1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id: equality.ml,v 1.120.2.4 2004/11/21 22:24:09 herbelin Exp $ *)
open Pp
open Util
open Names
open Nameops
open Univ
open Term
open Termops
open Inductive
open Inductiveops
open Environ
open Libnames
open Reductionops
open Instantiate
open Typeops
open Typing
open Retyping
open Tacmach
open Proof_type
open Logic
open Evar_refiner
open Pattern
open Matching
open Hipattern
open Tacexpr
open Tacticals
open Tactics
open Tacred
open Rawterm
open Coqlib
open Vernacexpr
open Setoid_replace
open Declarations
(* Rewriting tactics *)
(* Warning : rewriting from left to right only works
if there exists in the context a theorem named <eqname>_<suffsort>_r
with type (A:<sort>)(x:A)(P:A->Prop)(P x)->(y:A)(eqname A y x)->(P y).
If another equality myeq is introduced, then corresponding theorems
myeq_ind_r, myeq_rec_r and myeq_rect_r have to be proven. See below.
-- Eduardo (19/8/97
*)
let general_rewrite_bindings lft2rgt (c,l) gl =
let ctype = pf_type_of gl c in
let env = pf_env gl in
let sigma = project gl in
let _,t = splay_prod env sigma ctype in
match match_with_equation t with
| None ->
if l = NoBindings
then general_s_rewrite lft2rgt c gl
else error "The term provided does not end with an equation"
| Some (hdcncl,_) ->
let hdcncls = string_of_inductive hdcncl in
let suffix = Indrec.elimination_suffix (elimination_sort_of_goal gl)in
let elim =
if lft2rgt then
pf_global gl (id_of_string (hdcncls^suffix^"_r"))
else
pf_global gl (id_of_string (hdcncls^suffix))
in
tclNOTSAMEGOAL (general_elim (c,l) (elim,NoBindings) ~allow_K:false) gl
(* was tclWEAK_PROGRESS which only fails for tactics generating one subgoal
and did not fail for useless conditional rewritings generating an
extra condition *)
(* Conditional rewriting, the success of a rewriting is related
to the resolution of the conditions by a given tactic *)
let conditional_rewrite lft2rgt tac (c,bl) =
tclTHENSFIRSTn (general_rewrite_bindings lft2rgt (c,bl))
[|tclIDTAC|] (tclCOMPLETE tac)
let general_rewrite lft2rgt c = general_rewrite_bindings lft2rgt (c,NoBindings)
let rewriteLR_bindings = general_rewrite_bindings true
let rewriteRL_bindings = general_rewrite_bindings false
let rewriteLR = general_rewrite true
let rewriteRL = general_rewrite false
(* The Rewrite in tactic *)
let general_rewrite_in lft2rgt id (c,l) gl =
let ctype = pf_type_of gl c in
let env = pf_env gl in
let sigma = project gl in
let _,t = splay_prod env sigma ctype in
match match_with_equation t with
| None -> (* Do not deal with setoids yet *)
error "The term provided does not end with an equation"
| Some (hdcncl,_) ->
let hdcncls = string_of_inductive hdcncl in
let suffix =
Indrec.elimination_suffix (elimination_sort_of_hyp id gl) in
let rwr_thm =
if lft2rgt then hdcncls^suffix else hdcncls^suffix^"_r" in
let elim =
try pf_global gl (id_of_string rwr_thm)
with Not_found ->
error ("Cannot find rewrite principle "^rwr_thm) in
general_elim_in id (c,l) (elim,NoBindings) gl
let rewriteLRin = general_rewrite_in true
let rewriteRLin = general_rewrite_in false
let conditional_rewrite_in lft2rgt id tac (c,bl) =
tclTHENSFIRSTn (general_rewrite_in lft2rgt id (c,bl))
[|tclIDTAC|] (tclCOMPLETE tac)
let rewriteRL_clause = function
| None -> rewriteRL_bindings
| Some id -> rewriteRLin id
(* Replacing tactics *)
(* eqt,sym_eqt : equality on Type and its symmetry theorem
c2 c1 : c1 is to be replaced by c2
unsafe : If true, do not check that c1 and c2 are convertible
gl : goal *)
let abstract_replace clause c2 c1 unsafe gl =
let t1 = pf_type_of gl c1
and t2 = pf_type_of gl c2 in
if unsafe or (pf_conv_x gl t1 t2) then
let e = (build_coq_eqT_data ()).eq in
let sym = (build_coq_eqT_data ()).sym in
let eq = applist (e, [t1;c1;c2]) in
tclTHENS (assert_tac false Anonymous eq)
[onLastHyp (fun id ->
tclTHEN
(tclTRY (rewriteRL_clause clause (mkVar id,NoBindings)))
(clear [id]));
tclORELSE assumption
(tclTRY (tclTHEN (apply sym) assumption))] gl
else
error "terms does not have convertible types"
let replace c2 c1 gl = abstract_replace None c2 c1 false gl
let replace_in id c2 c1 gl = abstract_replace (Some id) c2 c1 false gl
(* End of Eduardo's code. The rest of this file could be improved
using the functions match_with_equation, etc that I defined
in Pattern.ml.
