1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: pcoq.ml4,v 1.80.2.3 2005/01/15 14:56:53 herbelin Exp $ i*)
open Pp
open Util
open Names
open Libnames
open Rawterm
open Topconstr
open Ast
open Genarg
open Tacexpr
open Ppextend
open Extend
(* The lexer of Coq *)
(* Note: removing a token.
We do nothing because [remove_token] is called only when removing a grammar
rule with [Grammar.delete_rule]. The latter command is called only when
unfreezing the state of the grammar entries (see GRAMMAR summary, file
env/metasyntax.ml). Therefore, instead of removing tokens one by one,
we unfreeze the state of the lexer. This restores the behaviour of the
lexer. B.B. *)
let lexer = {
Token.func = Lexer.func;
Token.using = Lexer.add_token;
Token.removing = (fun _ -> ());
Token.tparse = Lexer.tparse;
Token.text = Lexer.token_text }
module L =
struct
let lexer = lexer
end
(* The parser of Coq *)
module G = Grammar.Make(L)
let grammar_delete e rls =
List.iter
(fun (_,_,lev) ->
List.iter (fun (pil,_) -> G.delete_rule e pil) (List.rev lev))
(List.rev rls)
(* grammar_object is the superclass of all grammar entry *)
module type Gramobj =
sig
type grammar_object
val weaken_entry : 'a G.Entry.e -> grammar_object G.Entry.e
end
module Gramobj : Gramobj =
struct
type grammar_object = Obj.t
let weaken_entry e = Obj.magic e
end
type grammar_object = Gramobj.grammar_object
type typed_entry = entry_type * grammar_object G.Entry.e
let in_typed_entry t e = (t,Gramobj.weaken_entry e)
let type_of_typed_entry (t,e) = t
let object_of_typed_entry (t,e) = e
let weaken_entry x = Gramobj.weaken_entry x
module type Gramtypes =
sig
open Decl_kinds
val inGramObj : 'a raw_abstract_argument_type -> 'a G.Entry.e -> typed_entry
val outGramObj : 'a raw_abstract_argument_type -> typed_entry -> 'a G.Entry.e
end
module Gramtypes : Gramtypes =
struct
let inGramObj rawwit = in_typed_entry (unquote rawwit)
let outGramObj (a:'a raw_abstract_argument_type) o =
if type_of_typed_entry o <> unquote a
then anomaly "outGramObj: wrong type";
(* downcast from grammar_object *)
Obj.magic (object_of_typed_entry o)
end
open Gramtypes
type ext_kind =
| ByGrammar of
grammar_object G.Entry.e * Gramext.position option *
(string option * Gramext.g_assoc option *
(Token.t Gramext.g_symbol list * Gramext.g_action) list) list
| ByGEXTEND of (unit -> unit) * (unit -> unit)
let camlp4_state = ref []
(* The apparent parser of Coq; encapsulate G to keep track of the
extensions. *)
module Gram =
struct
include G
let extend e pos rls =
camlp4_state :=
(ByGEXTEND ((fun () -> grammar_delete e rls),
(fun () -> G.extend e pos rls)))
:: !camlp4_state;
G.extend e pos rls
let delete_rule e pil =
errorlabstrm "Pcoq.delete_rule" (str "GDELETE_RULE forbidden.")
end
let camlp4_verbosity silent f x =
let a = !Gramext.warning_verbose in
Gramext.warning_verbose := silent;
f x;
Gramext.warning_verbose := a
(* This extension command is used by the Grammar constr *)
let grammar_extend te pos rls =
camlp4_state := ByGrammar (Gramobj.weaken_entry te,pos,rls) :: !camlp4_state;
camlp4_verbosity (Options.is_verbose ()) (G.extend te pos) rls
(* n is the number of extended entries (not the number of Grammar commands!)
