1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id: reductionops.ml,v 1.6.2.2 2004/07/16 19:30:46 herbelin Exp $ *)
open Pp
open Util
open Names
open Term
open Termops
open Univ
open Evd
open Declarations
open Environ
open Instantiate
open Closure
open Esubst
open Reduction
exception Elimconst
(* The type of (machine) states (= lambda-bar-calculus' cuts) *)
type state = constr * constr stack
type contextual_reduction_function = env -> evar_map -> constr -> constr
type reduction_function = contextual_reduction_function
type local_reduction_function = constr -> constr
type contextual_stack_reduction_function =
env -> evar_map -> constr -> constr * constr list
type stack_reduction_function = contextual_stack_reduction_function
type local_stack_reduction_function = constr -> constr * constr list
type contextual_state_reduction_function =
env -> evar_map -> state -> state
type state_reduction_function = contextual_state_reduction_function
type local_state_reduction_function = state -> state
(*************************************)
(*** Reduction Functions Operators ***)
(*************************************)
let rec whd_state (x, stack as s) =
match kind_of_term x with
| App (f,cl) -> whd_state (f, append_stack cl stack)
| Cast (c,_) -> whd_state (c, stack)
| _ -> s
let appterm_of_stack (f,s) = (f,list_of_stack s)
let whd_stack x = appterm_of_stack (whd_state (x, empty_stack))
let whd_castapp_stack = whd_stack
let stack_reduction_of_reduction red_fun env sigma s =
let t = red_fun env sigma (app_stack s) in
whd_stack t
let strong whdfun env sigma t =
let rec strongrec env t =
map_constr_with_full_binders push_rel strongrec env (whdfun env sigma t) in
strongrec env t
let local_strong whdfun =
let rec strongrec t = map_constr strongrec (whdfun t) in
strongrec
let rec strong_prodspine redfun c =
let x = redfun c in
match kind_of_term x with
| Prod (na,a,b) -> mkProd (na,a,strong_prodspine redfun b)
| _ -> x
(*************************************)
(*** Reduction using bindingss ***)
(*************************************)
(* This signature is very similar to Closure.RedFlagsSig except there
is eta but no per-constant unfolding *)
module type RedFlagsSig = sig
type flags
type flag
val fbeta : flag
val fevar : flag
val fdelta : flag
val feta : flag
val fiota : flag
val fzeta : flag
val mkflags : flag list -> flags
val red_beta : flags -> bool
val red_delta : flags -> bool
val red_evar : flags -> bool
val red_eta : flags -> bool
val red_iota : flags -> bool
val red_zeta : flags -> bool
end
(* Naive Implementation
module RedFlags = (struct
type flag = BETA | DELTA | EVAR | IOTA | ZETA | ETA
type flags = flag list
let fbeta = BETA
let fdelta = DELTA
let fevar = EVAR
let fiota = IOTA
let fzeta = ZETA
let feta = ETA
let mkflags l = l
let red_beta = List.mem BETA
let red_delta = List.mem DELTA
let red_evar = List.mem EVAR
let red_eta = List.mem ETA
let red_iota = List.mem IOTA
let red_zeta = List.mem ZETA
end : RedFlagsSig)
*)
(* Compact Implementation *)
module RedFlags = (struct
type flag = int
type flags = int
let fbeta = 1
let fdelta = 2
let fevar = 4
let feta = 8
let fiota = 16
let fzeta = 32
let mkflags = List.fold_left (lor) 0
let red_beta f = f land fbeta <> 0
let red_delta f = f land fdelta <> 0
let red_evar f = f land fevar <> 0
let red_eta f = f land feta <> 0
let red_iota f = f land fiota <> 0
let red_zeta f = f land fzeta <> 0
end : RedFlagsSig)
open RedFlags
(* Local *)
let beta = mkflags [fbeta]
let evar = mkflags [fevar]
let betaevar = mkflags [fevar; fbeta]
