1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id: refiner.ml,v 1.67.2.1 2004/07/16 19:30:49 herbelin Exp $ *)
open Pp
open Util
open Term
open Termops
open Sign
open Evd
open Sign
open Environ
open Reductionops
open Instantiate
open Type_errors
open Proof_trees
open Proof_type
open Logic
open Printer
type transformation_tactic = proof_tree -> (goal list * validation)
let hypotheses gl = gl.evar_hyps
let conclusion gl = gl.evar_concl
let sig_it x = x.it
let sig_sig x = x.sigma
let project_with_focus gls = rc_of_gc (gls.sigma) (gls.it)
let pf_status pf = pf.open_subgoals
let is_complete pf = (0 = (pf_status pf))
let on_open_proofs f pf = if is_complete pf then pf else f pf
let and_status = List.fold_left (+) 0
(* Normalizing evars in a goal. Called by tactic Local_constraints
(i.e. when the sigma of the proof tree changes). Detect if the
goal is unchanged *)
let norm_goal sigma gl =
let red_fun = Evarutil.nf_evar sigma in
let ncl = red_fun gl.evar_concl in
let ngl =
{ evar_concl = ncl;
evar_hyps =
Sign.fold_named_context
(fun (d,b,ty) sign ->
add_named_decl (d, option_app red_fun b, red_fun ty) sign)
gl.evar_hyps ~init:empty_named_context;
evar_body = gl.evar_body} in
if ngl = gl then None else Some ngl
(* [mapshape [ l1 ; ... ; lk ] [ v1 ; ... ; vk ] [ p_1 ; .... ; p_(l1+...+lk) ]]
gives
[ (v1 [p_1 ... p_l1]) ; (v2 [ p_(l1+1) ... p_(l1+l2) ]) ; ... ;
(vk [ p_(l1+...+l(k-1)+1) ... p_(l1+...lk) ]) ]
*)
let rec mapshape nl (fl : (proof_tree list -> proof_tree) list)
(l : proof_tree list) =
match nl with
| [] -> []
| h::t ->
let m,l = list_chop h l in
(List.hd fl m) :: (mapshape t (List.tl fl) l)
(* [frontier : proof_tree -> goal list * validation]
given a proof [p], [frontier p] gives [(l,v)] where [l] is the list of goals
to be solved to complete the proof, and [v] is the corresponding
validation *)
let rec frontier p =
match p.ref with
| None ->
([p.goal],
(fun lp' ->
let p' = List.hd lp' in
if p'.goal = p.goal then
p'
else
errorlabstrm "Refiner.frontier"
(str"frontier was handed back a ill-formed proof.")))
| Some(r,pfl) ->
let gll,vl = List.split(List.map frontier pfl) in
(List.flatten gll,
(fun retpfl ->
let pfl' = mapshape (List.map List.length gll) vl retpfl in
{ open_subgoals = and_status (List.map pf_status pfl');
goal = p.goal;
ref = Some(r,pfl')}))
let rec frontier_map_rec f n p =
if n < 1 || n > p.open_subgoals then p else
match p.ref with
| None ->
let p' = f p in
if p'.goal == p.goal || p'.goal = p.goal then p'
else
errorlabstrm "Refiner.frontier_map"
(str"frontier_map was handed back a ill-formed proof.")
| Some(r,pfl) ->
let (_,rpfl') =
List.fold_left
(fun (n,acc) p -> (n-p.open_subgoals,frontier_map_rec f n p::acc))
(n,[]) pfl in
let pfl' = List.rev rpfl' in
{ open_subgoals = and_status (List.map pf_status pfl');
goal = p.goal;
ref = Some(r,pfl')}
let frontier_map f n p =
let nmax = p.open_subgoals in
let n = if n < 0 then nmax + n + 1 else n in
if n < 1 || n > nmax then
errorlabstrm "Refiner.frontier_map" (str "No such subgoal");
frontier_map_rec f n p
let rec frontier_mapi_rec f i p =
if p.open_subgoals = 0 then p else
match p.ref with
| None ->
let p' = f i p in
if p'.goal == p.goal || p'.goal = p.goal then p'
else
errorlabstrm "Refiner.frontier_mapi"
(str"frontier_mapi was handed back a ill-formed proof.")
