1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id: tacred.ml,v 1.75.2.6 2004/12/29 10:17:10 herbelin Exp $ *)
open Pp
open Util
open Names
open Nameops
open Term
open Libnames
open Termops
open Declarations
open Inductive
open Environ
open Reductionops
open Closure
open Instantiate
open Cbv
open Rawterm
exception Elimconst
exception Redelimination
let set_opaque_const = Conv_oracle.set_opaque_const
let set_transparent_const sp =
let cb = Global.lookup_constant sp in
if cb.const_body <> None & cb.const_opaque then
errorlabstrm "set_transparent_const"
(str "Cannot make" ++ spc () ++
Nametab.pr_global_env Idset.empty (ConstRef sp) ++
spc () ++ str "transparent because it was declared opaque.");
Conv_oracle.set_transparent_const sp
let set_opaque_var = Conv_oracle.set_opaque_var
let set_transparent_var = Conv_oracle.set_transparent_var
let _ =
Summary.declare_summary "Transparent constants and variables"
{ Summary.freeze_function = Conv_oracle.freeze;
Summary.unfreeze_function = Conv_oracle.unfreeze;
Summary.init_function = Conv_oracle.init;
Summary.survive_module = false;
Summary.survive_section = false }
let is_evaluable env ref =
match ref with
EvalConstRef kn ->
let (ids,kns) = Conv_oracle.freeze() in
KNpred.mem kn kns &
let cb = Environ.lookup_constant kn env in
cb.const_body <> None & not cb.const_opaque
| EvalVarRef id ->
let (ids,sps) = Conv_oracle.freeze() in
Idpred.mem id ids &
let (_,value,_) = Environ.lookup_named id env in
value <> None
type evaluable_reference =
| EvalConst of constant
| EvalVar of identifier
| EvalRel of int
| EvalEvar of existential
let mkEvalRef = function
| EvalConst cst -> mkConst cst
| EvalVar id -> mkVar id
| EvalRel n -> mkRel n
| EvalEvar ev -> mkEvar ev
let isEvalRef env c = match kind_of_term c with
| Const sp -> is_evaluable env (EvalConstRef sp)
| Var id -> is_evaluable env (EvalVarRef id)
| Rel _ | Evar _ -> true
| _ -> false
let destEvalRef c = match kind_of_term c with
| Const cst -> EvalConst cst
| Var id -> EvalVar id
| Rel n -> EvalRel n
| Evar ev -> EvalEvar ev
| _ -> anomaly "Not an evaluable reference"
let reference_opt_value sigma env = function
| EvalConst cst -> constant_opt_value env cst
| EvalVar id ->
let (_,v,_) = lookup_named id env in
v
| EvalRel n ->
let (_,v,_) = lookup_rel n env in
option_app (lift n) v
| EvalEvar ev -> existential_opt_value sigma ev
exception NotEvaluable
let reference_value sigma env c =
match reference_opt_value sigma env c with
| None -> raise NotEvaluable
| Some d -> d
(************************************************************************)
(* Reduction of constant hiding fixpoints (e.g. for Simpl). The trick *)
(* is to reuse the name of the function after reduction of the fixpoint *)
type constant_evaluation =
| EliminationFix of int * (int * (int * constr) list * int)
| EliminationMutualFix of
int * evaluable_reference *
(evaluable_reference option array * (int * (int * constr) list * int))
| EliminationCases of int
| NotAnElimination
(* We use a cache registered as a global table *)
module CstOrdered =
struct
type t = constant
let compare = Pervasives.compare
end
module Cstmap = Map.Make(CstOrdered)
let eval_table = ref Cstmap.empty
type frozen = (int * constant_evaluation) Cstmap.t
let init () =
eval_table := Cstmap.empty
let freeze () =
!eval_table
let unfreeze ct =
eval_table := ct
let _ =
Summary.declare_summary "evaluation"
{ Summary.freeze_function = freeze;
Summary.unfreeze_function = unfreeze;
Summary.init_function = init;
Summary.survive_module = false;
Summary.survive_section = false }
(* Check that c is an "elimination constant"
[xn:An]..[x1:A1](<P>MutCase (Rel i) of f1..fk end g1 ..gp)
or [xn:An]..[x1:A1](Fix(f|t) (Rel i1) ..(Rel ip))