let betaiota = mkflags [fiota; fbeta]
let betaiotazeta = mkflags [fiota; fbeta;fzeta]
(* Contextual *)
let delta = mkflags [fdelta;fevar]
let betadelta = mkflags [fbeta;fdelta;fzeta;fevar]
let betadeltaeta = mkflags [fbeta;fdelta;fzeta;fevar;feta]
let betadeltaiota = mkflags [fbeta;fdelta;fzeta;fevar;fiota]
let betadeltaiota_nolet = mkflags [fbeta;fdelta;fevar;fiota]
let betadeltaiotaeta = mkflags [fbeta;fdelta;fzeta;fevar;fiota;feta]
let betaiotaevar = mkflags [fbeta;fiota;fevar]
let betaetalet = mkflags [fbeta;feta;fzeta]
let betalet = mkflags [fbeta;fzeta]
(* Beta Reduction tools *)
let rec stacklam recfun env t stack =
match (decomp_stack stack,kind_of_term t) with
| Some (h,stacktl), Lambda (_,_,c) -> stacklam recfun (h::env) c stacktl
| _ -> recfun (substl env t, stack)
let beta_applist (c,l) =
stacklam app_stack [] c (append_stack (Array.of_list l) empty_stack)
(* Iota reduction tools *)
type 'a miota_args = {
mP : constr; (* the result type *)
mconstr : constr; (* the constructor *)
mci : case_info; (* special info to re-build pattern *)
mcargs : 'a list; (* the constructor's arguments *)
mlf : 'a array } (* the branch code vector *)
let reducible_mind_case c = match kind_of_term c with
| Construct _ | CoFix _ -> true
| _ -> false
let contract_cofix (bodynum,(types,names,bodies as typedbodies)) =
let nbodies = Array.length bodies in
let make_Fi j = mkCoFix (nbodies-j-1,typedbodies) in
substl (list_tabulate make_Fi nbodies) bodies.(bodynum)
let reduce_mind_case mia =
match kind_of_term mia.mconstr with
| Construct (ind_sp,i as cstr_sp) ->
(* let ncargs = (fst mia.mci).(i-1) in*)
let real_cargs = list_skipn mia.mci.ci_npar mia.mcargs in
applist (mia.mlf.(i-1),real_cargs)
| CoFix cofix ->
let cofix_def = contract_cofix cofix in
mkCase (mia.mci, mia.mP, applist(cofix_def,mia.mcargs), mia.mlf)
| _ -> assert false
(* contracts fix==FIX[nl;i](A1...Ak;[F1...Fk]{B1....Bk}) to produce
Bi[Fj --> FIX[nl;j](A1...Ak;[F1...Fk]{B1...Bk})] *)
let contract_fix ((recindices,bodynum),(types,names,bodies as typedbodies)) =
let nbodies = Array.length recindices in
let make_Fi j = mkFix ((recindices,nbodies-j-1),typedbodies) in
substl (list_tabulate make_Fi nbodies) bodies.(bodynum)
let fix_recarg ((recindices,bodynum),_) stack =
assert (0 <= bodynum & bodynum < Array.length recindices);
let recargnum = Array.get recindices bodynum in
try
Some (recargnum, stack_nth stack recargnum)
with Not_found ->
None
type fix_reduction_result = NotReducible | Reduced of state
let reduce_fix whdfun fix stack =
match fix_recarg fix stack with
| None -> NotReducible
| Some (recargnum,recarg) ->
let (recarg'hd,_ as recarg') = whdfun (recarg, empty_stack) in
let stack' = stack_assign stack recargnum (app_stack recarg') in
(match kind_of_term recarg'hd with
| Construct _ -> Reduced (contract_fix fix, stack')
| _ -> NotReducible)
(* Generic reduction function *)
(* Y avait un commentaire pour whd_betadeltaiota :
NB : Cette fonction alloue peu c'est l'appel
``let (c,cargs) = whfun (recarg, empty_stack)''
-------------------
qui coute cher *)
let rec whd_state_gen flags env sigma =
let rec whrec (x, stack as s) =
match kind_of_term x with
| Rel n when red_delta flags ->
(match lookup_rel n env with
| (_,Some body,_) -> whrec (lift n body, stack)
| _ -> s)
| Var id when red_delta flags ->
(match lookup_named id env with
| (_,Some body,_) -> whrec (body, stack)
| _ -> s)
| Evar ev when red_evar flags ->
(match existential_opt_value sigma ev with
| Some body -> whrec (body, stack)