to remove. *)
let rec remove_grammars n =
if n>0 then
(match !camlp4_state with
| [] -> anomaly "Pcoq.remove_grammars: too many rules to remove"
| ByGrammar(g,_,rls)::t ->
grammar_delete g rls;
camlp4_state := t;
remove_grammars (n-1)
| ByGEXTEND (undo,redo)::t ->
undo();
camlp4_state := t;
remove_grammars n;
redo();
camlp4_state := ByGEXTEND (undo,redo) :: !camlp4_state)
(* An entry that checks we reached the end of the input. *)
let eoi_entry en =
let e = Gram.Entry.create ((Gram.Entry.name en) ^ "_eoi") in
GEXTEND Gram
e: [ [ x = en; EOI -> x ] ]
;
END;
e
let map_entry f en =
let e = Gram.Entry.create ((Gram.Entry.name en) ^ "_map") in
GEXTEND Gram
e: [ [ x = en -> f x ] ]
;
END;
e
(* Parse a string, does NOT check if the entire string was read
(use eoi_entry) *)
let parse_string f x =
let strm = Stream.of_string x in Gram.Entry.parse f (Gram.parsable strm)
type gram_universe = (string, typed_entry) Hashtbl.t
let trace = ref false
(* The univ_tab is not part of the state. It contains all the grammar that
exist or have existed before in the session. *)
let univ_tab = (Hashtbl.create 7 : (string, string * gram_universe) Hashtbl.t)
let create_univ s =
let u = s, Hashtbl.create 29 in Hashtbl.add univ_tab s u; u
let uprim = create_univ "prim"
let uconstr = create_univ "constr"
let umodule = create_univ "module"
let utactic = create_univ "tactic"
let uvernac = create_univ "vernac"
let create_univ_if_new s =
(* compatibilite *)
let s = if s = "command" then (warning "'command' grammar universe is obsolete; use name 'constr' instead"; "constr") else s in
try
Hashtbl.find univ_tab s
with Not_found ->
if !trace then begin
Printf.eprintf "[Creating univ %s]\n" s; flush stderr; ()
end;
let u = s, Hashtbl.create 29 in Hashtbl.add univ_tab s u; u
let get_univ = create_univ_if_new
let get_entry (u, utab) s =
try
Hashtbl.find utab s
with Not_found ->
errorlabstrm "Pcoq.get_entry"
(str "unknown grammar entry " ++ str u ++ str ":" ++ str s)
let new_entry etyp (u, utab) s =
let ename = u ^ ":" ^ s in
let e = in_typed_entry etyp (Gram.Entry.create ename) in
Hashtbl.add utab s e; e
let entry_type (u, utab) s =
try
let e = Hashtbl.find utab s in
Some (type_of_typed_entry e)
with Not_found -> None
let get_entry_type (u,n) = type_of_typed_entry (get_entry (get_univ u) n)
let create_entry_if_new (u, utab) s etyp =
try
if type_of_typed_entry (Hashtbl.find utab s) <> etyp then
failwith ("Entry " ^ u ^ ":" ^ s ^ " already exists with another type")
with Not_found ->
if !trace then begin
Printf.eprintf "[Creating entry %s:%s]\n" u s; flush stderr; ()
end;
let _ = new_entry etyp (u, utab) s in ()
let create_entry (u, utab) s etyp =
try
let e = Hashtbl.find utab s in
if type_of_typed_entry e <> etyp then
failwith ("Entry " ^ u ^ ":" ^ s ^ " already exists with another type");
e
with Not_found ->
if !trace then begin
Printf.eprintf "[Creating entry %s:%s]\n" u s; flush stderr; ()
end;
new_entry etyp (u, utab) s
let create_constr_entry u s =
outGramObj rawwit_constr (create_entry u s ConstrArgType)
let create_generic_entry s wit =
let (u,utab) = utactic in
let etyp = unquote wit in
try
let e = Hashtbl.find utab s in
if type_of_typed_entry e <> etyp then
failwith ("Entry " ^ u ^ ":" ^ s ^ " already exists with another type");
outGramObj wit e
with Not_found ->
if !trace then begin
Printf.eprintf "[Creating entry %s:%s]\n" u s; flush stderr; ()
end;
let e = Gram.Entry.create s in
Hashtbl.add utab s (inGramObj wit e); e
let get_generic_entry s =
let (u,utab) = utactic in
try
object_of_typed_entry (Hashtbl.find utab s)
