,tyi)]) ::_) ->
[Ind (sl,tyi); Nod "APPLIST"; All]
| Node(_,"APPLIST", Node(_,"MUTCONSTRUCT",
[Path (_,sl); Num (_,tyi); Num (_,i)]) ::_) ->
[Cstr ((sl,tyi),i); Nod "APPLIST"; All]
| Node(_,s,_) -> [Nod s; All]
| _ -> [Oth; All]
let spat_key astp =
match astp with
| Pnode("APPLIST",
Pcons(Pnode("CONST",
Pcons(Pquote(Path (_,sl)),_)), _))
-> Cst sl
| Pnode("APPLIST",
Pcons(Pnode("SECVAR",
Pcons(Pquote(Nvar (_,s)),_)), _))
-> SecVar s
| Pnode("APPLIST",
Pcons(Pnode("MUTIND",
Pcons(Pquote(Path (_,sl)),
Pcons(Pquote(Num (_,tyi)),_))), _))
-> Ind (sl,tyi)
| Pnode("APPLIST",
Pcons(Pnode("MUTCONSTRUCT",
Pcons(Pquote(Path (_,sl)),
Pcons(Pquote(Num (_,tyi)),
Pcons(Pquote(Num (_,i)),_)))), _))
-> Cstr ((sl,tyi),i)
| Pnode(na,_) -> Nod na
| Pquote ast -> List.hd (ast_keys ast)
| Pmeta _ -> All
| _ -> Oth
let se_key se = spat_key se.syn_astpat
(** Syntax entry tables (state of the pretty_printer) **)
let from_name_table = ref Gmap.empty
let from_key_table = ref Gmapl.empty
(* Summary operations *)
type frozen_t = (string * string, astpat syntax_entry) Gmap.t *
(string * key, astpat syntax_entry) Gmapl.t
let freeze () =
(!from_name_table, !from_key_table)
let unfreeze (fnm,fkm) =
from_name_table := fnm;
from_key_table := fkm
let init () =
from_name_table := Gmap.empty;
from_key_table := Gmapl.empty
let find_syntax_entry whatfor gt =
let gt_keys = ast_keys gt in
let entries =
List.flatten
(List.map (fun k -> Gmapl.find (whatfor,k) !from_key_table) gt_keys)
in
find_all_matches (fun se -> se.syn_astpat) [] gt entries
let remove_with_warning name =
if Gmap.mem name !from_name_table then begin
let se = Gmap.find name !from_name_table in
let key = (fst name, se_key se) in
if !warning_verbose then
(Options.if_verbose
warning ("overriding syntax rule "^(fst name)^":"^(snd name)^"."));
from_name_table := Gmap.remove name !from_name_table;
from_key_table := Gmapl.remove key se !from_key_table
end
let add_rule whatfor se =
let name = (whatfor,se.syn_id) in
let key = (whatfor, se_key se) in
remove_with_warning name;
from_name_table := Gmap.add name se !from_name_table;
from_key_table := Gmapl.add key se !from_key_table
let add_ppobject {sc_univ=wf;sc_entries=sel} = List.iter (add_rule wf) sel
(* Pretty-printing machinery *)
type std_printer = Coqast.t -> std_ppcmds
type unparsing_subfunction = string -> tolerability option -> std_printer
type primitive_printer = Coqast.t -> std_ppcmds option
(* Module of primitive printers *)
module Ppprim =
struct
type t = std_printer -> std_printer
let tab = ref ([] : (string * t) list)
let map a = List.assoc a !tab
let add (a,ppr) = tab := (a,ppr)::!tab
end
(**********************************************************************)
(* Primitive printers (e.g. for numerals) *)
(* This is the map associating to a printer the scope it belongs to *)
(* and its ML code *)
let primitive_printer_tab =
ref (Stringmap.empty : (scope_name * primitive_printer) Stringmap.t)
let declare_primitive_printer s sc pp =
primitive_printer_tab := Stringmap.add s (sc,pp) !primitive_printer_tab
let lookup_primitive_printer s =
Stringmap.find s !primitive_printer_tab
(* Register the primitive printer for "token". It is not used in syntax/PP*.v,
* but any ast matching no PP rule is printed with it. *)
(*
let _ = declare_primitive_printer "token" token_printer
*)
(* A printer for the tokens. *)
let token_printer stdpr = function
| (Id _ | Num _ | Str _ | Path _ as ast) -> print_ast ast
| a -> stdpr a
(* Unused ??