| None -> s)
| Const const when red_delta flags ->
(match constant_opt_value env const with
| Some body -> whrec (body, stack)
| None -> s)
| LetIn (_,b,_,c) when red_zeta flags -> stacklam whrec [b] c stack
| Cast (c,_) -> whrec (c, stack)
| App (f,cl) -> whrec (f, append_stack cl stack)
| Lambda (na,t,c) ->
(match decomp_stack stack with
| Some (a,m) when red_beta flags -> stacklam whrec [a] c m
| None when red_eta flags ->
let env' = push_rel (na,None,t) env in
let whrec' = whd_state_gen flags env' sigma in
(match kind_of_term (app_stack (whrec' (c, empty_stack))) with
| App (f,cl) ->
let napp = Array.length cl in
if napp > 0 then
let x', l' = whrec' (array_last cl, empty_stack) in
match kind_of_term x', decomp_stack l' with
| Rel 1, None ->
let lc = Array.sub cl 0 (napp-1) in
let u = if napp=1 then f else appvect (f,lc) in
if noccurn 1 u then (pop u,empty_stack) else s
| _ -> s
else s
| _ -> s)
| _ -> s)
| Case (ci,p,d,lf) when red_iota flags ->
let (c,cargs) = whrec (d, empty_stack) in
if reducible_mind_case c then
whrec (reduce_mind_case
{mP=p; mconstr=c; mcargs=list_of_stack cargs;
mci=ci; mlf=lf}, stack)
else
(mkCase (ci, p, app_stack (c,cargs), lf), stack)
| Fix fix when red_iota flags ->
(match reduce_fix whrec fix stack with
| Reduced s' -> whrec s'
| NotReducible -> s)
| x -> s
in
whrec
let local_whd_state_gen flags =
let rec whrec (x, stack as s) =
match kind_of_term x with
| LetIn (_,b,_,c) when red_zeta flags -> stacklam whrec [b] c stack
| Cast (c,_) -> whrec (c, stack)
| App (f,cl) -> whrec (f, append_stack cl stack)
| Lambda (_,_,c) ->
(match decomp_stack stack with
| Some (a,m) when red_beta flags -> stacklam whrec [a] c m
| None when red_eta flags ->
(match kind_of_term (app_stack (whrec (c, empty_stack))) with
| App (f,cl) ->
let napp = Array.length cl in
if napp > 0 then
let x', l' = whrec (array_last cl, empty_stack) in
match kind_of_term x', decomp_stack l' with
| Rel 1, None ->
let lc = Array.sub cl 0 (napp-1) in
let u = if napp=1 then f else appvect (f,lc) in
if noccurn 1 u then (pop u,empty_stack) else s
| _ -> s
else s
| _ -> s)
| _ -> s)
| Case (ci,p,d,lf) when red_iota flags ->
let (c,cargs) = whrec (d, empty_stack) in
if reducible_mind_case c then
whrec (reduce_mind_case
{mP=p; mconstr=c; mcargs=list_of_stack cargs;
mci=ci; mlf=lf}, stack)
else
(mkCase (ci, p, app_stack (c,cargs), lf), stack)
| Fix fix when red_iota flags ->
(match reduce_fix whrec fix stack with
| Reduced s' -> whrec s'
| NotReducible -> s)
| x -> s
in
whrec
(* 1. Beta Reduction Functions *)
let whd_beta_state = local_whd_state_gen beta
let whd_beta_stack x = appterm_of_stack (whd_beta_state (x, empty_stack))
let whd_beta x = app_stack (whd_beta_state (x,empty_stack))
(* Nouveau ! *)
let whd_betaetalet_state = local_whd_state_gen betaetalet
let whd_betaetalet_stack x =
appterm_of_stack (whd_betaetalet_state (x, empty_stack))
let whd_betaetalet x = app_stack (whd_betaetalet_state (x,empty_stack))
let whd_betalet_state = local_whd_state_gen betalet
let whd_betalet_stack x = appterm_of_stack (whd_betalet_state (x, empty_stack))
let whd_betalet x = app_stack (whd_betalet_state (x,empty_stack))
(* 2. Delta Reduction Functions *)
let whd_delta_state e = whd_state_gen delta e
let whd_delta_stack env sigma x =
appterm_of_stack (whd_delta_state env sigma (x, empty_stack))
let whd_delta env sigma c =
app_stack (whd_delta_state env sigma (c, empty_stack))
let whd_betadelta_state e = whd_state_gen betadelta e
let whd_betadelta_stack env sigma x =