with Not_found ->
error ("unknown grammar entry "^u^":"^s)
let get_generic_entry_type (u,utab) s =
try type_of_typed_entry (Hashtbl.find utab s)
with Not_found ->
error ("unknown grammar entry "^u^":"^s)
let force_entry_type (u, utab) s etyp =
try
let entry = Hashtbl.find utab s in
let extyp = type_of_typed_entry entry in
if etyp = extyp then
entry
else begin
prerr_endline
("Grammar entry " ^ u ^ ":" ^ s ^
" redefined with another type;\n older entry hidden.");
Hashtbl.remove utab s;
new_entry etyp (u, utab) s
end
with Not_found ->
new_entry etyp (u, utab) s
(* [make_gen_entry] builds entries extensible by giving its name (a string) *)
(* For entries extensible only via the ML name, Gram.Entry.create is enough *)
let make_gen_entry (u,univ) rawwit s =
let e = Gram.Entry.create (u ^ ":" ^ s) in
Hashtbl.add univ s (inGramObj rawwit e); e
(* Grammar entries *)
module Prim =
struct
let gec_gen x = make_gen_entry uprim x
(* Entries that can be refered via the string -> Gram.Entry.e table *)
(* Typically for tactic or vernac extensions *)
let preident = gec_gen rawwit_pre_ident "preident"
let ident = gec_gen rawwit_ident "ident"
let natural = gec_gen rawwit_int "natural"
let integer = gec_gen rawwit_int "integer"
let bigint = Gram.Entry.create "Prim.bigint"
let string = gec_gen rawwit_string "string"
let reference = make_gen_entry uprim rawwit_ref "reference"
(* parsed like ident but interpreted as a term *)
let hyp = gec_gen rawwit_ident "hyp"
(* synonym of hyp/ident (before semantics split) for v7 compatibility *)
let var = gec_gen rawwit_ident "var"
let name = Gram.Entry.create "Prim.name"
let identref = Gram.Entry.create "Prim.identref"
(* A synonym of ident - maybe ident will be located one day *)
let base_ident = Gram.Entry.create "Prim.base_ident"
let qualid = Gram.Entry.create "Prim.qualid"
let dirpath = Gram.Entry.create "Prim.dirpath"
let ne_string = Gram.Entry.create "Prim.ne_string"
(* For old ast printer *)
let astpat = Gram.Entry.create "Prim.astpat"
let ast = Gram.Entry.create "Prim.ast"
let astlist = Gram.Entry.create "Prim.astlist"
let ast_eoi = eoi_entry ast
let astact = Gram.Entry.create "Prim.astact"
end
module Constr =
struct
let gec_constr = make_gen_entry uconstr rawwit_constr
let gec_constr_list = make_gen_entry uconstr (wit_list0 rawwit_constr)
(* Entries that can be refered via the string -> Gram.Entry.e table *)
let constr = gec_constr "constr"
let operconstr = gec_constr "operconstr"
let constr_eoi = eoi_entry constr
let lconstr = gec_constr "lconstr"
let binder_constr = create_constr_entry uconstr "binder_constr"
let ident = make_gen_entry uconstr rawwit_ident "ident"
let global = make_gen_entry uconstr rawwit_ref "global"
let sort = make_gen_entry uconstr rawwit_sort "sort"
let pattern = Gram.Entry.create "constr:pattern"
let annot = Gram.Entry.create "constr:annot"
let constr_pattern = gec_constr "constr_pattern"
let lconstr_pattern = gec_constr "lconstr_pattern"
let binder = Gram.Entry.create "constr:binder"
let binder_let = Gram.Entry.create "constr:binder_let"
end
module Module =
struct
let module_expr = Gram.Entry.create "module_expr"
let module_type = Gram.Entry.create "module_type"
end
module Tactic =
struct
(* Main entry for extensions *)
let simple_tactic = Gram.Entry.create "tactic:simple_tactic"
(* Entries that can be refered via the string -> Gram.Entry.e table *)
(* Typically for tactic user extensions *)
let open_constr =
make_gen_entry utactic rawwit_open_constr "open_constr"
let castedopenconstr =