(* A primitive printer to do "print as" (to specify a length for a string) *)
let print_as_printer = function
| Node (_, "AS", [Num(_,n); Str(_,s)]) -> Some (stras (n,s))
| ast -> None
let _ = declare_primitive_printer "print_as" default_scope print_as_printer
*)
(* Handle infix symbols *)
let pr_parenthesis inherited se strm =
if tolerable_prec inherited se.syn_prec then
strm
else
(str"(" ++ strm ++ str")")
let print_delimiters inh se strm = function
| None -> pr_parenthesis inh se strm
| Some key ->
let left = "'"^key^":" and right = "'" in
let lspace =
if is_letter (left.[String.length left -1]) then str " " else mt () in
let rspace =
let c = right.[0] in
if is_ident_tail c then str " " else mt () in
hov 0 (str left ++ lspace ++ strm ++ rspace ++ str right)
(* Print the syntax entry. In the unparsing hunks, the tokens are
* printed using the token_printer, unless another primitive printer
* is specified. *)
let print_syntax_entry sub_pr scopes env se =
let rec print_hunk rule_prec scopes = function
| PH(e,externpr,reln) ->
let node = Ast.pat_sub dummy_loc env e in
let printer =
match externpr with (* May branch to an other printer *)
| Some c ->
(try (* Test for a primitive printer *) Ppprim.map c
with Not_found -> token_printer)
| _ -> token_printer in
printer (sub_pr scopes (Some(rule_prec,reln))) node
| RO s -> str s
| UNP_TAB -> tab ()
| UNP_FNL -> fnl ()
| UNP_BRK(n1,n2) -> brk(n1,n2)
| UNP_TBRK(n1,n2) -> tbrk(n1,n2)
| UNP_BOX (b,sub) -> ppcmd_of_box b (prlist (print_hunk rule_prec scopes) sub)
| UNP_SYMBOLIC _ -> anomaly "handled by call_primitive_parser"
in
prlist (print_hunk se.syn_prec scopes) se.syn_hunks
let call_primitive_parser rec_pr otherwise inherited scopes (se,env) =
try (
match se.syn_hunks with
| [PH(e,Some c,reln)] ->
(* Test for a primitive printer; may raise Not_found *)
let sc,pr = lookup_primitive_printer c in
(* Look if scope [sc] associated to this printer is OK *)
(match Symbols.availability_of_numeral sc scopes with
| None -> otherwise ()
| Some key ->
(* We can use this printer *)
let node = Ast.pat_sub dummy_loc env e in
match pr node with
| Some strm -> print_delimiters inherited se strm key
| None -> otherwise ())
| [UNP_SYMBOLIC (sc,pat,sub)] ->
(match Symbols.availability_of_notation (sc,pat) scopes with
| None -> otherwise ()
| Some (scopt,key) ->
print_delimiters inherited se
(print_syntax_entry rec_pr
(option_fold_right Symbols.push_scope scopt scopes) env
{se with syn_hunks = [sub]}) key)
| _ ->
pr_parenthesis inherited se (print_syntax_entry rec_pr scopes env se)
)
with Not_found -> (* To handle old style printer *)
pr_parenthesis inherited se (print_syntax_entry rec_pr scopes env se)
(* [genprint whatfor dflt inhprec ast] prints out the ast of
* 'universe' whatfor. If the term is not matched by any
* pretty-printing rule, then it will call dflt on it, which is
* responsible for printing out the term (usually #GENTERM...).
* In the case of tactics and commands, dflt also prints
* global constants basenames. *)
let genprint dflt whatfor inhprec ast =
let rec rec_pr scopes inherited gt =
let entries = find_syntax_entry whatfor gt in
let rec test_rule = function
| se_env::rules ->
call_primitive_parser
rec_pr
(fun () -> test_rule rules)
inherited scopes se_env
| [] -> dflt gt (* No rule found *)
in test_rule entries
in
try
rec_pr (Symbols.current_scopes ()) inhprec ast
with
| Failure _ -> (str"<PP failure: " ++ dflt ast ++ str">")
| Not_found -> (str"<PP search failure: " ++ dflt ast ++ str">")
|