File: proof_type.mli

package info (click to toggle)
coq 8.0pl2-2
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 14,228 kB
  • ctags: 17,685
  • sloc: ml: 97,070; makefile: 1,255; sh: 738; lisp: 456; awk: 15
file content (128 lines) | stat: -rw-r--r-- 4,139 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i $Id: proof_type.mli,v 1.33.2.1 2004/07/16 19:30:49 herbelin Exp $ i*)

(*i*)
open Environ
open Evd
open Names
open Libnames
open Term
open Util
open Tacexpr
open Rawterm
open Genarg
open Nametab
open Pattern
(*i*)

(* This module defines the structure of proof tree and the tactic type. So, it
   is used by [Proof_tree] and [Refiner] *)

type prim_rule =
  | Intro of identifier
  | Intro_replacing of identifier
  | Cut of bool * identifier * types
  | FixRule of identifier * int * (identifier * int * constr) list
  | Cofix of identifier * (identifier * constr) list
  | Refine of constr
  | Convert_concl of types
  | Convert_hyp of named_declaration
  | Thin of identifier list
  | ThinBody of identifier list
  | Move of bool * identifier * identifier
  | Rename of identifier * identifier

(* The type [goal sigma] is the type of subgoal. It has the following form
\begin{verbatim}
   it    = { evar_concl = [the conclusion of the subgoal]
             evar_hyps = [the hypotheses of the subgoal]
             evar_body = Evar_Empty;
             evar_info = { pgm    : [The Realizer pgm if any]
                           lc     : [Set of evar num occurring in subgoal] }}
   sigma = { stamp = [an int characterizing the ed field, for quick compare]
             ed : [A set of existential variables depending in the subgoal]
               number of first evar,
               it = { evar_concl = [the type of first evar]
                      evar_hyps = [the context of the evar]
                      evar_body = [the body of the Evar if any]
                      evar_info = { pgm    : [Useless ??]
                                    lc     : [Set of evars occurring
                                              in the type of evar] } };
               ...
               number of last evar, 
               it = { evar_concl = [the type of evar]
                      evar_hyps = [the context of the evar]
                      evar_body = [the body of the Evar if any]
                      evar_info = { pgm    : [Useless ??]
                                    lc     : [Set of evars occurring
                                              in the type of evar] } } }
   }
\end{verbatim}
*)

(* The type constructor ['a sigma] adds an evar map to an object of
  type ['a] (see below the form of a [goal sigma] *)
type 'a sigma = { 
  it : 'a ; 
  sigma : evar_map}

(*s Proof trees. 
  [ref] = [None] if the goal has still to be proved, 
  and [Some (r,l)] if the rule [r] was applied to the goal
  and gave [l] as subproofs to be completed. 
  if [ref = (Some(Tactic (t,p),l))] then [p] is the proof 
  that the goal can be proven if the goals in [l] are solved. *)
type proof_tree = {
  open_subgoals : int;
  goal : goal;
  ref : (rule * proof_tree list) option }

and rule =
  | Prim of prim_rule
  | Tactic of tactic_expr * proof_tree
  | Change_evars

and goal = evar_info

and tactic = goal sigma -> (goal list sigma * validation)

and validation = (proof_tree list -> proof_tree)

and tactic_expr =
  (constr,
   constr_pattern,
   evaluable_global_reference,
   inductive,
   ltac_constant,
   identifier,
   glob_tactic_expr)
     Tacexpr.gen_tactic_expr

and atomic_tactic_expr =
  (constr,
   constr_pattern,
   evaluable_global_reference,
   inductive,
   ltac_constant,
   identifier,
   glob_tactic_expr)
     Tacexpr.gen_atomic_tactic_expr

and tactic_arg =
  (constr,
   constr_pattern,
   evaluable_global_reference,
   inductive,
   ltac_constant,
   identifier,
   glob_tactic_expr)
     Tacexpr.gen_tactic_arg

type hyp_location = identifier Tacexpr.raw_hyp_location