1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(************************************************************************)
(* EqDecide *)
(* A tactic for deciding propositional equality on inductive types *)
(* by Eduardo Gimenez *)
(************************************************************************)
(*i camlp4deps: "parsing/grammar.cma" i*)
(* $Id: eqdecide.ml4,v 1.6.2.1 2004/07/16 19:30:53 herbelin Exp $ *)
open Util
open Names
open Nameops
open Term
open Declarations
open Tactics
open Tacticals
open Hiddentac
open Equality
open Auto
open Pattern
open Matching
open Hipattern
open Proof_trees
open Proof_type
open Tacmach
open Coqlib
(* This file containts the implementation of the tactics ``Decide
Equality'' and ``Compare''. They can be used to decide the
propositional equality of two objects that belongs to a small
inductive datatype --i.e., an inductive set such that all the
arguments of its constructors are non-functional sets.
The procedure for proving (x,y:R){x=y}+{~x=y} can be scketched as
follows:
1. Eliminate x and then y.
2. Try discrimination to solve those goals where x and y has
been introduced by different constructors.
3. If x and y have been introduced by the same constructor,
then analyse one by one the correspoing pairs of arguments.
If they are equal, rewrite one into the other. If they are
not, derive a contradiction from the injectiveness of the
constructor.
4. Once all the arguments have been rewritten, solve the left half
of the disjunction by reflexivity.
Eduardo Gimenez (30/3/98).
*)
let clear_last = (tclLAST_HYP (fun c -> (clear [destVar c])))
let mkBranches =
tclTHENSEQ
[intro;
tclLAST_HYP h_simplest_elim;
clear_last;
intros ;
tclLAST_HYP h_simplest_case;
clear_last;
intros]
let solveRightBranch =
tclTHEN h_simplest_right
(tclTHEN (intro_force true)
(onLastHyp (fun id -> Extratactics.h_discrHyp (Rawterm.NamedHyp id))))
let h_solveRightBranch =
Refiner.abstract_extended_tactic "solveRightBranch" [] solveRightBranch
(*
let h_solveRightBranch =
hide_atomic_tactic "solveRightBranch" solveRightBranch
*)
(* Constructs the type {c1=c2}+{~c1=c2} *)
let mkDecideEqGoal rectype c1 c2 g =
let equality = mkApp(build_coq_eq(), [|rectype; c1; c2|]) in
let disequality = mkApp(build_coq_not (), [|equality|]) in
mkApp(build_coq_sumbool (), [|equality; disequality |])
(* Constructs the type (x1,x2:R){x1=x2}+{~x1=x2} *)
let mkGenDecideEqGoal rectype g =
let hypnames = pf_ids_of_hyps g in
let xname = next_ident_away (id_of_string "x") hypnames
and yname = next_ident_away (id_of_string "y") hypnames in
(mkNamedProd xname rectype
(mkNamedProd yname rectype
(mkDecideEqGoal rectype (mkVar xname) (mkVar yname) g)))
let eqCase tac =
(tclTHEN intro
(tclTHEN (tclLAST_HYP Extratactics.h_rewriteLR)
(tclTHEN clear_last
tac)))
let diseqCase =
let diseq = id_of_string "diseq" in
let absurd = id_of_string "absurd" in
(tclTHEN (intro_using diseq)
(tclTHEN h_simplest_right
(tclTHEN red_in_concl
(tclTHEN (intro_using absurd)
(tclTHEN (h_simplest_apply (mkVar diseq))
(tclTHEN (Extratactics.h_injHyp (Rawterm.NamedHyp absurd))
full_trivial))))))
let solveArg a1 a2 tac g =
let rectype = pf_type_of g a1 in
let decide = mkDecideEqGoal rectype a1 a2 g in
(tclTHENS
(h_elim_type decide)
[(eqCase tac);diseqCase;default_auto]) g
let solveLeftBranch rectype g =
try
let (lhs,rhs) = match_eqdec_partial (pf_concl g) in
let (mib,mip) = Global.lookup_inductive rectype in
let nparams = mip.mind_nparams in
let getargs l = list_skipn nparams (snd (decompose_app l)) in
let rargs = getargs rhs
and largs = getargs lhs in
List.fold_right2
solveArg largs rargs (tclTHEN h_simplest_left h_reflexivity) g
with PatternMatchingFailure -> error "Unexpected conclusion!"
(* The tactic Decide Equality *)
let hd_app c = match kind_of_term c with
| App (h,_) -> h
| _ -> c
let decideGralEquality g =
try
let typ = match_eqdec (pf_concl g) in
let headtyp = hd_app (pf_compute g typ) in
let rectype =
match kind_of_term headtyp with
| Ind mi -> mi
| _ -> error "This decision procedure only works for inductive objects"
in
(tclTHEN
mkBranches
(tclORELSE h_solveRightBranch (solveLeftBranch rectype))) g
with PatternMatchingFailure ->
error "The goal does not have the expected form"
let decideEquality c1 c2 g =
let rectype = (pf_type_of g c1) in
let decide = mkGenDecideEqGoal rectype g in
(tclTHENS (cut decide) [default_auto;decideGralEquality]) g
(* The tactic Compare *)
let compare c1 c2 g =
let rectype = pf_type_of g c1 in
let decide = mkDecideEqGoal rectype c1 c2 g in
(tclTHENS (cut decide)
[(tclTHEN intro
(tclTHEN (tclLAST_HYP simplest_case)
clear_last));
decideEquality c1 c2]) g
(* User syntax *)
TACTIC EXTEND DecideEquality
[ "Decide" "Equality" constr(c1) constr(c2) ] -> [ decideEquality c1 c2 ]
| [ "Decide" "Equality" ] -> [ decideGralEquality ]
END
TACTIC EXTEND Compare
| [ "Compare" constr(c1) constr(c2) ] -> [ compare c1 c2 ]
END
|