| Some(r,pfl) ->
let (_,rpfl') =
List.fold_left
(fun (n,acc) p -> (n+p.open_subgoals,frontier_mapi_rec f n p::acc))
(i,[]) pfl in
let pfl' = List.rev rpfl' in
{ open_subgoals = and_status (List.map pf_status pfl');
goal = p.goal;
ref = Some(r,pfl')}
let frontier_mapi f p = frontier_mapi_rec f 1 p
(* [list_pf p] is the lists of goals to be solved in order to complete the
proof [p] *)
let list_pf p = fst (frontier p)
let rec nb_unsolved_goals pf = pf.open_subgoals
(* leaf g is the canonical incomplete proof of a goal g *)
let leaf g = {
open_subgoals = 1;
goal = g;
ref = None }
(* Tactics table. *)
let tac_tab = Hashtbl.create 17
let add_tactic s t =
if Hashtbl.mem tac_tab s then
errorlabstrm ("Refiner.add_tactic: ")
(str ("Cannot redeclare tactic "^s));
Hashtbl.add tac_tab s t
let overwriting_add_tactic s t =
if Hashtbl.mem tac_tab s then begin
Hashtbl.remove tac_tab s;
warning ("Overwriting definition of tactic "^s)
end;
Hashtbl.add tac_tab s t
let lookup_tactic s =
try
Hashtbl.find tac_tab s
with Not_found ->
errorlabstrm "Refiner.lookup_tactic"
(str"The tactic " ++ str s ++ str" is not installed")
(* refiner r is a tactic applying the rule r *)
let bad_subproof () =
anomalylabstrm "Refiner.refiner" (str"Bad subproof in validation.")
let check_subproof_connection gl spfl =
if not (list_for_all2eq (fun g pf -> g=pf.goal) gl spfl)
then (bad_subproof (); false) else true
let abstract_tactic_expr te tacfun gls =
let (sgl_sigma,v) = tacfun gls in
let hidden_proof = v (List.map leaf sgl_sigma.it) in
(sgl_sigma,
fun spfl ->
assert (check_subproof_connection sgl_sigma.it spfl);
{ open_subgoals = and_status (List.map pf_status spfl);
goal = gls.it;
ref = Some(Tactic(te,hidden_proof),spfl) })
let refiner = function
| Prim pr as r ->
let prim_fun = prim_refiner pr in
(fun goal_sigma ->
let sgl = prim_fun goal_sigma.sigma goal_sigma.it in
({it=sgl; sigma = goal_sigma.sigma},
(fun spfl ->
assert (check_subproof_connection sgl spfl);
{ open_subgoals = and_status (List.map pf_status spfl);
goal = goal_sigma.it;
ref = Some(r,spfl) })))
| Tactic _ -> failwith "Refiner: should not occur"
(* [Local_constraints lc] makes the local constraints be [lc] and
normalizes evars *)
| Change_evars as r ->
(fun goal_sigma ->
let gl = goal_sigma.it in
(match norm_goal goal_sigma.sigma gl with
Some ngl ->
({it=[ngl];sigma=goal_sigma.sigma},
(fun spfl ->
assert (check_subproof_connection [ngl] spfl);
{ open_subgoals = (List.hd spfl).open_subgoals;
goal = gl;
ref = Some(r,spfl) }))
(* if the evar change does not affect the goal, leave the
proof tree unchanged *)
| None -> ({it=[gl];sigma=goal_sigma.sigma},
(fun spfl ->
assert (List.length spfl = 1);
List.hd spfl))))
let local_Constraints gl = refiner Change_evars gl
let norm_evar_tac = local_Constraints
(*
let vernac_tactic (s,args) =
let tacfun = lookup_tactic s args in
abstract_extra_tactic s args tacfun
*)
let abstract_tactic te = abstract_tactic_expr (Tacexpr.TacAtom (dummy_loc,te))
let abstract_extended_tactic s args =
abstract_tactic (Tacexpr.TacExtend (dummy_loc, s, args))
let vernac_tactic (s,args) =
let tacfun = lookup_tactic s args in
abstract_extended_tactic s args tacfun
(* [rc_of_pfsigma : proof sigma -> readable_constraints] *)
let rc_of_pfsigma sigma = rc_of_gc sigma.sigma sigma.it.goal
(* [rc_of_glsigma : proof sigma -> readable_constraints] *)
let rc_of_glsigma sigma = rc_of_gc sigma.sigma sigma.it
(* [extract_open_proof : proof_tree -> constr * (int * constr) list]
takes a (not necessarly complete) proof and gives a pair (pfterm,obl)
where pfterm is the constr corresponding to the proof
and [obl] is an [int*constr list] [ (m1,c1) ; ... ; (mn,cn)]
where the mi are metavariables numbers, and ci are their types.