make_gen_entry utactic rawwit_casted_open_constr "castedopenconstr"
let constr_with_bindings =
make_gen_entry utactic rawwit_constr_with_bindings "constr_with_bindings"
let bindings =
make_gen_entry utactic rawwit_bindings "bindings"
let constrarg = make_gen_entry utactic rawwit_constr_may_eval "constrarg"
let quantified_hypothesis =
make_gen_entry utactic rawwit_quant_hyp "quantified_hypothesis"
let int_or_var = make_gen_entry utactic rawwit_int_or_var "int_or_var"
let red_expr = make_gen_entry utactic rawwit_red_expr "red_expr"
let simple_intropattern =
make_gen_entry utactic rawwit_intro_pattern "simple_intropattern"
(* Main entries for ltac *)
let tactic_arg = Gram.Entry.create "tactic:tactic_arg"
let tactic = make_gen_entry utactic rawwit_tactic "tactic"
(* Main entry for quotations *)
let tactic_eoi = eoi_entry tactic
end
module Vernac_ =
struct
let gec_vernac s = Gram.Entry.create ("vernac:" ^ s)
(* The different kinds of vernacular commands *)
let gallina = gec_vernac "gallina"
let gallina_ext = gec_vernac "gallina_ext"
let command = gec_vernac "command"
let syntax = gec_vernac "syntax_command"
let vernac = gec_vernac "Vernac_.vernac"
let vernac_eoi = eoi_entry vernac
end
(* Prim is not re-initialized *)
let reset_all_grammars () =
let f = Gram.Unsafe.clear_entry in
List.iter f
[Constr.constr;Constr.operconstr;Constr.lconstr;Constr.annot;
Constr.constr_pattern;Constr.lconstr_pattern];
f Constr.ident; f Constr.global; f Constr.sort; f Constr.pattern;
f Module.module_expr; f Module.module_type;
f Tactic.simple_tactic;
f Tactic.castedopenconstr;
f Tactic.constr_with_bindings;
f Tactic.bindings;
f Tactic.constrarg;
f Tactic.quantified_hypothesis;
f Tactic.int_or_var;
f Tactic.red_expr;
f Tactic.tactic_arg;
f Tactic.tactic;
f Vernac_.gallina;
f Vernac_.gallina_ext;
f Vernac_.command;
f Vernac_.syntax;
f Vernac_.vernac;
Lexer.init()
let main_entry = Gram.Entry.create "vernac"
GEXTEND Gram
main_entry:
[ [ a = Vernac_.vernac -> Some (loc,a) | EOI -> None ] ]
;
END
(* Quotations *)
open Prim
open Constr
open Tactic
open Vernac_
(* current file and toplevel/vernac.ml *)
let globalizer = ref (fun x -> failwith "No globalizer")
let set_globalizer f = globalizer := f
let define_ast_quotation default s (e:Coqast.t G.Entry.e) =
(if default then
GEXTEND Gram
ast: [ [ "<<"; c = e; ">>" -> c ] ];
(* Uncomment this to keep compatibility with old grammar syntax
constr: [ [ "<<"; c = e; ">>" -> c ] ];
vernac: [ [ "<<"; c = e; ">>" -> c ] ];
tactic: [ [ "<<"; c = e; ">>" -> c ] ];
*)
END);
(GEXTEND Gram
GLOBAL: ast constr command tactic;
ast:
[ [ "<:"; IDENT $s$; ":<"; c = e; ">>" -> c ] ];
(* Uncomment this to keep compatibility with old grammar syntax
constr:
[ [ "<:"; IDENT $s$; ":<"; c = e; ">>" -> c ] ];
command:
[ [ "<:"; IDENT $s$; ":<"; c = e; ">>" -> c ] ];
tactic:
[ [ "<:"; IDENT $s$; ":<"; c = e; ">>" -> c ] ];
*)
END)
(*
let _ = define_ast_quotation false "ast" ast in ()
*)
let dynconstr = Gram.Entry.create "Constr.dynconstr"
let dyncasespattern = Gram.Entry.create "Constr.dyncasespattern"
GEXTEND Gram
dynconstr:
[ [ a = Constr.constr -> ConstrNode a
(* For compatibility *)
| "<<"; a = Constr.lconstr; ">>" -> ConstrNode a ] ]
;
dyncasespattern: [ [ a = Constr.pattern -> CasesPatternNode a ] ];
END
(**********************************************************************)
(* The following is to dynamically set the parser in Grammar actions *)
(* and Syntax pattern, according to the universe of the rule defined *)
type parser_type =
| ConstrParser
| CasesPatternParser
let default_action_parser_ref = ref dynconstr