appterm_of_stack (whd_betadelta_state env sigma (x, empty_stack))
let whd_betadelta env sigma c =
app_stack (whd_betadelta_state env sigma (c, empty_stack))
let whd_betaevar_state e = whd_state_gen betaevar e
let whd_betaevar_stack env sigma c =
appterm_of_stack (whd_betaevar_state env sigma (c, empty_stack))
let whd_betaevar env sigma c =
app_stack (whd_betaevar_state env sigma (c, empty_stack))
let whd_betadeltaeta_state e = whd_state_gen betadeltaeta e
let whd_betadeltaeta_stack env sigma x =
appterm_of_stack (whd_betadeltaeta_state env sigma (x, empty_stack))
let whd_betadeltaeta env sigma x =
app_stack (whd_betadeltaeta_state env sigma (x, empty_stack))
(* 3. Iota reduction Functions *)
let whd_betaiota_state = local_whd_state_gen betaiota
let whd_betaiota_stack x =
appterm_of_stack (whd_betaiota_state (x, empty_stack))
let whd_betaiota x =
app_stack (whd_betaiota_state (x, empty_stack))
let whd_betaiotazeta_state = local_whd_state_gen betaiotazeta
let whd_betaiotazeta_stack x =
appterm_of_stack (whd_betaiotazeta_state (x, empty_stack))
let whd_betaiotazeta x =
app_stack (whd_betaiotazeta_state (x, empty_stack))
let whd_betaiotaevar_state e = whd_state_gen betaiotaevar e
let whd_betaiotaevar_stack env sigma x =
appterm_of_stack (whd_betaiotaevar_state env sigma (x, empty_stack))
let whd_betaiotaevar env sigma x =
app_stack (whd_betaiotaevar_state env sigma (x, empty_stack))
let whd_betadeltaiota_state e = whd_state_gen betadeltaiota e
let whd_betadeltaiota_stack env sigma x =
appterm_of_stack (whd_betadeltaiota_state env sigma (x, empty_stack))
let whd_betadeltaiota env sigma x =
app_stack (whd_betadeltaiota_state env sigma (x, empty_stack))
let whd_betadeltaiotaeta_state e = whd_state_gen betadeltaiotaeta e
let whd_betadeltaiotaeta_stack env sigma x =
appterm_of_stack (whd_betadeltaiotaeta_state env sigma (x, empty_stack))
let whd_betadeltaiotaeta env sigma x =
app_stack (whd_betadeltaiotaeta_state env sigma (x, empty_stack))
let whd_betadeltaiota_nolet_state e = whd_state_gen betadeltaiota_nolet e
let whd_betadeltaiota_nolet_stack env sigma x =
appterm_of_stack (whd_betadeltaiota_nolet_state env sigma (x, empty_stack))
let whd_betadeltaiota_nolet env sigma x =
app_stack (whd_betadeltaiota_nolet_state env sigma (x, empty_stack))
(****************************************************************************)
(* Reduction Functions *)
(****************************************************************************)
(* Replacing defined evars for error messages *)
let rec whd_evar sigma c =
match kind_of_term c with
| Evar (ev,args) when Evd.in_dom sigma ev & Evd.is_defined sigma ev ->
whd_evar sigma (Instantiate.existential_value sigma (ev,args))
| _ -> collapse_appl c
let nf_evar sigma =
local_strong (whd_evar sigma)
(* lazy reduction functions. The infos must be created for each term *)
let clos_norm_flags flgs env sigma t =
norm_val (create_clos_infos flgs env) (inject (nf_evar sigma t))
let nf_beta = clos_norm_flags Closure.beta empty_env Evd.empty
let nf_betaiota = clos_norm_flags Closure.betaiota empty_env Evd.empty
let nf_betadeltaiota env sigma =
clos_norm_flags Closure.betadeltaiota env sigma
(* lazy weak head reduction functions *)
let whd_flags flgs env sigma t =
whd_val (create_clos_infos flgs env) (inject (nf_evar sigma t))
(********************************************************************)
(* Conversion *)
(********************************************************************)
(*
let fkey = Profile.declare_profile "fhnf";;