Their proof should be completed in order to complete the initial proof *)
let extract_open_proof sigma pf =
let next_meta =
let meta_cnt = ref 0 in
let rec f () =
incr meta_cnt;
if in_dom sigma (existential_of_int !meta_cnt) then f ()
else !meta_cnt
in f
in
let open_obligations = ref [] in
let rec proof_extractor vl = function
| {ref=Some(Prim _,_)} as pf -> prim_extractor proof_extractor vl pf
| {ref=Some(Tactic (_,hidden_proof),spfl)} ->
let sgl,v = frontier hidden_proof in
let flat_proof = v spfl in
proof_extractor vl flat_proof
| {ref=Some(Change_evars,[pf])} -> (proof_extractor vl) pf
| {ref=None;goal=goal} ->
let visible_rels =
map_succeed
(fun id ->
try let n = list_index id vl in (n,id)
with Not_found -> failwith "caught")
(ids_of_named_context goal.evar_hyps) in
let sorted_rels =
Sort.list (fun (n1,_) (n2,_) -> n1 > n2 ) visible_rels in
let sorted_env =
List.map (fun (n,id) -> (n,Sign.lookup_named id goal.evar_hyps))
sorted_rels in
let abs_concl =
List.fold_right (fun (_,decl) c -> mkNamedProd_or_LetIn decl c)
sorted_env goal.evar_concl in
let inst = List.filter (fun (_,(_,b,_)) -> b = None) sorted_env in
let meta = next_meta () in
open_obligations := (meta,abs_concl):: !open_obligations;
applist (mkMeta meta, List.map (fun (n,_) -> mkRel n) inst)
| _ -> anomaly "Bug : a case has been forgotten in proof_extractor"
in
let pfterm = proof_extractor [] pf in
(pfterm, List.rev !open_obligations)
(*********************)
(* Tacticals *)
(*********************)
(* unTAC : tactic -> goal sigma -> proof sigma *)
let unTAC tac g =
let (gl_sigma,v) = tac g in
{ it = v (List.map leaf gl_sigma.it); sigma = gl_sigma.sigma }
let unpackage glsig = (ref (glsig.sigma)),glsig.it
let repackage r v = {it=v;sigma = !r}
let apply_sig_tac r tac g =
check_for_interrupt (); (* Breakpoint *)
let glsigma,v = tac (repackage r g) in
r := glsigma.sigma;
(glsigma.it,v)
let idtac_valid = function
[pf] -> pf
| _ -> anomaly "Refiner.idtac_valid"
(* [goal_goal_list : goal sigma -> goal list sigma] *)
let goal_goal_list gls = {it=[gls.it];sigma=gls.sigma}
(* identity tactic without any message *)
let tclIDTAC gls = (goal_goal_list gls, idtac_valid)
(* the message printing identity tactic *)
let tclIDTAC_MESSAGE s gls =
if s = "" then tclIDTAC gls
else
begin
msgnl (str ("Idtac says : "^s)); tclIDTAC gls
end
(* General failure tactic *)
let tclFAIL_s s gls = errorlabstrm "Refiner.tclFAIL_s" (str s)
(* A special exception for levels for the Fail tactic *)
exception FailError of int * string
(* The Fail tactic *)
let tclFAIL lvl s g = raise (FailError (lvl,s))
let start_tac gls =
let (sigr,g) = unpackage gls in
(sigr,[g],idtac_valid)
let finish_tac (sigr,gl,p) = (repackage sigr gl, p)
(* Apply [taci.(i)] on the first n-th subgoals and [tac] on the others *)
let thensf_tac taci tac (sigr,gs,p) =
let n = Array.length taci in
let nsg = List.length gs in
if nsg<n then errorlabstrm "Refiner.thensn_tac" (str "Not enough subgoals.");
let gll,pl =
List.split
(list_map_i (fun i -> apply_sig_tac sigr (if i<n then taci.(i) else tac))
0 gs) in
(sigr, List.flatten gll,
compose p (mapshape (List.map List.length gll) pl))
(* Apply [taci.(i)] on the last n-th subgoals and [tac] on the others *)
let thensl_tac tac taci (sigr,gs,p) =
let n = Array.length taci in
let nsg = List.length gs in
if nsg<n then errorlabstrm "Refiner.thensn_tac" (str "Not enough subgoals.");
let gll,pl =
List.split
(list_map_i (fun i -> apply_sig_tac sigr (if i<0 then tac else taci.(i)))
(n-nsg) gs) in
(sigr, List.flatten gll,
compose p (mapshape (List.map List.length gll) pl))
(* Apply [tac i] on the ith subgoal (no subgoals number check) *)
let thensi_tac tac (sigr,gs,p) =
let gll,pl =
List.split (list_map_i (fun i -> apply_sig_tac sigr (tac i)) 1 gs) in
(sigr, List.flatten gll, compose p (mapshape (List.map List.length gll) pl))
let then_tac tac = thensf_tac [||] tac
let non_existent_goal n =
errorlabstrm ("No such goal: "^(string_of_int n))
(str"Trying to apply a tactic to a non existent goal")
(* Apply tac on the i-th goal (if i>0). If i<0, then start counting from
the last goal (i=-1). *)
let theni_tac i tac ((_,gl,_) as subgoals) =
let nsg = List.length gl in
let k = if i < 0 then nsg + i + 1 else i in
if nsg < 1 then errorlabstrm "theni_tac" (str"No more subgoals.")