with i1..ip distinct variables not occuring in t
keep relevenant information ([i1,Ai1;..;ip,Aip],n,b)
with b = true in case of a fixpoint in order to compute
an equivalent of Fix(f|t)[xi<-ai] as
[yip:Bip]..[yi1:Bi1](F bn..b1)
== [yip:Bip]..[yi1:Bi1](Fix(f|t)[xi<-ai] (Rel 1)..(Rel p))
with bj=aj if j<>ik and bj=(Rel c) and Bic=Aic[xn..xic-1 <- an..aic-1] *)
let check_fix_reversibility labs args ((lv,i),(_,tys,bds)) =
let n = List.length labs in
let nargs = List.length args in
if nargs > n then raise Elimconst;
let nbfix = Array.length bds in
let li =
List.map
(function d -> match kind_of_term d with
| Rel k ->
if
array_for_all (noccurn k) tys
&& array_for_all (noccurn (k+nbfix)) bds
then
(k, List.nth labs (k-1))
else
raise Elimconst
| _ ->
raise Elimconst) args
in
if list_distinct (List.map fst li) then
let k = lv.(i) in
if k < nargs then
(* Such an optimisation would need eta-expansion
let p = destRel (List.nth args k) in
EliminationFix (n-p+1,(nbfix,li,n))
*)
EliminationFix (n,(nbfix,li,n))
else
EliminationFix (n-nargs+lv.(i)+1,(nbfix,li,n))
else
raise Elimconst
(* Heuristic to look if global names are associated to other
components of a mutual fixpoint *)
let invert_name labs l na0 env sigma ref = function
| Name id ->
if na0 <> Name id then
let refi = match ref with
| EvalRel _ | EvalEvar _ -> None
| EvalVar id' -> Some (EvalVar id)
| EvalConst kn ->
let (mp,dp,_) = repr_kn kn in
Some (EvalConst (make_kn mp dp (label_of_id id))) in
match refi with
| None -> None
| Some ref ->
match reference_opt_value sigma env ref with
| None -> None
| Some c ->
let labs',ccl = decompose_lam c in
let _, l' = whd_betalet_stack ccl in
let labs' = List.map snd labs' in
if labs' = labs & l = l' then Some ref else None
else Some ref
| Anonymous -> None (* Actually, should not occur *)
(* [compute_consteval_direct] expand all constant in a whole, but
[compute_consteval_mutual_fix] only one by one, until finding the
last one before the Fix if the latter is mutually defined *)
let compute_consteval_direct sigma env ref =
let rec srec env n labs c =
let c',l = whd_betadelta_stack env sigma c in
match kind_of_term c' with
| Lambda (id,t,g) when l=[] ->
srec (push_rel (id,None,t) env) (n+1) (t::labs) g
| Fix fix ->
(try check_fix_reversibility labs l fix
with Elimconst -> NotAnElimination)
| Case (_,_,d,_) when isRel d -> EliminationCases n
| _ -> NotAnElimination
in
match reference_opt_value sigma env ref with
| None -> NotAnElimination
| Some c -> srec env 0 [] c
let compute_consteval_mutual_fix sigma env ref =
let rec srec env minarg labs ref c =
let c',l = whd_betalet_stack c in
let nargs = List.length l in
match kind_of_term c' with
| Lambda (na,t,g) when l=[] ->
srec (push_rel (na,None,t) env) (minarg+1) (t::labs) ref g
| Fix ((lv,i),(names,_,_) as fix) ->
(* Last known constant wrapping Fix is ref = [labs](Fix l) *)
(match compute_consteval_direct sigma env ref with
| NotAnElimination -> (*Above const was eliminable but this not!*)
NotAnElimination
| EliminationFix (minarg',infos) ->
let refs =
Array.map
(invert_name labs l names.(i) env sigma ref) names in
let new_minarg = max (minarg'+minarg-nargs) minarg' in
EliminationMutualFix (new_minarg,ref,(refs,infos))
| _ -> assert false)
| _ when isEvalRef env c' ->
(* Forget all \'s and args and do as if we had started with c' *)
let ref = destEvalRef c' in
(match reference_opt_value sigma env ref with
| None -> anomaly "Should have been trapped by compute_direct"
| Some c -> srec env (minarg-nargs) [] ref c)
| _ -> (* Should not occur *) NotAnElimination
in
match reference_opt_value sigma env ref with
| None -> (* Should not occur *) NotAnElimination
| Some c -> srec env 0 [] ref c