let get_default_action_parser () = !default_action_parser_ref
let entry_type_of_parser = function
| ConstrParser -> Some ConstrArgType
| CasesPatternParser -> failwith "entry_type_of_parser: cases_pattern, TODO"
let parser_type_from_name = function
| "constr" -> ConstrParser
| "cases_pattern" -> CasesPatternParser
| "tactic" -> assert false
| "vernac" -> error "No longer supported"
| s -> ConstrParser
let set_default_action_parser = function
| ConstrParser -> default_action_parser_ref := dynconstr
| CasesPatternParser -> default_action_parser_ref := dyncasespattern
let default_action_parser =
Gram.Entry.of_parser "default_action_parser"
(fun strm -> Gram.Entry.parse_token (get_default_action_parser ()) strm)
(**********************************************************************)
(* This determines (depending on the associativity of the current
level and on the expected associativity) if a reference to constr_n is
a reference to the current level (to be translated into "SELF" on the
left border and into "constr LEVEL n" elsewhere), to the level below
(to be translated into "NEXT") or to an below wrt associativity (to be
translated in camlp4 into "constr" without level) or to another level
(to be translated into "constr LEVEL n") *)
let assoc_level = function
| Some Gramext.LeftA when !Options.v7 -> "L"
| _ -> ""
let constr_level = function
| n,assoc -> (string_of_int n)^(assoc_level assoc)
let constr_level2 = function
| n,assoc -> (string_of_int n)^(assoc_level (Some assoc))
let default_levels_v7 =
[10,Gramext.RightA;
9,Gramext.RightA;
8,Gramext.RightA;
1,Gramext.RightA;
0,Gramext.RightA]
let default_levels_v8 =
[200,Gramext.RightA;
100,Gramext.RightA;
99,Gramext.RightA;
90,Gramext.RightA;
10,Gramext.RightA;
9,Gramext.RightA;
1,Gramext.LeftA;
0,Gramext.RightA]
let default_pattern_levels_v8 =
[10,Gramext.LeftA;
0,Gramext.RightA]
let level_stack =
ref
[if !Options.v7 then (default_levels_v7, default_levels_v7)
else (default_levels_v8, default_pattern_levels_v8)]
(* At a same level, LeftA takes precedence over RightA and NoneA *)
(* In case, several associativity exists for a level, we make two levels, *)
(* first LeftA, then RightA and NoneA together *)
exception Found of Gramext.g_assoc
open Ppextend
let admissible_assoc = function
| Gramext.LeftA, Some (Gramext.RightA | Gramext.NonA) -> false
| Gramext.RightA, Some Gramext.LeftA -> false
| _ -> true
let create_assoc = function
| None -> Gramext.RightA
| Some a -> a
let error_level_assoc p current expected =
let pr_assoc = function
| Gramext.LeftA -> str "left"
| Gramext.RightA -> str "right"
| Gramext.NonA -> str "non" in
errorlabstrm ""
(str "Level " ++ int p ++ str " is already declared " ++
pr_assoc current ++ str " associative while it is now expected to be " ++
pr_assoc expected ++ str " associative")
let find_position forpat other assoc lev =
let default = if !Options.v7 then Some (10,Gramext.RightA) else None in
let ccurrent,pcurrent as current = List.hd !level_stack in
match lev with
| None ->
level_stack := current :: !level_stack;
None, (if other then assoc else None), None
| Some n ->
if !Options.v7 & n = 8 & assoc = Some Gramext.LeftA then
error "Left associativity not allowed at level 8";
let after = ref default in
let rec add_level q = function
| (p,_ as pa)::l when p > n -> pa :: add_level (Some pa) l
| (p,a as pa)::l as l' when p = n ->
if admissible_assoc (a,assoc) then raise (Found a);
(* No duplication of levels in v8 *)
if not !Options.v7 then error_level_assoc p a (out_some assoc);