else if k >= 1 & k <= nsg then
thensf_tac
(Array.init k (fun i -> if i+1 = k then tac else tclIDTAC)) tclIDTAC
subgoals
else non_existent_goal k
(* [tclTHENSFIRSTn tac1 [|t1 ; ... ; tn|] tac2 gls] applies the tactic [tac1]
to [gls] and applies [t1], ..., [tn] to the [n] first resulting
subgoals, and [tac2] to the others subgoals. Raises an error if
the number of resulting subgoals is strictly less than [n] *)
let tclTHENSFIRSTn tac1 taci tac gls =
finish_tac (thensf_tac taci tac (then_tac tac1 (start_tac gls)))
(* [tclTHENSLASTn tac1 tac2 [|t1 ;...; tn|] gls] applies the tactic [tac1]
to [gls] and applies [t1], ..., [tn] to the [n] last resulting
subgoals, and [tac2] to the other subgoals. Raises an error if the
number of resulting subgoals is strictly less than [n] *)
let tclTHENSLASTn tac1 tac taci gls =
finish_tac (thensl_tac tac taci (then_tac tac1 (start_tac gls)))
(* [tclTHEN_i tac taci gls] applies the tactic [tac] to [gls] and applies
[(taci i)] to the i_th resulting subgoal (starting from 1), whatever the
number of subgoals is *)
let tclTHEN_i tac taci gls =
finish_tac (thensi_tac taci (then_tac tac (start_tac gls)))
let tclTHENLASTn tac1 taci = tclTHENSLASTn tac1 tclIDTAC taci
let tclTHENFIRSTn tac1 taci = tclTHENSFIRSTn tac1 taci tclIDTAC
(* [tclTHEN tac1 tac2 gls] applies the tactic [tac1] to [gls] and applies
[tac2] to every resulting subgoals *)
let tclTHEN tac1 tac2 = tclTHENSFIRSTn tac1 [||] tac2
(* [tclTHENSV tac1 [t1 ; ... ; tn] gls] applies the tactic [tac1] to
[gls] and applies [t1],..., [tn] to the [n] resulting subgoals. Raises
an error if the number of resulting subgoals is not [n] *)
let tclTHENSV tac1 tac2v =
tclTHENSFIRSTn tac1 tac2v (tclFAIL_s "Wrong number of tactics.")
let tclTHENS tac1 tac2l = tclTHENSV tac1 (Array.of_list tac2l)
(* [tclTHENLAST tac1 tac2 gls] applies the tactic [tac1] to [gls] and [tac2]
to the last resulting subgoal *)
let tclTHENLAST tac1 tac2 = tclTHENSLASTn tac1 tclIDTAC [|tac2|]
(* [tclTHENFIRST tac1 tac2 gls] applies the tactic [tac1] to [gls] and [tac2]
to the first resulting subgoal *)
let tclTHENFIRST tac1 tac2 = tclTHENSFIRSTn tac1 [|tac2|] tclIDTAC
(* [tclTHENLIST [t1;..;tn]] applies [t1] then [t2] ... then [tn]. More
convenient than [tclTHEN] when [n] is large. *)
let rec tclTHENLIST = function
[] -> tclIDTAC
| t1::tacl -> tclTHEN t1 (tclTHENLIST tacl)
(* various progress criterions *)
let same_goal gl subgoal =
(hypotheses subgoal) = (hypotheses gl) &
eq_constr (conclusion subgoal) (conclusion gl)
let weak_progress gls ptree =
(List.length gls.it <> 1) or
(not (same_goal (List.hd gls.it) ptree.it))
(* Il y avait ici un ts_eq ........ *)
let progress gls ptree =
(weak_progress gls ptree) or
(not (ptree.sigma == gls.sigma))
(* PROGRESS tac ptree applies tac to the goal ptree and fails if tac leaves
the goal unchanged *)
let tclPROGRESS tac ptree =
let rslt = tac ptree in
if progress (fst rslt) ptree then rslt
else errorlabstrm "Refiner.PROGRESS" (str"Failed to progress.")