let compute_consteval sigma env ref =
match compute_consteval_direct sigma env ref with
| EliminationFix (_,(nbfix,_,_)) when nbfix <> 1 ->
compute_consteval_mutual_fix sigma env ref
| elim -> elim
let reference_eval sigma env = function
| EvalConst cst as ref ->
(try
Cstmap.find cst !eval_table
with Not_found -> begin
let v = compute_consteval sigma env ref in
eval_table := Cstmap.add cst v !eval_table;
v
end)
| ref -> compute_consteval sigma env ref
let rev_firstn_liftn fn ln =
let rec rfprec p res l =
if p = 0 then
res
else
match l with
| [] -> invalid_arg "Reduction.rev_firstn_liftn"
| a::rest -> rfprec (p-1) ((lift ln a)::res) rest
in
rfprec fn []
(* EliminationFix ([(yi1,Ti1);...;(yip,Tip)],n) means f is some
[y1:T1,...,yn:Tn](Fix(..) yi1 ... yip);
f is applied to largs and we need for recursive calls to build
[x1:Ti1',...,xp:Tip'](f a1..a(n-p) yi1 ... yip)
where a1...an are the n first arguments of largs and Tik' is Tik[yil=al]
To check ... *)
let make_elim_fun (names,(nbfix,lv,n)) largs =
let labs = list_firstn n (list_of_stack largs) in
let p = List.length lv in
let ylv = List.map fst lv in
let la' = list_map_i
(fun q aq ->
try (mkRel (p+1-(list_index (n-q) ylv)))
with Not_found -> aq) 0
(List.map (lift p) labs)
in
fun i ->
match names.(i) with
| None -> None
| Some ref -> Some (
(* let fi =
if nbfix = 1 then
mkEvalRef ref
else
match ref with
| EvalConst (sp,args) ->
mkConst (make_path (dirpath sp) id (kind_of_path sp),args)
| _ -> anomaly "elimination of local fixpoints not implemented"
in
*)
list_fold_left_i
(fun i c (k,a) ->
mkLambda (Name(id_of_string"x"),
substl (rev_firstn_liftn (n-k) (-i) la') a,
c))
1 (applistc (mkEvalRef ref) la') (List.rev lv))
(* [f] is convertible to [Fix(recindices,bodynum),bodyvect)] make
the reduction using this extra information *)
let contract_fix_use_function f
((recindices,bodynum),(types,names,bodies as typedbodies)) =
let nbodies = Array.length recindices in
let make_Fi j = match f j with
| None -> mkFix((recindices,j),typedbodies)
| Some c -> c in
(* match List.nth names j with Name id -> f id | _ -> assert false in*)
let lbodies = list_tabulate make_Fi nbodies in
substl (List.rev lbodies) bodies.(bodynum)
let reduce_fix_use_function f whfun fix stack =
match fix_recarg fix stack with
| None -> NotReducible
| Some (recargnum,recarg) ->
let (recarg'hd,_ as recarg') =
if isRel recarg then
(* The recarg cannot be a local def, no worry about the right env *)
(recarg, empty_stack)
else
whfun (recarg, empty_stack) in
let stack' = stack_assign stack recargnum (app_stack recarg') in
(match kind_of_term recarg'hd with
| Construct _ ->
Reduced (contract_fix_use_function f fix,stack')
| _ -> NotReducible)
let contract_cofix_use_function f (bodynum,(_,names,bodies as typedbodies)) =
let nbodies = Array.length bodies in
let make_Fi j = match f j with
| None -> mkCoFix(j,typedbodies)
| Some c -> c in
(* match List.nth names j with Name id -> f id | _ -> assert false in*)
let subbodies = list_tabulate make_Fi nbodies in
substl subbodies bodies.(bodynum)
let reduce_mind_case_use_function func env mia =
match kind_of_term mia.mconstr with
| Construct(ind_sp,i as cstr_sp) ->
let real_cargs = list_skipn mia.mci.ci_npar mia.mcargs in
applist (mia.mlf.(i-1), real_cargs)
| CoFix (_,(names,_,_) as cofix) ->
let build_fix_name i =
match names.(i) with
| Name id ->
if isConst func then
let (mp,dp,_) = repr_kn (destConst func) in
let kn = make_kn mp dp (label_of_id id) in
(match constant_opt_value env kn with
| None -> None
| Some _ -> Some (mkConst kn))
else None
| Anonymous -> None in
let cofix_def = contract_cofix_use_function build_fix_name cofix in
mkCase (mia.mci, mia.mP, applist(cofix_def,mia.mcargs), mia.mlf)