(* Maybe this was (p,Left) and p occurs a second time *)
if a = Gramext.LeftA then
match l with
| (p,a)::_ as l' when p = n -> raise (Found a)
| _ -> after := Some pa; pa::(n,create_assoc assoc)::l
else
(* This was not (p,LeftA) hence assoc is RightA *)
(after := q; (n,create_assoc assoc)::l')
| l ->
after := q; (n,create_assoc assoc)::l
in
try
(* Create the entry *)
let updated =
if forpat then (ccurrent, add_level default pcurrent)
else (add_level default ccurrent, pcurrent) in
level_stack := updated:: !level_stack;
let assoc = create_assoc assoc in
(if !after = None then Some Gramext.First
else Some (Gramext.After (constr_level2 (out_some !after)))),
Some assoc, Some (constr_level2 (n,assoc))
with
Found a ->
level_stack := current :: !level_stack;
(* Just inherit the existing associativity and name (None) *)
Some (Gramext.Level (constr_level2 (n,a))), None, None
let remove_levels n =
level_stack := list_skipn n !level_stack
(* Camlp4 levels do not treat NonA: use RightA with a NEXT on the left *)
let camlp4_assoc = function
| Some Gramext.NonA | Some Gramext.RightA -> Gramext.RightA
| None | Some Gramext.LeftA -> Gramext.LeftA
(* [adjust_level assoc from prod] where [assoc] and [from] are the name
and associativity of the level where to add the rule; the meaning of
the result is
None = SELF
Some None = NEXT
Some (Some (n,cur)) = constr LEVEL n
s.t. if [cur] is set then [n] is the same as the [from] level *)
let adjust_level assoc from = function
(* Associativity is None means force the level *)
| (NumLevel n,BorderProd (_,None)) -> Some (Some (n,true))
(* Compute production name on the right side *)
(* If NonA or LeftA on the right-hand side, set to NEXT *)
| (NumLevel n,BorderProd (false,Some (Gramext.NonA|Gramext.LeftA))) ->
Some None
(* If RightA on the right-hand side, set to the explicit (current) level *)
| (NumLevel n,BorderProd (false,Some Gramext.RightA)) ->
Some (Some (n,true))
(* Compute production name on the left side *)
(* If NonA on the left-hand side, adopt the current assoc ?? *)
| (NumLevel n,BorderProd (true,Some Gramext.NonA)) -> None
(* If the expected assoc is the current one, set to SELF *)
| (NumLevel n,BorderProd (true,Some a)) when a = camlp4_assoc assoc ->
None
(* Otherwise, force the level, n or n-1, according to expected assoc *)
| (NumLevel n,BorderProd (true,Some a)) ->
if a = Gramext.LeftA then Some (Some (n,true)) else Some None
(* None means NEXT *)
| (NextLevel,_) -> Some None
(* Compute production name elsewhere *)
| (NumLevel n,InternalProd) ->
match from with
| ETConstr (p,()) when p = n+1 -> Some None
| ETConstr (p,()) -> Some (Some (n,n=p))
| _ -> Some (Some (n,false))
(*
(* If NonA on the right-hand side, set to NEXT *)
| (n,BorderProd (false,Some Gramext.NonA)) -> Some None
(* If NonA on the left-hand side, adopt the current assoc ?? *)
| (n,BorderProd (true,Some Gramext.NonA)) -> None
(* Associativity is None means force the level *)
| (n,BorderProd (_,None)) -> Some (Some (n,true))
(* If left assoc at a left level, set NEXT on the right *)
| (n,BorderProd (false,Some (Gramext.LeftA as a)))
when Gramext.LeftA = camlp4_assoc assoc -> Some None
(* If right or none assoc expected is the current assoc, set explicit
level on the right side *)
| (n,BorderProd (false,Some a)) when a = camlp4_assoc assoc ->
Some (Some (n,true))
(* If the expected assoc is the current one, SELF on the left sides *)
| (n,BorderProd (true,Some a)) when a = camlp4_assoc assoc -> None
(* Otherwise, force the level, n or n-1, according to expected assoc *)