(* weak_PROGRESS tac ptree applies tac to the goal ptree and fails
if tac leaves the goal unchanged, possibly modifying sigma *)
let tclWEAK_PROGRESS tac ptree =
let rslt = tac ptree in
if weak_progress (fst rslt) ptree then rslt
else errorlabstrm "Refiner.tclWEAK_PROGRESS" (str"Failed to progress.")
(* Same as tclWEAK_PROGRESS but fails also if tactics generates several goals,
one of them being identical to the original goal *)
let tclNOTSAMEGOAL (tac : tactic) goal =
let rslt = tac goal in
let gls = (fst rslt).it in
if List.exists (same_goal goal.it) gls
then errorlabstrm "Refiner.tclNOTSAMEGOAL"
(str"Tactic generated a subgoal identical to the original goal.")
else rslt
(* ORELSE0 t1 t2 tries to apply t1 and if it fails, applies t2 *)
let tclORELSE0 t1 t2 g =
try
t1 g
with (* Breakpoint *)
| e when catchable_exception e -> check_for_interrupt (); t2 g
| FailError (0,_) | Stdpp.Exc_located(_, FailError (0,_)) ->
check_for_interrupt (); t2 g
| FailError (lvl,s) -> raise (FailError (lvl - 1, s))
| Stdpp.Exc_located (s,FailError (lvl,s')) ->
raise (Stdpp.Exc_located (s,FailError (lvl - 1, s')))
(* ORELSE t1 t2 tries to apply t1 and if it fails or does not progress,
then applies t2 *)
let tclORELSE t1 t2 = tclORELSE0 (tclPROGRESS t1) t2
(* TRY f tries to apply f, and if it fails, leave the goal unchanged *)
let tclTRY f = (tclORELSE0 f tclIDTAC)
let tclTHENTRY f g = (tclTHEN f (tclTRY g))
(* Try the first tactic that does not fail in a list of tactics *)
let rec tclFIRST = function
| [] -> tclFAIL_s "No applicable tactic."
| t::rest -> tclORELSE0 t (tclFIRST rest)
let ite_gen tcal tac_if continue tac_else gl=
let success=ref false in
let tac_if0 gl=
let result=tac_if gl in
success:=true;result in
let tac_else0 e gl=
if !success then
raise e
else
tac_else gl in
try
tcal tac_if0 continue gl
with (* Breakpoint *)
| e when catchable_exception e ->
check_for_interrupt (); tac_else0 e gl
| (FailError (0,_) | Stdpp.Exc_located(_, FailError (0,_))) as e ->
check_for_interrupt (); tac_else0 e gl
| FailError (lvl,s) -> raise (FailError (lvl - 1, s))
| Stdpp.Exc_located (s,FailError (lvl,s')) ->
raise (Stdpp.Exc_located (s,FailError (lvl - 1, s')))
(* Try the first tactic and, if it succeeds, continue with
the second one, and if it fails, use the third one *)
let tclIFTHENELSE=ite_gen tclTHEN
(* Idem with tclTHENS and tclTHENSV *)
let tclIFTHENSELSE=ite_gen tclTHENS
let tclIFTHENSVELSE=ite_gen tclTHENSV
(* Fails if a tactic did not solve the goal *)
let tclCOMPLETE tac = tclTHEN tac (tclFAIL_s "Proof is not complete.")
(* Try the first thats solves the current goal *)
let tclSOLVE tacl = tclFIRST (List.map tclCOMPLETE tacl)
(* Iteration tacticals *)
let tclDO n t =
let rec dorec k =
if k < 0 then errorlabstrm "Refiner.tclDO"
(str"Wrong argument : Do needs a positive integer.");
if k = 0 then tclIDTAC
else if k = 1 then t else (tclTHEN t (dorec (k-1)))
in
dorec n
(* Beware: call by need of CAML, g is needed *)
let rec tclREPEAT t g =
(tclORELSE (tclTHEN t (tclREPEAT t)) tclIDTAC) g
let tclAT_LEAST_ONCE t = (tclTHEN t (tclREPEAT t))
(* Repeat on the first subgoal (no failure if no more subgoal) *)
let rec tclREPEAT_MAIN t g =
(tclORELSE (tclTHEN_i t (fun i -> if i = 1 then (tclREPEAT_MAIN t) else
tclIDTAC)) tclIDTAC) g
(*s Tactics handling a list of goals. *)
type validation_list = proof_tree list -> proof_tree list
type tactic_list = (goal list sigma) -> (goal list sigma) * validation_list
(* Functions working on goal list for correct backtracking in Prolog *)
let tclFIRSTLIST = tclFIRST
let tclIDTAC_list gls = (gls, fun x -> x)
(* first_goal : goal list sigma -> goal sigma *)
let first_goal gls =
let gl = gls.it and sig_0 = gls.sigma in
if gl = [] then error "first_goal";
{ it = List.hd gl; sigma = sig_0 }
(* goal_goal_list : goal sigma -> goal list sigma *)
let goal_goal_list gls =
let gl = gls.it and sig_0 = gls.sigma in { it = [gl]; sigma = sig_0 }
(* tactic -> tactic_list : Apply a tactic to the first goal in the list *)
let apply_tac_list tac glls =
let (sigr,lg) = unpackage glls in
match lg with
| (g1::rest) ->
let (gl,p) = apply_sig_tac sigr tac g1 in
let n = List.length gl in
(repackage sigr (gl@rest),
fun pfl -> let (pfg,pfrest) = list_chop n pfl in (p pfg)::pfrest)
| _ -> error "apply_tac_list"
let then_tactic_list tacl1 tacl2 glls =
let (glls1,pl1) = tacl1 glls in
let (glls2,pl2) = tacl2 glls1 in
(glls2, compose pl1 pl2)
(* Transform a tactic_list into a tactic *)
let tactic_list_tactic tac gls =
let (glres,vl) = tac (goal_goal_list gls) in
(glres, compose idtac_valid vl)
(* The type of proof-trees state and a few utilities
A proof-tree state is built from a proof-tree, a set of global
constraints, and a stack which allows to navigate inside the
proof-tree remembering how to rebuild the global proof-tree
possibly after modification of one of the focused children proof-tree.