| _ -> assert false
let special_red_case sigma env whfun (ci, p, c, lf) =
let rec redrec s =
let (constr, cargs) = whfun s in
if isEvalRef env constr then
let ref = destEvalRef constr in
match reference_opt_value sigma env ref with
| None -> raise Redelimination
| Some gvalue ->
if reducible_mind_case gvalue then
reduce_mind_case_use_function constr env
{mP=p; mconstr=gvalue; mcargs=list_of_stack cargs;
mci=ci; mlf=lf}
else
redrec (gvalue, cargs)
else
if reducible_mind_case constr then
reduce_mind_case
{mP=p; mconstr=constr; mcargs=list_of_stack cargs;
mci=ci; mlf=lf}
else
raise Redelimination
in
redrec (c, empty_stack)
let rec red_elim_const env sigma ref largs =
match reference_eval sigma env ref with
| EliminationCases n when stack_args_size largs >= n ->
let c = reference_value sigma env ref in
let c', lrest = whd_betadelta_state env sigma (c,largs) in
(special_red_case sigma env (construct_const env sigma) (destCase c'),
lrest)
| EliminationFix (min,infos) when stack_args_size largs >=min ->
let c = reference_value sigma env ref in
let d, lrest = whd_betadelta_state env sigma (c,largs) in
let f = make_elim_fun ([|Some ref|],infos) largs in
let co = construct_const env sigma in
(match reduce_fix_use_function f co (destFix d) lrest with
| NotReducible -> raise Redelimination
| Reduced (c,rest) -> (nf_beta c, rest))
| EliminationMutualFix (min,refgoal,refinfos)
when stack_args_size largs >= min ->
let rec descend ref args =
let c = reference_value sigma env ref in
if ref = refgoal then
(c,args)
else
let c', lrest = whd_betalet_state (c,args) in
descend (destEvalRef c') lrest in
let (_, midargs as s) = descend ref largs in
let d, lrest = whd_betadelta_state env sigma s in
let f = make_elim_fun refinfos midargs in
let co = construct_const env sigma in
(match reduce_fix_use_function f co (destFix d) lrest with
| NotReducible -> raise Redelimination
| Reduced (c,rest) -> (nf_beta c, rest))
| _ -> raise Redelimination
and construct_const env sigma =
let rec hnfstack (x, stack as s) =
match kind_of_term x with
| Cast (c,_) -> hnfstack (c, stack)
| App (f,cl) -> hnfstack (f, append_stack cl stack)
| Lambda (id,t,c) ->
(match decomp_stack stack with
| None -> assert false
| Some (c',rest) ->
stacklam hnfstack [c'] c rest)
| LetIn (n,b,t,c) -> stacklam hnfstack [b] c stack
| Case (ci,p,c,lf) ->
hnfstack
(special_red_case sigma env
(construct_const env sigma) (ci,p,c,lf), stack)
| Construct _ -> s
| CoFix _ -> s
| Fix fix ->
(match reduce_fix hnfstack fix stack with
| Reduced s' -> hnfstack s'
| NotReducible -> raise Redelimination)
| _ when isEvalRef env x ->
let ref = destEvalRef x in
(try
hnfstack (red_elim_const env sigma ref stack)
with Redelimination ->
(match reference_opt_value sigma env ref with
| Some cval ->
(match kind_of_term cval with
| CoFix _ -> s
| _ -> hnfstack (cval, stack))
| None ->
raise Redelimination))
| _ -> raise Redelimination
in
hnfstack
(************************************************************************)
(* Special Purpose Reduction Strategies *)
(* Red reduction tactic: reduction to a product *)
let internal_red_product env sigma c =
let simpfun = clos_norm_flags betaiotazeta env sigma in
let rec redrec env x =
match kind_of_term x with
| App (f,l) ->
(match kind_of_term f with
| Fix fix ->
let stack = append_stack l empty_stack in
(match fix_recarg fix stack with
| None -> raise Redelimination
| Some (recargnum,recarg) ->
let recarg' = redrec env recarg in
let stack' = stack_assign stack recargnum recarg' in
simpfun (app_stack (f,stack')))
| _ -> simpfun (appvect (redrec env f, l)))
| Cast (c,_) -> redrec env c
| Prod (x,a,b) -> mkProd (x, a, redrec (push_rel (x,None,a) env) b)