-- Eduardo (19/8/97)
*)
(* Tactics for equality reasoning with the "eq" or "eqT"
relation This code will work with any equivalence relation which
is substitutive *)
(* Patterns *)
let build_coq_eq eq = eq.eq
let build_ind eq = eq.ind
let build_rect eq =
match eq.rect with
| None -> assert false
| Some c -> c
(*********** List of constructions depending of the initial state *)
let find_eq_pattern aritysort sort =
(* "eq" now accept arguments in Type and elimination to Type *)
Coqlib.build_coq_eq ()
(* [find_positions t1 t2]
will find the positions in the two terms which are suitable for
discrimination, or for injection. Obviously, if there is a
position which is suitable for discrimination, then we want to
exploit it, and not bother with injection. So when we find a
position which is suitable for discrimination, we will just raise
an exception with that position.
So the algorithm goes like this:
if [t1] and [t2] start with the same constructor, then we can
continue to try to find positions in the arguments of [t1] and
[t2].
if [t1] and [t2] do not start with the same constructor, then we
have found a discrimination position
if one [t1] or [t2] do not start with a constructor and the two
terms are not already convertible, then we have found an injection
position.
A discriminating position consists of a constructor-path and a pair
of operators. The constructor-path tells us how to get down to the
place where the two operators, which must differ, can be found.
An injecting position has two terms instead of the two operators,
since these terms are different, but not manifestly so.
A constructor-path is a list of pairs of (operator * int), where
the int (based at 0) tells us which argument of the operator we
descended into.
*)
exception DiscrFound of
(constructor * int) list * constructor * constructor
let find_positions env sigma t1 t2 =
let rec findrec posn t1 t2 =
let hd1,args1 = whd_betadeltaiota_stack env sigma t1 in
let hd2,args2 = whd_betadeltaiota_stack env sigma t2 in
match (kind_of_term hd1, kind_of_term hd2) with
| Construct sp1, Construct sp2
when List.length args1 = mis_constructor_nargs_env env sp1
->
(* both sides are fully applied constructors, so either we descend,
or we can discriminate here. *)
if sp1 = sp2 then
List.flatten
(list_map2_i
(fun i arg1 arg2 ->
findrec ((sp1,i)::posn) arg1 arg2)
0 args1 args2)
else
raise (DiscrFound(List.rev posn,sp1,sp2))
| _ ->
let t1_0 = applist (hd1,args1)
and t2_0 = applist (hd2,args2) in
if is_conv env sigma t1_0 t2_0 then
[]
else
let ty1_0 = get_type_of env sigma t1_0 in
match get_sort_family_of env sigma ty1_0 with
| InSet | InType -> [(List.rev posn,t1_0,t2_0)]
| InProp -> []
in
(try
Inr(findrec [] t1 t2)
with DiscrFound (path,c1,c2) ->
Inl (path,c1,c2))
let discriminable env sigma t1 t2 =
match find_positions env sigma t1 t2 with
| Inl _ -> true
| _ -> false
(* Once we have found a position, we need to project down to it. If
we are discriminating, then we need to produce False on one of the
branches of the discriminator, and True on the other one. So the
result type of the case-expressions is always Prop.
If we are injecting, then we need to discover the result-type.
This can be difficult, since the type of the two terms at the
injection-position can be different, and we need to find a
dependent sigma-type which generalizes them both.
We can get an approximation to the right type to choose by:
(0) Before beginning, we reserve a patvar for the default
value of the match, to be used in all the bogus branches.
(1) perform the case-splits, down to the site of the injection. At
each step, we have a term which is the "head" of the next
case-split. At the point when we actually reach the end of our
path, the "head" is the term to return. We compute its type, and
then, backwards, make a sigma-type with every free debruijn
reference in that type. We can be finer, and first do a S(TRONG)NF
on the type, so that we get the fewest number of references
possible.