The number in the stack corresponds to
either the selected subtree and the validation is a function from a
proof-tree list consisting only of one proof-tree to the global
proof-tree
or -1 when the move is done behind a registered tactic in which
case the validation corresponds to a constant function giving back
the original proof-tree. *)
type pftreestate = {
tpf : proof_tree ;
tpfsigma : evar_map;
tstack : (int * validation) list }
let proof_of_pftreestate pts = pts.tpf
let is_top_pftreestate pts = pts.tstack = []
let cursor_of_pftreestate pts = List.map fst pts.tstack
let evc_of_pftreestate pts = pts.tpfsigma
let top_goal_of_pftreestate pts =
{ it = goal_of_proof pts.tpf; sigma = pts.tpfsigma }
let nth_goal_of_pftreestate n pts =
let goals = fst (frontier pts.tpf) in
try {it = List.nth goals (n-1); sigma = pts.tpfsigma }
with Invalid_argument _ | Failure _ -> non_existent_goal n
let descend n p =
match p.ref with
| None -> error "It is a leaf."
| Some(r,pfl) ->
if List.length pfl >= n then
(match list_chop (n-1) pfl with
| left,(wanted::right) ->
(wanted,
(fun pfl' ->
if (List.length pfl' = 1)
& (List.hd pfl').goal = wanted.goal
then
let pf' = List.hd pfl' in
let spfl = left@(pf'::right) in
let newstatus = and_status (List.map pf_status spfl) in
{ open_subgoals = newstatus;
goal = p.goal;
ref = Some(r,spfl) }
else
error "descend: validation"))
| _ -> assert false)
else
error "Too few subproofs"
let traverse n pts = match n with
| 0 -> (* go to the parent *)
(match pts.tstack with
| [] -> error "traverse: no ancestors"
| (_,v)::tl ->
{ tpf = v [pts.tpf];
tstack = tl;
tpfsigma = pts.tpfsigma })
| -1 -> (* go to the hidden tactic-proof, if any, otherwise fail *)
(match pts.tpf.ref with
| Some (Tactic (_,spf),_) ->
let v = (fun pfl -> pts.tpf) in
{ tpf = spf;
tstack = (-1,v)::pts.tstack;
tpfsigma = pts.tpfsigma }
| _ -> error "traverse: not a tactic-node")
| n -> (* when n>0, go to the nth child *)
let (npf,v) = descend n pts.tpf in
{ tpf = npf;
tpfsigma = pts.tpfsigma;
tstack = (n,v):: pts.tstack }
let change_constraints_pftreestate newgc pts = { pts with tpfsigma = newgc }
let app_tac sigr tac p =
let (gll,v) = tac {it=p.goal;sigma= !sigr} in
sigr := gll.sigma;
v (List.map leaf gll.it)
(* solve the nth subgoal with tactic tac *)
let solve_nth_pftreestate n tac pts =
let sigr = ref pts.tpfsigma in
let tpf' = frontier_map (app_tac sigr tac) n pts.tpf in
let tpf'' =
if !sigr == pts.tpfsigma then tpf'
else frontier_mapi (fun _ g -> app_tac sigr norm_evar_tac g) tpf' in
{ tpf = tpf'';
tpfsigma = !sigr;
tstack = pts.tstack }
let solve_pftreestate = solve_nth_pftreestate 1
(* This function implements a poor man's undo at the current goal.