| LetIn (x,a,b,t) -> redrec env (subst1 a t)
| Case (ci,p,d,lf) -> simpfun (mkCase (ci,p,redrec env d,lf))
| _ when isEvalRef env x ->
(* TO DO: re-fold fixpoints after expansion *)
(* to get true one-step reductions *)
let ref = destEvalRef x in
(match reference_opt_value sigma env ref with
| None -> raise Redelimination
| Some c -> c)
| _ -> raise Redelimination
in redrec env c
let red_product env sigma c =
try internal_red_product env sigma c
with Redelimination -> error "Not reducible"
(* Hnf reduction tactic: *)
let hnf_constr env sigma c =
let rec redrec (x, largs as s) =
match kind_of_term x with
| Lambda (n,t,c) ->
(match decomp_stack largs with
| None -> app_stack s
| Some (a,rest) ->
stacklam redrec [a] c rest)
| LetIn (n,b,t,c) -> stacklam redrec [b] c largs
| App (f,cl) -> redrec (f, append_stack cl largs)
| Cast (c,_) -> redrec (c, largs)
| Case (ci,p,c,lf) ->
(try
redrec
(special_red_case sigma env (whd_betadeltaiota_state env sigma)
(ci, p, c, lf), largs)
with Redelimination ->
app_stack s)
| Fix fix ->
(match reduce_fix (whd_betadeltaiota_state env sigma) fix largs with
| Reduced s' -> redrec s'
| NotReducible -> app_stack s)
| _ when isEvalRef env x ->
let ref = destEvalRef x in
(try
let (c',lrest) = red_elim_const env sigma ref largs in
redrec (c', lrest)
with Redelimination ->
match reference_opt_value sigma env ref with
| Some c ->
(match kind_of_term (snd (decompose_lam c)) with
| CoFix _ | Fix _ -> app_stack (x,largs)
| _ -> redrec (c, largs))
| None -> app_stack s)
| _ -> app_stack s
in
redrec (c, empty_stack)
(* Simpl reduction tactic: same as simplify, but also reduces
elimination constants *)
let whd_nf env sigma c =
let rec nf_app (c, stack as s) =
match kind_of_term c with
| Lambda (name,c1,c2) ->
(match decomp_stack stack with
| None -> (c,empty_stack)
| Some (a1,rest) ->
stacklam nf_app [a1] c2 rest)
| LetIn (n,b,t,c) -> stacklam nf_app [b] c stack
| App (f,cl) -> nf_app (f, append_stack cl stack)
| Cast (c,_) -> nf_app (c, stack)
| Case (ci,p,d,lf) ->
(try
nf_app (special_red_case sigma env nf_app (ci,p,d,lf), stack)
with Redelimination ->
s)
| Fix fix ->
(match reduce_fix nf_app fix stack with
| Reduced s' -> nf_app s'
| NotReducible -> s)
| _ when isEvalRef env c ->
(try
nf_app (red_elim_const env sigma (destEvalRef c) stack)
with Redelimination ->
s)
| _ -> s
in
app_stack (nf_app (c, empty_stack))
let nf env sigma c = strong whd_nf env sigma c
let is_reference c =
try let r = reference_of_constr c in true with _ -> false
let is_head c t =
match kind_of_term t with
| App (f,_) -> f = c
| _ -> false
let contextually byhead (locs,c) f env sigma t =
let maxocc = List.fold_right max locs 0 in
let pos = ref 1 in
let check = ref true in
let except = List.exists (fun n -> n<0) locs in
if except & (List.exists (fun n -> n>=0) locs)
then error "mixing of positive and negative occurences"
else
let rec traverse (env,c as envc) t =
if locs <> [] & (not except) & (!pos > maxocc) then t
else
if (not byhead & eq_constr c t) or (byhead & is_head c t) then
let ok =
if except then not (List.mem (- !pos) locs)
else (locs = [] or List.mem !pos locs) in
incr pos;
if ok then
f env sigma t
else if byhead then
(* find other occurrences of c in t; TODO: ensure left-to-right *)
let (f,l) = destApplication t in
mkApp (f, array_map_left (traverse envc) l)
else
t
else
map_constr_with_binders_left_to_right
(fun d (env,c) -> (push_rel d env,lift 1 c))
traverse envc t
in
let t' = traverse (env,c) t in
if locs <> [] & List.exists (fun o -> o >= !pos or o <= - !pos) locs then
errorlabstrm "contextually" (str "Too few occurences");
t'
(* linear bindings (following pretty-printer) of the value of name in c.