| (n,BorderProd (left,Some a)) ->
if (left & a = Gramext.LeftA) or ((not left) & a = Gramext.RightA)
then Some (Some (n,true)) else Some (Some (n-1,false))
(* | (8,InternalProd) -> None (* Or (Some 8) for factorization ? *)*)
| (n,InternalProd) ->
match from with
| ETConstr (p,()) when p = n+1 -> Some None
| ETConstr (p,()) -> Some (Some (n,n=p))
| _ -> Some (Some (n,false))
*)
let compute_entry allow_create adjust forpat = function
| ETConstr (n,q) ->
(if forpat then weaken_entry Constr.pattern
else weaken_entry Constr.operconstr),
(if forpat & !Options.v7 then None else adjust (n,q)), false
| ETIdent -> weaken_entry Constr.ident, None, false
| ETBigint -> weaken_entry Prim.bigint, None, false
| ETReference -> weaken_entry Constr.global, None, false
| ETPattern -> weaken_entry Constr.pattern, None, false
| ETOther ("constr","annot") ->
weaken_entry Constr.annot, None, false
| ETConstrList _ -> error "List of entries cannot be registered"
| ETOther (u,n) ->
let u = get_univ u in
let e =
try get_entry u n
with e when allow_create -> create_entry u n ConstrArgType in
object_of_typed_entry e, None, true
(* This computes the name of the level where to add a new rule *)
let get_constr_entry forpat en =
match en with
ETConstr(200,()) when not !Options.v7 & not forpat ->
snd (get_entry (get_univ "constr") "binder_constr"),
None,
false
| _ -> compute_entry true (fun (n,()) -> Some n) forpat en
(* This computes the name to give to a production knowing the name and
associativity of the level where it must be added *)
let get_constr_production_entry ass from forpat en =
(* first 2 cases to help factorisation *)
match en with
| ETConstr (NumLevel 10,q) when !Options.v7 & not forpat ->
weaken_entry Constr.lconstr, None, false
(*
| ETConstr (8,q) when !Options.v7 ->
weaken_entry Constr.constr, None, false
*)
| _ -> compute_entry false (adjust_level ass from) forpat en
let constr_prod_level assoc cur lev =
if !Options.v7 then
if cur then constr_level (lev,assoc) else
match lev with
| 4 when !Options.v7 -> "4L"
| n -> string_of_int n
else
(* No duplication L/R of levels in v8 *)
constr_level (lev,assoc)
let is_self from e =
match from, e with
ETConstr(n,()), ETConstr(NumLevel n',
BorderProd(false, _ (* Some(Gramext.NonA|Gramext.LeftA) *))) -> false
| ETConstr(n,()), ETConstr(NumLevel n',BorderProd(true,_)) -> n=n'
| (ETIdent,ETIdent | ETReference, ETReference | ETBigint,ETBigint
| ETPattern, ETPattern) -> true
| ETOther(s1,s2), ETOther(s1',s2') -> s1=s1' & s2=s2'
| _ -> false
let is_binder_level from e =
match from, e with
ETConstr(200,()),
ETConstr(NumLevel 200,(BorderProd(false,_)|InternalProd)) ->
not !Options.v7
| _ -> false
let rec symbol_of_production assoc from forpat typ =
if is_binder_level from typ then
let eobj = snd (get_entry (get_univ "constr") "operconstr") in
Gramext.Snterml (Gram.Entry.obj eobj,"200")
else if is_self from typ then Gramext.Sself
else
match typ with
| ETConstrList (typ',[]) ->
Gramext.Slist1 (symbol_of_production assoc from forpat (ETConstr typ'))
| ETConstrList (typ',tkl) ->
Gramext.Slist1sep
(symbol_of_production assoc from forpat (ETConstr typ'),
Gramext.srules
[List.map (fun x -> Gramext.Stoken x) tkl,
List.fold_right (fun _ v -> Gramext.action (fun _ -> v)) tkl
(Gramext.action (fun loc -> ()))])
| _ ->
match get_constr_production_entry assoc from forpat typ with
| (eobj,None,_) -> Gramext.Snterm (Gram.Entry.obj eobj)
| (eobj,Some None,_) -> Gramext.Snext
| (eobj,Some (Some (lev,cur)),_) ->
Gramext.Snterml (Gram.Entry.obj eobj,constr_prod_level assoc cur lev)
|