This is a gross approximation as it does not attempt to clean correctly
the global constraints given in tpfsigma. *)
let weak_undo_pftreestate pts =
let pf = leaf pts.tpf.goal in
{ tpf = pf;
tpfsigma = pts.tpfsigma;
tstack = pts.tstack }
(* Gives a new proof (a leaf) of a goal gl *)
let mk_pftreestate g =
{ tpf = leaf g;
tstack = [];
tpfsigma = Evd.empty }
(* Extracts a constr from a proof-tree state ; raises an error if the
proof is not complete or the state does not correspond to the head
of the proof-tree *)
let extract_open_pftreestate pts =
extract_open_proof pts.tpfsigma pts.tpf
let extract_pftreestate pts =
if pts.tstack <> [] then
errorlabstrm "extract_pftreestate"
(str"Cannot extract from a proof-tree in which we have descended;" ++
spc () ++ str"Please ascend to the root");
let pfterm,subgoals = extract_open_pftreestate pts in
if subgoals <> [] then
errorlabstrm "extract_proof"
(str "Attempt to save an incomplete proof");
let env = Global.env_of_context pts.tpf.goal.evar_hyps in
strong whd_betaiotaevar env pts.tpfsigma pfterm
(***
local_strong (Evarutil.whd_ise (ts_it pts.tpfsigma)) pfterm
***)
(* Focus on the first leaf proof in a proof-tree state *)
let rec first_unproven pts =
let pf = (proof_of_pftreestate pts) in
if is_complete_proof pf then
errorlabstrm "first_unproven" (str"No unproven subgoals");
if is_leaf_proof pf then
pts
else
let childnum =
list_try_find_i
(fun n pf ->
if not(is_complete_proof pf) then n else failwith "caught")
1 (children_of_proof pf)
in
first_unproven (traverse childnum pts)
(* Focus on the last leaf proof in a proof-tree state *)
let rec last_unproven pts =
let pf = proof_of_pftreestate pts in
if is_complete_proof pf then
errorlabstrm "last_unproven" (str"No unproven subgoals");
if is_leaf_proof pf then
pts
else
let children = (children_of_proof pf) in
let nchilds = List.length children in
let childnum =
list_try_find_i
(fun n pf ->
if not(is_complete_proof pf) then n else failwith "caught")
1 (List.rev children)
in
last_unproven (traverse (nchilds-childnum+1) pts)
let rec nth_unproven n pts =
let pf = proof_of_pftreestate pts in
if is_complete_proof pf then
errorlabstrm "nth_unproven" (str"No unproven subgoals");
if is_leaf_proof pf then
if n = 1 then
pts
else
errorlabstrm "nth_unproven" (str"Not enough unproven subgoals")
else
let children = children_of_proof pf in
let rec process i k = function
| [] ->
errorlabstrm "nth_unproven" (str"Not enough unproven subgoals")
| pf1::rest ->
let k1 = nb_unsolved_goals pf1 in
if k1 < k then
process (i+1) (k-k1) rest
else
nth_unproven k (traverse i pts)
in
process 1 n children
let rec node_prev_unproven loc pts =
let pf = proof_of_pftreestate pts in
match cursor_of_pftreestate pts with
| [] -> last_unproven pts
| n::l ->
if is_complete_proof pf or loc = 1 then
node_prev_unproven n (traverse 0 pts)
else
let child = List.nth (children_of_proof pf) (loc - 2) in
if is_complete_proof child then
node_prev_unproven (loc - 1) pts
else
first_unproven (traverse (loc - 1) pts)
let rec node_next_unproven loc pts =
let pf = proof_of_pftreestate pts in
match cursor_of_pftreestate pts with
| [] -> first_unproven pts
| n::l ->
if is_complete_proof pf ||
loc = (List.length (children_of_proof pf)) then
node_next_unproven n (traverse 0 pts)
else if is_complete_proof (List.nth (children_of_proof pf) loc) then
node_next_unproven (loc + 1) pts
else
last_unproven(traverse (loc + 1) pts)
let next_unproven pts =
let pf = proof_of_pftreestate pts in
if is_leaf_proof pf then
match cursor_of_pftreestate pts with
| [] -> error "next_unproven"
| n::_ -> node_next_unproven n (traverse 0 pts)
else
node_next_unproven (List.length (children_of_proof pf)) pts
let prev_unproven pts =
let pf = proof_of_pftreestate pts in
if is_leaf_proof pf then
match cursor_of_pftreestate pts with
| [] -> error "prev_unproven"
| n::_ -> node_prev_unproven n (traverse 0 pts)
else
node_prev_unproven 1 pts
let rec top_of_tree pts =
if is_top_pftreestate pts then pts else top_of_tree(traverse 0 pts)
(* Pretty-printers. *)
open Pp
let pr_tactic = function
| Tacexpr.TacArg (Tacexpr.Tacexp t) ->
if !Options.v7 then
Pptactic.pr_glob_tactic t (*top tactic from tacinterp*)
else
Pptacticnew.pr_glob_tactic (Global.env()) t
| t ->
if !Options.v7 then
Pptactic.pr_tactic t
else
Pptacticnew.pr_tactic (Global.env()) t
let pr_rule = function
| Prim r -> hov 0 (pr_prim_rule r)
| Tactic (texp,_) -> hov 0 (pr_tactic texp)
| Change_evars ->
(* This is internal tactic and cannot be replayed at user-level.