* n is the number of the next occurence of name.
* ol is the occurence list to find. *)
let rec substlin env name n ol c =
match kind_of_term c with
| Const kn when EvalConstRef kn = name ->
if List.hd ol = n then
try
(n+1, List.tl ol, constant_value env kn)
with
NotEvaluableConst _ ->
errorlabstrm "substlin"
(pr_kn kn ++ str " is not a defined constant")
else
((n+1), ol, c)
| Var id when EvalVarRef id = name ->
if List.hd ol = n then
match lookup_named id env with
| (_,Some c,_) -> (n+1, List.tl ol, c)
| _ ->
errorlabstrm "substlin"
(pr_id id ++ str " is not a defined constant")
else
((n+1), ol, c)
(* INEFFICIENT: OPTIMIZE *)
| App (c1,cl) ->
Array.fold_left
(fun (n1,ol1,c1') c2 ->
(match ol1 with
| [] -> (n1,[],applist(c1',[c2]))
| _ ->
let (n2,ol2,c2') = substlin env name n1 ol1 c2 in
(n2,ol2,applist(c1',[c2']))))
(substlin env name n ol c1) cl
| Lambda (na,c1,c2) ->
let (n1,ol1,c1') = substlin env name n ol c1 in
(match ol1 with
| [] -> (n1,[],mkLambda (na,c1',c2))
| _ ->
let (n2,ol2,c2') = substlin env name n1 ol1 c2 in
(n2,ol2,mkLambda (na,c1',c2')))
| LetIn (na,c1,t,c2) ->
let (n1,ol1,c1') = substlin env name n ol c1 in
(match ol1 with
| [] -> (n1,[],mkLetIn (na,c1',t,c2))
| _ ->
let (n2,ol2,c2') = substlin env name n1 ol1 c2 in
(n2,ol2,mkLetIn (na,c1',t,c2')))
| Prod (na,c1,c2) ->
let (n1,ol1,c1') = substlin env name n ol c1 in
(match ol1 with
| [] -> (n1,[],mkProd (na,c1',c2))
| _ ->
let (n2,ol2,c2') = substlin env name n1 ol1 c2 in
(n2,ol2,mkProd (na,c1',c2')))
| Case (ci,p,d,llf) ->
let rec substlist nn oll = function
| [] -> (nn,oll,[])
| f::lfe ->
let (nn1,oll1,f') = substlin env name nn oll f in
(match oll1 with
| [] -> (nn1,[],f'::lfe)
| _ ->
let (nn2,oll2,lfe') = substlist nn1 oll1 lfe in
(nn2,oll2,f'::lfe'))
in
let (n1,ol1,p') = substlin env name n ol p in (* ATTENTION ERREUR *)
(match ol1 with (* si P pas affiche *)
| [] -> (n1,[],mkCase (ci, p', d, llf))
| _ ->
let (n2,ol2,d') = substlin env name n1 ol1 d in
(match ol2 with
| [] -> (n2,[],mkCase (ci, p', d', llf))
| _ ->
let (n3,ol3,lf') = substlist n2 ol2 (Array.to_list llf)
in (n3,ol3,mkCase (ci, p', d', Array.of_list lf'))))
| Cast (c1,c2) ->
let (n1,ol1,c1') = substlin env name n ol c1 in
(match ol1 with
| [] -> (n1,[],mkCast (c1',c2))
| _ ->
let (n2,ol2,c2') = substlin env name n1 ol1 c2 in
(n2,ol2,mkCast (c1',c2')))
| Fix _ ->
(warning "do not consider occurrences inside fixpoints"; (n,ol,c))
| CoFix _ ->
(warning "do not consider occurrences inside cofixpoints"; (n,ol,c))
| (Rel _|Meta _|Var _|Sort _
|Evar _|Const _|Ind _|Construct _) -> (n,ol,c)
let string_of_evaluable_ref env = function
| EvalVarRef id -> string_of_id id
| EvalConstRef kn ->
string_of_qualid
(Nametab.shortest_qualid_of_global (vars_of_env env) (ConstRef kn))
let unfold env sigma name =
if is_evaluable env name then
clos_norm_flags (unfold_red name) env sigma
else
error (string_of_evaluable_ref env name^" is opaque")
(* [unfoldoccs : (readable_constraints -> (int list * section_path) -> constr -> constr)]
* Unfolds the constant name in a term c following a list of occurrences occl.
