1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id: g_zsyntax.ml,v 1.16.2.2 2004/11/10 13:00:44 herbelin Exp $ *)
open Coqast
open Pcoq
open Pp
open Util
open Names
open Ast
open Extend
open Topconstr
open Libnames
open Bignat
(**********************************************************************)
(* V7 parsing via Grammar *)
let get_z_sign loc =
let mkid id =
mkRefC (Qualid (loc,Libnames.make_short_qualid id))
in
((mkid (id_of_string "xI"),
mkid (id_of_string "xO"),
mkid (id_of_string "xH")),
(mkid (id_of_string "ZERO"),
mkid (id_of_string "POS"),
mkid (id_of_string "NEG")))
let pos_of_bignat xI xO xH x =
let rec pos_of x =
match div2_with_rest x with
| (q, true) when is_nonzero q -> mkAppC (xI, [pos_of q])
| (q, false) -> mkAppC (xO, [pos_of q])
| (_, true) -> xH
in
pos_of x
let z_of_string pos_or_neg s dloc =
let ((xI,xO,xH),(aZERO,aPOS,aNEG)) = get_z_sign dloc in
let v = Bignat.of_string s in
if is_nonzero v then
if pos_or_neg then
mkAppC (aPOS, [pos_of_bignat xI xO xH v])
else
mkAppC (aNEG, [pos_of_bignat xI xO xH v])
else
aZERO
(* Declare the primitive parser with Grammar and without the scope mechanism *)
let zsyntax_create name =
let e =
Pcoq.create_constr_entry (Pcoq.get_univ "znatural") name in
Pcoq.Gram.Unsafe.clear_entry e;
e
let number = zsyntax_create "number"
let negnumber = zsyntax_create "negnumber"
let _ =
Gram.extend number None
[None, None,
[[Gramext.Stoken ("INT", "")],
Gramext.action (z_of_string true)]]
let _ =
Gram.extend negnumber None
[None, None,
[[Gramext.Stoken ("INT", "")],
Gramext.action (z_of_string false)]]
(**********************************************************************)
(* Old v7 ast printing *)
open Coqlib
exception Non_closed_number
let get_z_sign_ast loc =
let ast_of_id id =
Termast.ast_of_ref
(reference_of_constr
(gen_constant_in_modules "Z-printer" zarith_base_modules id))
in
((ast_of_id "xI",
ast_of_id "xO",
ast_of_id "xH"),
(ast_of_id "ZERO",
ast_of_id "POS",
ast_of_id "NEG"))
let _ = if !Options.v7 then
let rec bignat_of_pos c1 c2 c3 p =
match p with
| Node (_,"APPLIST", [b; a]) when alpha_eq(b,c1) ->
mult_2 (bignat_of_pos c1 c2 c3 a)
| Node (_,"APPLIST", [b; a]) when alpha_eq(b,c2) ->
add_1 (mult_2 (bignat_of_pos c1 c2 c3 a))
| a when alpha_eq(a,c3) -> Bignat.one
| _ -> raise Non_closed_number
in
let bignat_option_of_pos xI xO xH p =
try
Some (bignat_of_pos xO xI xH p)
with Non_closed_number ->
None
in
let pr_pos a = hov 0 (str "POS" ++ brk (1,1) ++ a) in
let pr_neg a = hov 0 (str "NEG" ++ brk (1,1) ++ a) in
let inside_printer posneg std_pr p =
let ((xI,xO,xH),_) = get_z_sign_ast dummy_loc in
match (bignat_option_of_pos xI xO xH p) with
| Some n ->
if posneg then
(str (Bignat.to_string n))
else
(str "(-" ++ str (Bignat.to_string n) ++ str ")")
| None ->
let pr = if posneg then pr_pos else pr_neg in
str "(" ++ pr (std_pr (ope("ZEXPR",[p]))) ++ str ")"
in
let outside_zero_printer std_pr p = str "`0`"
in
let outside_printer posneg std_pr p =
let ((xI,xO,xH),_) = get_z_sign_ast dummy_loc in
match (bignat_option_of_pos xI xO xH p) with
| Some n ->
if posneg then
(str "`" ++ str (Bignat.to_string n) ++ str "`")
else
(str "`-" ++ str (Bignat.to_string n) ++ str "`")
| None ->
let pr = if posneg then pr_pos else pr_neg in
str "(" ++ pr (std_pr p) ++ str ")"
in
(* For printing with Syntax and without the scope mechanism *)
let _ = Esyntax.Ppprim.add ("positive_printer", (outside_printer true)) in
let _ = Esyntax.Ppprim.add ("negative_printer", (outside_printer false)) in
let _ = Esyntax.Ppprim.add ("positive_printer_inside", (inside_printer true))in
let _ = Esyntax.Ppprim.add ("negative_printer_inside", (inside_printer false))
in ()
(**********************************************************************)
(* Parsing positive via scopes *)
(**********************************************************************)
open Libnames