(2) This gives us a closed type for the head, which we use for the
types of all the case-splits.
(3) Now, we can compute the type of one of T1, T2, and then unify
it with the type of the last component of the result-type, and this
will give us the bindings for the other arguments of the tuple.
*)
(* The algorithm, then is to perform successive case-splits. We have
the result-type of the case-split, and also the type of that
result-type. We have a "direction" we want to follow, i.e. a
constructor-number, and in all other "directions", we want to juse
use the default-value.
After doing the case-split, we call the afterfun, with the updated
environment, to produce the term for the desired "direction".
The assumption is made here that the result-type is not manifestly
functional, so we can just use the length of the branch-type to
know how many lambda's to stick in.
*)
(* [descend_then sigma env head dirn]
returns the number of products introduced, and the environment
which is active, in the body of the case-branch given by [dirn],
along with a continuation, which expects to be fed:
(1) the value of the body of the branch given by [dirn]
(2) the default-value
(3) the type of the default-value, which must also be the type of
the body of the [dirn] branch
the continuation then constructs the case-split.
*)
let descend_then sigma env head dirn =
let IndType (indf,_) as indt =
try find_rectype env sigma (get_type_of env sigma head)
with Not_found -> assert false in
let ind,_ = dest_ind_family indf in
let (mib,mip) = lookup_mind_specif env ind in
let cstr = get_constructors env indf in
let dirn_nlams = cstr.(dirn-1).cs_nargs in
let dirn_env = push_rel_context cstr.(dirn-1).cs_args env in
(dirn_nlams,
dirn_env,
(fun dirnval (dfltval,resty) ->
let arsign,_ = get_arity env indf in
let depind = build_dependent_inductive env indf in
let deparsign = (Anonymous,None,depind)::arsign in
let p =
it_mkLambda_or_LetIn (lift (mip.mind_nrealargs+1) resty) deparsign in
let build_branch i =
let result = if i = dirn then dirnval else dfltval in
it_mkLambda_or_LetIn_name env result cstr.(i-1).cs_args in
let brl =
List.map build_branch
(interval 1 (Array.length mip.mind_consnames)) in
let ci = make_default_case_info env RegularStyle ind in
mkCase (ci, p, head, Array.of_list brl)))
(* Now we need to construct the discriminator, given a discriminable
position. This boils down to:
(1) If the position is directly beneath us, then we need to do a
case-split, with result-type Prop, and stick True and False into
the branches, as is convenient.
(2) If the position is not directly beneath us, then we need to
call descend_then, to descend one step, and then recursively
construct the discriminator.
*)
(* [construct_discriminator env dirn headval]
constructs a case-split on [headval], with the [dirn]-th branch
giving [True], and all the rest giving False. *)
let construct_discriminator sigma env dirn c sort =
let (IndType(indf,_) as indt) =
try find_rectype env sigma (type_of env sigma c)
with Not_found ->
(* one can find Rel(k) in case of dependent constructors
like T := c : (A:Set)A->T and a discrimination
on (c bool true) = (c bool false)
CP : changed assert false in a more informative error
*)
errorlabstrm "Equality.construct_discriminator"
(str "Cannot discriminate on inductive constructors with
dependent types") in
let (ind,_) = dest_ind_family indf in
let (mib,mip) = lookup_mind_specif env ind in
let arsign,arsort = get_arity env indf in
let (true_0,false_0,sort_0) = build_coq_True(),build_coq_False(),Prop Null in
let depind = build_dependent_inductive env indf in
let deparsign = (Anonymous,None,depind)::arsign in
let p = it_mkLambda_or_LetIn (mkSort sort_0) deparsign in
let cstrs = get_constructors env indf in
let build_branch i =
let endpt = if i = dirn then true_0 else false_0 in
it_mkLambda_or_LetIn endpt cstrs.(i-1).cs_args in
let brl =
List.map build_branch(interval 1 (Array.length mip.mind_consnames)) in
let ci = make_default_case_info env RegularStyle ind in
mkCase (ci, p, c, Array.of_list brl)