* at the occurrences of occ_list. If occ_list is empty, unfold all occurences.
* Performs a betaiota reduction after unfolding. *)
let unfoldoccs env sigma (occl,name) c =
match occl with
| [] -> unfold env sigma name c
| l ->
match substlin env name 1 (Sort.list (<) l) c with
| (_,[],uc) -> nf_betaiota uc
| (1,_,_) ->
error ((string_of_evaluable_ref env name)^" does not occur")
| _ -> error ("bad occurrence numbers of "
^(string_of_evaluable_ref env name))
(* Unfold reduction tactic: *)
let unfoldn loccname env sigma c =
List.fold_left (fun c occname -> unfoldoccs env sigma occname c) c loccname
(* Re-folding constants tactics: refold com in term c *)
let fold_one_com com env sigma c =
let rcom =
try red_product env sigma com
with Redelimination -> error "Not reducible" in
subst1 com (subst_term rcom c)
let fold_commands cl env sigma c =
List.fold_right (fun com -> fold_one_com com env sigma) (List.rev cl) c
(* call by value reduction functions *)
let cbv_norm_flags flags env sigma t =
cbv_norm (create_cbv_infos flags env) (nf_evar sigma t)
let cbv_beta = cbv_norm_flags beta empty_env Evd.empty
let cbv_betaiota = cbv_norm_flags betaiota empty_env Evd.empty
let cbv_betadeltaiota env sigma = cbv_norm_flags betadeltaiota env sigma
let compute = cbv_betadeltaiota
(* Pattern *)
(* gives [na:ta]c' such that c converts to ([na:ta]c' a), abstracting only
* the specified occurrences. *)
let abstract_scheme env sigma (locc,a) t =
let ta = Retyping.get_type_of env sigma a in
let na = named_hd env ta Anonymous in
if occur_meta ta then error "cannot find a type for the generalisation";
if occur_meta a then
mkLambda (na,ta,t)
else
mkLambda (na, ta,subst_term_occ locc a t)
let pattern_occs loccs_trm env sigma c =
let abstr_trm = List.fold_right (abstract_scheme env sigma) loccs_trm c in
let _ = Typing.type_of env sigma abstr_trm in
applist(abstr_trm, List.map snd loccs_trm)
(* Generic reduction: reduction functions used in reduction tactics *)
type red_expr = (constr, evaluable_global_reference) red_expr_gen
open RedFlags
let make_flag_constant = function
| EvalVarRef id -> fVAR id
| EvalConstRef sp -> fCONST sp
let make_flag f =
let red = no_red in
let red = if f.rBeta then red_add red fBETA else red in
let red = if f.rIota then red_add red fIOTA else red in
let red = if f.rZeta then red_add red fZETA else red in
let red =
if f.rDelta then (* All but rConst *)
let red = red_add red fDELTA in
let red = red_add_transparent red (Conv_oracle.freeze ()) in
List.fold_right
(fun v red -> red_sub red (make_flag_constant v))
f.rConst red
else (* Only rConst *)
let red = red_add_transparent (red_add red fDELTA) all_opaque in
List.fold_right
(fun v red -> red_add red (make_flag_constant v))
f.rConst red
in red
let red_expr_tab = ref Stringmap.empty
let declare_red_expr s f =
try
let _ = Stringmap.find s !red_expr_tab in
error ("There is already a reduction expression of name "^s)
with Not_found ->
red_expr_tab := Stringmap.add s f !red_expr_tab
let reduction_of_redexp = function