open Rawterm
let make_dir l = make_dirpath (List.map id_of_string (List.rev l))
let positive_module = ["Coq";"NArith";"BinPos"]
(* TODO: temporary hack *)
let make_path dir id = Libnames.encode_kn dir id
let positive_path =
make_path (make_dir positive_module) (id_of_string "positive")
let glob_positive = IndRef (positive_path,0)
let path_of_xI = ((positive_path,0),1)
let path_of_xO = ((positive_path,0),2)
let path_of_xH = ((positive_path,0),3)
let glob_xI = ConstructRef path_of_xI
let glob_xO = ConstructRef path_of_xO
let glob_xH = ConstructRef path_of_xH
let pos_of_bignat dloc x =
let ref_xI = RRef (dloc, glob_xI) in
let ref_xH = RRef (dloc, glob_xH) in
let ref_xO = RRef (dloc, glob_xO) in
let rec pos_of x =
match div2_with_rest x with
| (q,false) -> RApp (dloc, ref_xO,[pos_of q])
| (q,true) when is_nonzero q -> RApp (dloc,ref_xI,[pos_of q])
| (q,true) -> ref_xH
in
pos_of x
let interp_positive dloc = function
| POS n when is_nonzero n -> pos_of_bignat dloc n
| _ ->
user_err_loc (dloc, "interp_positive",
str "Only strictly positive numbers in type \"positive\"!")
let rec pat_pos_of_bignat dloc x name =
match div2_with_rest x with
| (q,false) ->
PatCstr (dloc,path_of_xO,[pat_pos_of_bignat dloc q Anonymous],name)
| (q,true) when is_nonzero q ->
PatCstr (dloc,path_of_xI,[pat_pos_of_bignat dloc q Anonymous],name)
| (q,true) ->
PatCstr (dloc,path_of_xH,[],name)
let error_non_positive dloc =
user_err_loc (dloc, "interp_positive",
str "No non-positive numbers in type \"positive\"!")
let pat_interp_positive dloc = function
| NEG n -> error_non_positive dloc
| POS n ->
if is_nonzero n then pat_pos_of_bignat dloc n else error_non_positive dloc
(**********************************************************************)
(* Printing positive via scopes *)
(**********************************************************************)
let rec bignat_of_pos = function
| RApp (_, RRef (_,b),[a]) when b = glob_xO -> mult_2(bignat_of_pos a)
| RApp (_, RRef (_,b),[a]) when b = glob_xI -> add_1(mult_2(bignat_of_pos a))
| RRef (_, a) when a = glob_xH -> Bignat.one
| _ -> raise Non_closed_number
let uninterp_positive p =
try
Some (POS (bignat_of_pos p))
with Non_closed_number ->
None
(************************************************************************)
(* Declaring interpreters and uninterpreters for positive *)
(************************************************************************)
let _ = Symbols.declare_numeral_interpreter "positive_scope"
(glob_positive,positive_module)
(interp_positive,Some pat_interp_positive)
([RRef (dummy_loc, glob_xI);
RRef (dummy_loc, glob_xO);
RRef (dummy_loc, glob_xH)],
uninterp_positive,
None)
(**********************************************************************)
(* Parsing N via scopes *)
(**********************************************************************)
let binnat_module = ["Coq";"NArith";"BinNat"]
let n_path = make_path (make_dir binnat_module)
(id_of_string (if !Options.v7 then "entier" else "N"))
let glob_n = IndRef (n_path,0)
let path_of_N0 = ((n_path,0),1)
let path_of_Npos = ((n_path,0),2)
let glob_N0 = ConstructRef path_of_N0
let glob_Npos = ConstructRef path_of_Npos
let n_of_posint dloc pos_or_neg n =
if is_nonzero n then
RApp(dloc, RRef (dloc,glob_Npos), [pos_of_bignat dloc n])
else
RRef (dloc, glob_N0)
let n_of_int dloc n =
match n with
| POS n -> n_of_posint dloc true n
| NEG n ->
user_err_loc (dloc, "",
str "No negative number in type N")
let pat_n_of_binnat dloc n name =
if is_nonzero n then
PatCstr (dloc, path_of_Npos, [pat_pos_of_bignat dloc n Anonymous], name)
else
PatCstr (dloc, path_of_N0, [], name)
let pat_n_of_int dloc n name =
match n with
| POS n -> pat_n_of_binnat dloc n name
| NEG n ->
user_err_loc (dloc, "",
str "No negative number in type N")
(**********************************************************************)