Function pr_rule_dot below is used when we want to hide
Change_evars *)
str "Evar change"
(* Does not print change of evars *)
let pr_rule_dot = function
| Change_evars -> mt ()
| r -> pr_rule r ++ str"."
exception Different
(* We remove from the var context of env what is already in osign *)
let thin_sign osign sign =
Sign.fold_named_context
(fun (id,c,ty as d) sign ->
try
if Sign.lookup_named id osign = (id,c,ty) then sign
else raise Different
with Not_found | Different -> add_named_decl d sign)
sign ~init:empty_named_context
let rec print_proof sigma osign pf =
let {evar_hyps=hyps; evar_concl=cl;
evar_body=body} = pf.goal in
let hyps' = thin_sign osign hyps in
match pf.ref with
| None ->
hov 0 (pr_seq {evar_hyps=hyps'; evar_concl=cl; evar_body=body})
| Some(r,spfl) ->
hov 0
(hov 0 (pr_seq {evar_hyps=hyps'; evar_concl=cl; evar_body=body}) ++
spc () ++ str" BY " ++
hov 0 (pr_rule r) ++ fnl () ++
str" " ++
hov 0 (prlist_with_sep pr_fnl (print_proof sigma hyps) spfl)
)
let pr_change gl =
(str"Change " ++ prterm_env (Global.env()) gl.evar_concl ++ str".")
let rec print_script nochange sigma osign pf =
let {evar_hyps=sign; evar_concl=cl} = pf.goal in
match pf.ref with
| None ->
(if nochange then
(str"<Your Tactic Text here>")
else
pr_change pf.goal)
++ fnl ()
| Some(r,spfl) ->
((if nochange then (mt ()) else (pr_change pf.goal ++ fnl ())) ++
pr_rule_dot r ++ fnl () ++
prlist_with_sep pr_fnl
(print_script nochange sigma sign) spfl)
let print_treescript nochange sigma _osign pf =
let rec aux top pf =
let {evar_hyps=sign; evar_concl=cl} = pf.goal in
match pf.ref with
| None ->
if nochange then
(str"<Your Tactic Text here>")
else
(pr_change pf.goal)
| Some(r,spfl) ->
(if nochange then mt () else (pr_change pf.goal ++ fnl ())) ++
pr_rule_dot r ++
match spfl with
| [] -> mt ()
| [spf] -> fnl () ++ (if top then mt () else str " ") ++ aux top spf
| _ -> fnl () ++ str " " ++
hov 0 (prlist_with_sep fnl (aux false) spfl)
in hov 0 (aux true pf)
let rec print_info_script sigma osign pf =
let {evar_hyps=sign; evar_concl=cl} = pf.goal in
match pf.ref with
| None -> (mt ())
| Some(Change_evars,[spf]) ->
print_info_script sigma osign spf
| Some(r,spfl) ->
(pr_rule r ++
match spfl with
| [pf1] ->
if pf1.ref = None then
(str "." ++ fnl ())
else
(str";" ++ brk(1,3) ++
print_info_script sigma sign pf1)
| _ -> (str"." ++ fnl () ++
prlist_with_sep pr_fnl
(print_info_script sigma sign) spfl))
let format_print_info_script sigma osign pf =
hov 0 (print_info_script sigma osign pf)
let print_subscript sigma sign pf =
if is_tactic_proof pf then
format_print_info_script sigma sign (subproof_of_proof pf)
else
format_print_info_script sigma sign pf
let tclINFO (tac : tactic) gls =
let (sgl,v) as res = tac gls in
begin try
let pf = v (List.map leaf (sig_it sgl)) in
let sign = (sig_it gls).evar_hyps in
msgnl (hov 0 (str" == " ++
print_subscript (sig_sig gls) sign pf))
with e when catchable_exception e ->
msgnl (hov 0 (str "Info failed to apply validation"))
end;
res
|