| Red internal -> if internal then internal_red_product else red_product
| Hnf -> hnf_constr
| Simpl (Some (_,c as lp)) -> contextually (is_reference c) lp nf
| Simpl None -> nf
| Cbv f -> cbv_norm_flags (make_flag f)
| Lazy f -> clos_norm_flags (make_flag f)
| Unfold ubinds -> unfoldn ubinds
| Fold cl -> fold_commands cl
| Pattern lp -> pattern_occs lp
| ExtraRedExpr s ->
(try Stringmap.find s !red_expr_tab
with Not_found -> error("unknown user-defined reduction \""^s^"\""))
(* Used in several tactics. *)
exception NotStepReducible
let one_step_reduce env sigma c =
let rec redrec (x, largs as s) =
match kind_of_term x with
| Lambda (n,t,c) ->
(match decomp_stack largs with
| None -> raise NotStepReducible
| Some (a,rest) -> (subst1 a c, rest))
| App (f,cl) -> redrec (f, append_stack cl largs)
| LetIn (_,f,_,cl) -> (subst1 f cl,largs)
| Case (ci,p,c,lf) ->
(try
(special_red_case sigma env (whd_betadeltaiota_state env sigma)
(ci,p,c,lf), largs)
with Redelimination -> raise NotStepReducible)
| Fix fix ->
(match reduce_fix (whd_betadeltaiota_state env sigma) fix largs with
| Reduced s' -> s'
| NotReducible -> raise NotStepReducible)
| Cast (c,_) -> redrec (c,largs)
| _ when isEvalRef env x ->
let ref =
try destEvalRef x
with Redelimination -> raise NotStepReducible in
(try
red_elim_const env sigma ref largs
with Redelimination ->
match reference_opt_value sigma env ref with
| Some d -> d, largs
| None -> raise NotStepReducible)
| _ -> raise NotStepReducible
in
app_stack (redrec (c, empty_stack))
(* put t as t'=(x1:A1)..(xn:An)B with B an inductive definition of name name
return name, B and t' *)
let reduce_to_ind_gen allow_product env sigma t =
let rec elimrec env t l =
let c, _ = Reductionops.whd_stack t in
match kind_of_term c with
| Ind (mind,args) -> ((mind,args),it_mkProd_or_LetIn t l)
| Prod (n,ty,t') ->
if allow_product then
elimrec (push_rel (n,None,t) env) t' ((n,None,ty)::l)
else
errorlabstrm "tactics__reduce_to_mind"
(str"Not an inductive definition")
| _ ->
(try
let t' = nf_betaiota (one_step_reduce env sigma t) in
elimrec env t' l
with NotStepReducible ->
errorlabstrm "tactics__reduce_to_mind"
(str"Not an inductive product"))
in
elimrec env t []
let reduce_to_quantified_ind x = reduce_to_ind_gen true x
let reduce_to_atomic_ind x = reduce_to_ind_gen false x
let reduce_to_ref_gen allow_product env sigma ref t =
let rec elimrec env t l =
let c, _ = Reductionops.whd_stack t in
match kind_of_term c with
| Prod (n,ty,t') ->
if allow_product then
elimrec (push_rel (n,None,t) env) t' ((n,None,ty)::l)
else
errorlabstrm "Tactics.reduce_to_ref_gen"
(str"Not an induction object of atomic type")
| _ ->
try
if reference_of_constr c = ref
then it_mkProd_or_LetIn t l
else raise Not_found
with Not_found ->
try
let t' = nf_betaiota (one_step_reduce env sigma t) in
elimrec env t' l
with NotStepReducible ->
errorlabstrm ""
(str "Not a statement of conclusion " ++
Nametab.pr_global_env Idset.empty ref)
in
elimrec env t []
let reduce_to_quantified_ref = reduce_to_ref_gen true
let reduce_to_atomic_ref = reduce_to_ref_gen false
|