let fhnf info v = Profile.profile2 fkey fhnf info v;;
let fakey = Profile.declare_profile "fhnf_apply";;
let fhnf_apply info k h a = Profile.profile4 fakey fhnf_apply info k h a;;
*)
(* Conversion utility functions *)
type conversion_test = constraints -> constraints
type conv_pb =
| CONV
| CUMUL
let pb_is_equal pb = pb = CONV
let pb_equal = function
| CUMUL -> CONV
| CONV -> CONV
let sort_cmp pb s0 s1 cuniv =
match (s0,s1) with
| (Prop c1, Prop c2) -> if c1 = c2 then cuniv else raise NotConvertible
| (Prop c1, Type u) ->
(match pb with
CUMUL -> cuniv
| _ -> raise NotConvertible)
| (Type u1, Type u2) ->
(match pb with
| CONV -> enforce_eq u1 u2 cuniv
| CUMUL -> enforce_geq u2 u1 cuniv)
| (_, _) -> raise NotConvertible
let base_sort_cmp pb s0 s1 =
match (s0,s1) with
| (Prop c1, Prop c2) -> c1 = c2
| (Prop c1, Type u) -> pb = CUMUL
| (Type u1, Type u2) -> true
| (_, _) -> false
let test_conversion f env sigma x y =
try let _ = f env (nf_evar sigma x) (nf_evar sigma y) in true
with NotConvertible -> false
let is_conv env sigma = test_conversion Reduction.conv env sigma
let is_conv_leq env sigma = test_conversion Reduction.conv_leq env sigma
let is_fconv = function | CONV -> is_conv | CUMUL -> is_conv_leq
(********************************************************************)
(* Special-Purpose Reduction *)
(********************************************************************)
let whd_meta metamap c = match kind_of_term c with
| Meta p -> (try List.assoc p metamap with Not_found -> c)
| _ -> c
(* Try to replace all metas. Does not replace metas in the metas' values
* Differs from (strong whd_meta). *)
let plain_instance s c =
let rec irec u = match kind_of_term u with
| Meta p -> (try List.assoc p s with Not_found -> u)
| App (f,l) when isCast f ->
let (f,t) = destCast f in
let l' = Array.map irec l in
(match kind_of_term f with
| Meta p ->
(* Don't flatten application nodes: this is used to extract a
proof-term from a proof-tree and we want to keep the structure
of the proof-tree *)
(try let g = List.assoc p s in
match kind_of_term g with
| App _ ->
let h = id_of_string "H" in
mkLetIn (Name h,g,t,mkApp(mkRel 1,Array.map (lift 1) l'))
| _ -> mkApp (g,l')
with Not_found -> mkApp (f,l'))
| _ -> mkApp (irec f,l'))
| Cast (m,_) when isMeta m ->
(try List.assoc (destMeta m) s with Not_found -> u)
| _ -> map_constr irec u
in
if s = [] then c else irec c
(* Pourquoi ne fait-on pas nf_betaiota si s=[] ? *)
let instance s c =
if s = [] then c else local_strong whd_betaiota (plain_instance s c)
(* pseudo-reduction rule:
* [hnf_prod_app env s (Prod(_,B)) N --> B[N]
* with an HNF on the first argument to produce a product.
* if this does not work, then we use the string S as part of our
* error message. *)
let hnf_prod_app env sigma t n =
match kind_of_term (whd_betadeltaiota env sigma t) with
| Prod (_,_,b) -> subst1 n b
| _ -> anomaly "hnf_prod_app: Need a product"
let hnf_prod_appvect env sigma t nl =
Array.fold_left (hnf_prod_app env sigma) t nl
let hnf_prod_applist env sigma t nl =
List.fold_left (hnf_prod_app env sigma) t nl
let hnf_lam_app env sigma t n =
match kind_of_term (whd_betadeltaiota env sigma t) with
| Lambda (_,_,b) -> subst1 n b
| _ -> anomaly "hnf_lam_app: Need an abstraction"
let hnf_lam_appvect env sigma t nl =
Array.fold_left (hnf_lam_app env sigma) t nl
let hnf_lam_applist env sigma t nl =
List.fold_left (hnf_lam_app env sigma) t nl
let splay_prod env sigma =
let rec decrec env m c =
let t = whd_betadeltaiota env sigma c in
match kind_of_term t with