(* Printing N via scopes *)
(**********************************************************************)
let bignat_of_n = function
| RApp (_, RRef (_,b),[a]) when b = glob_Npos -> POS (bignat_of_pos a)
| RRef (_, a) when a = glob_N0 -> POS (Bignat.zero)
| _ -> raise Non_closed_number
let uninterp_n p =
try Some (bignat_of_n p)
with Non_closed_number -> None
(************************************************************************)
(* Declaring interpreters and uninterpreters for N *)
let _ = Symbols.declare_numeral_interpreter "N_scope"
(glob_n,binnat_module)
(n_of_int,Some pat_n_of_int)
([RRef (dummy_loc, glob_N0);
RRef (dummy_loc, glob_Npos)],
uninterp_n,
None)
(**********************************************************************)
(* Parsing Z via scopes *)
(**********************************************************************)
let fast_integer_module = ["Coq";"ZArith";"BinInt"]
let z_path = make_path (make_dir fast_integer_module) (id_of_string "Z")
let glob_z = IndRef (z_path,0)
let path_of_ZERO = ((z_path,0),1)
let path_of_POS = ((z_path,0),2)
let path_of_NEG = ((z_path,0),3)
let glob_ZERO = ConstructRef path_of_ZERO
let glob_POS = ConstructRef path_of_POS
let glob_NEG = ConstructRef path_of_NEG
let z_of_posint dloc pos_or_neg n =
if is_nonzero n then
let sgn = if pos_or_neg then glob_POS else glob_NEG in
RApp(dloc, RRef (dloc,sgn), [pos_of_bignat dloc n])
else
RRef (dloc, glob_ZERO)
let z_of_int dloc z =
match z with
| POS n -> z_of_posint dloc true n
| NEG n -> z_of_posint dloc false n
let pat_z_of_posint dloc pos_or_neg n name =
if is_nonzero n then
let sgn = if pos_or_neg then path_of_POS else path_of_NEG in
PatCstr (dloc, sgn, [pat_pos_of_bignat dloc n Anonymous], name)
else
PatCstr (dloc, path_of_ZERO, [], name)
let pat_z_of_int dloc n name =
match n with
| POS n -> pat_z_of_posint dloc true n name
| NEG n -> pat_z_of_posint dloc false n name
(**********************************************************************)
(* Printing Z via scopes *)
(**********************************************************************)
let bigint_of_z = function
| RApp (_, RRef (_,b),[a]) when b = glob_POS -> POS (bignat_of_pos a)
| RApp (_, RRef (_,b),[a]) when b = glob_NEG -> NEG (bignat_of_pos a)
| RRef (_, a) when a = glob_ZERO -> POS (Bignat.zero)
| _ -> raise Non_closed_number
let uninterp_z p =
try
Some (bigint_of_z p)
with Non_closed_number -> None
(************************************************************************)
(* Declaring interpreters and uninterpreters for Z *)
let _ = Symbols.declare_numeral_interpreter "Z_scope"
(glob_z,fast_integer_module)
(z_of_int,Some pat_z_of_int)
([RRef (dummy_loc, glob_ZERO);
RRef (dummy_loc, glob_POS);
RRef (dummy_loc, glob_NEG)],
uninterp_z,
None)
(************************************************************************)
(* Old V7 ast Printers *)
open Esyntax
let _ = if !Options.v7 then
let bignat_of_pos p =
let ((xI,xO,xH),_) = get_z_sign_ast dummy_loc in
let c1 = xO in
let c2 = xI in
let c3 = xH in
let rec transl = function
| Node (_,"APPLIST",[b; a]) when alpha_eq(b,c1) -> mult_2(transl a)
| Node (_,"APPLIST",[b; a]) when alpha_eq(b,c2) -> add_1(mult_2(transl a))
| a when alpha_eq(a,c3) -> Bignat.one
| _ -> raise Non_closed_number
in transl p
in
let bignat_option_of_pos p =
try
Some (bignat_of_pos p)
with Non_closed_number ->
None
in
let z_printer posneg p =
match bignat_option_of_pos p with
| Some n ->
if posneg then
Some (str (Bignat.to_string n))
else
Some (str "-" ++ str (Bignat.to_string n))
| None -> None
in
let z_printer_ZERO _ =
Some (int 0)
in
(* Declare pretty-printers for integers *)
let _ =
declare_primitive_printer "z_printer_POS" "Z_scope" (z_printer true) in
let _ =
declare_primitive_printer "z_printer_NEG" "Z_scope" (z_printer false) in
let _ =
declare_primitive_printer "z_printer_ZERO" "Z_scope" z_printer_ZERO in
()
|