| Prod (n,a,c0) ->
decrec (push_rel (n,None,a) env)
((n,a)::m) c0
| _ -> m,t
in
decrec env []
let splay_prod_assum env sigma =
let rec prodec_rec env l c =
let t = whd_betadeltaiota_nolet env sigma c in
match kind_of_term c with
| Prod (x,t,c) ->
prodec_rec (push_rel (x,None,t) env)
(Sign.add_rel_decl (x, None, t) l) c
| LetIn (x,b,t,c) ->
prodec_rec (push_rel (x, Some b, t) env)
(Sign.add_rel_decl (x, Some b, t) l) c
| Cast (c,_) -> prodec_rec env l c
| _ -> l,t
in
prodec_rec env Sign.empty_rel_context
let splay_arity env sigma c =
let l, c = splay_prod env sigma c in
match kind_of_term c with
| Sort s -> l,s
| _ -> error "not an arity"
let sort_of_arity env c = snd (splay_arity env Evd.empty c)
let decomp_n_prod env sigma n =
let rec decrec env m ln c = if m = 0 then (ln,c) else
match kind_of_term (whd_betadeltaiota env sigma c) with
| Prod (n,a,c0) ->
decrec (push_rel (n,None,a) env)
(m-1) (Sign.add_rel_decl (n,None,a) ln) c0
| _ -> error "decomp_n_prod: Not enough products"
in
decrec env n Sign.empty_rel_context
(* One step of approximation *)
let rec apprec env sigma s =
let (t, stack as s) = whd_betaiota_state s in
match kind_of_term t with
| Case (ci,p,d,lf) ->
let (cr,crargs) = whd_betadeltaiota_stack env sigma d in
let rslt = mkCase (ci, p, applist (cr,crargs), lf) in
if reducible_mind_case cr then
apprec env sigma (rslt, stack)
else
s
| Fix fix ->
(match reduce_fix (whd_betadeltaiota_state env sigma) fix stack with
| Reduced s -> apprec env sigma s
| NotReducible -> s)
| _ -> s
let hnf env sigma c = apprec env sigma (c, empty_stack)
(* A reduction function like whd_betaiota but which keeps casts
* and does not reduce redexes containing existential variables.
* Used in Correctness.
* Added by JCF, 29/1/98. *)
let whd_programs_stack env sigma =
let rec whrec (x, stack as s) =
match kind_of_term x with
| App (f,cl) ->
let n = Array.length cl - 1 in
let c = cl.(n) in
if occur_existential c then
s
else
whrec (mkApp (f, Array.sub cl 0 n), append_stack [|c|] stack)
| LetIn (_,b,_,c) ->
if occur_existential b then
s
else
stacklam whrec [b] c stack
| Lambda (_,_,c) ->
(match decomp_stack stack with
| None -> s
| Some (a,m) -> stacklam whrec [a] c m)
| Case (ci,p,d,lf) ->
if occur_existential d then
s
else
let (c,cargs) = whrec (d, empty_stack) in
if reducible_mind_case c then
whrec (reduce_mind_case
{mP=p; mconstr=c; mcargs=list_of_stack cargs;
mci=ci; mlf=lf}, stack)
else
(mkCase (ci, p, app_stack(c,cargs), lf), stack)
| Fix fix ->
(match reduce_fix whrec fix stack with
| Reduced s' -> whrec s'
| NotReducible -> s)
| _ -> s
in
whrec
let whd_programs env sigma x =
app_stack (whd_programs_stack env sigma (x, empty_stack))
exception IsType
let find_conclusion env sigma =
let rec decrec env c =
let t = whd_betadeltaiota env sigma c in
match kind_of_term t with
| Prod (x,t,c0) -> decrec (push_rel (x,None,t) env) c0
| Lambda (x,t,c0) -> decrec (push_rel (x,None,t) env) c0
| t -> t
in
decrec env
let is_arity env sigma c =
match find_conclusion env sigma c with
| Sort _ -> true
| _ -> false
let info_arity env sigma c =
match find_conclusion env sigma c with
| Sort (Prop Null) -> false
| Sort (Prop Pos) -> true
| _ -> raise IsType
let is_info_arity env sigma c =
try (info_arity env sigma c) with IsType -> true
let is_type_arity env sigma c =
match find_conclusion env sigma c with
| Sort (Type _) -> true
| _ -> false
let is_info_type env sigma t =
let s = t.utj_type in
(s = Prop Pos) ||
(s <> Prop Null &&
try info_arity env sigma t.utj_val with IsType -> true)
|