let rec build_discriminator sigma env dirn c sort = function
| [] -> construct_discriminator sigma env dirn c sort
| ((sp,cnum),argnum)::l ->
let cty = type_of env sigma c in
let IndType (indf,_) =
try find_rectype env sigma cty with Not_found -> assert false in
let (ind,_) = dest_ind_family indf in
let (mib,mip) = lookup_mind_specif env ind in
let _,arsort = get_arity env indf in
let nparams = mip.mind_nparams in
let (cnum_nlams,cnum_env,kont) = descend_then sigma env c cnum in
let newc = mkRel(cnum_nlams-(argnum-nparams)) in
let subval = build_discriminator sigma cnum_env dirn newc sort l in
kont subval (build_coq_False (),mkSort (Prop Null))
let gen_absurdity id gl =
if is_empty_type (clause_type (onHyp id) gl)
then
simplest_elim (mkVar id) gl
else
errorlabstrm "Equality.gen_absurdity"
(str "Not the negation of an equality")
(* Precondition: eq is leibniz equality
returns ((eq_elim t t1 P i t2), absurd_term)
where P=[e:t]discriminator
absurd_term=False
*)
let discrimination_pf e (t,t1,t2) discriminator lbeq gls =
let i = build_coq_I () in
let absurd_term = build_coq_False () in
let eq_elim = build_ind lbeq in
(applist (eq_elim, [t;t1;mkNamedLambda e t discriminator;i;t2]), absurd_term)
exception NotDiscriminable
let discrEq (lbeq,(t,t1,t2)) id gls =
let sort = pf_type_of gls (pf_concl gls) in
let sigma = project gls in
let env = pf_env gls in
(match find_positions env sigma t1 t2 with
| Inr _ ->
errorlabstrm "discr" (str" Not a discriminable equality")
| Inl (cpath, (_,dirn), _) ->
let e = pf_get_new_id (id_of_string "ee") gls in
let e_env = push_named (e,None,t) env in
let discriminator =
build_discriminator sigma e_env dirn (mkVar e) sort cpath in
let (indt,_) = find_mrectype env sigma t in
let (pf, absurd_term) =
discrimination_pf e (t,t1,t2) discriminator lbeq gls
in
tclCOMPLETE((tclTHENS (cut_intro absurd_term)
([onLastHyp gen_absurdity;
refine (mkApp (pf, [| mkVar id |]))]))) gls)
let not_found_message id =
(str "The variable" ++ spc () ++ str (string_of_id id) ++ spc () ++
str" was not found in the current environment")
let onEquality tac id gls =
let eqn = pf_whd_betadeltaiota gls (pf_get_hyp_typ gls id) in
let eq =
try find_eq_data_decompose eqn
with PatternMatchingFailure ->
errorlabstrm "" (pr_id id ++ str": not a primitive equality")
in tac eq id gls
let check_equality tac id gls =
let eqn = pf_whd_betadeltaiota gls (pf_get_hyp_typ gls id) in
let eq =
try find_eq_data_decompose eqn
with PatternMatchingFailure ->
errorlabstrm "" (str "The goal should negate an equality")
in tac eq id gls
let onNegatedEquality tac gls =
if is_matching_not (pf_concl gls) then
(tclTHEN (tclTHEN hnf_in_concl intro) (onLastHyp(check_equality tac))) gls
else if is_matching_imp_False (pf_concl gls)then
(tclTHEN intro (onLastHyp (check_equality tac))) gls
else
errorlabstrm "extract_negated_equality_then"
(str"The goal should negate an equality")
let discrSimpleClause = function
| None -> onNegatedEquality discrEq
| Some (id,_,_) -> onEquality discrEq id
let discr = onEquality discrEq
let discrClause = onClauses discrSimpleClause
let discrEverywhere =
tclORELSE
(Tacticals.tryAllClauses discrSimpleClause)
(fun gls ->
errorlabstrm "DiscrEverywhere" (str" No discriminable equalities"))
let discr_tac = function
| None -> discrEverywhere
| Some id -> try_intros_until discr id
let discrConcl gls = discrClause onConcl gls
let discrHyp id gls = discrClause (onHyp id) gls
(* returns the sigma type (sigS, sigT) with the respective
constructor depending on the sort *)
let find_sigma_data s =
match s with
| Prop Pos -> build_sigma_set () (* Set *)
| Type _ -> build_sigma_type () (* Type *)
| Prop Null -> error "find_sigma_data"
(* [make_tuple env sigma (rterm,rty) lind] assumes [lind] is the lesser
index bound in [rty]
Then we build the term
[(existS A P (mkRel lind) rterm)] of type [(sigS A P)]
where [A] is the type of [mkRel lind] and [P] is [\na:A.rty{1/lind}]
*)
let make_tuple env sigma (rterm,rty) lind =
assert (dependent (mkRel lind) rty);
let {intro = exist_term; typ = sig_term} =
find_sigma_data (get_sort_of env sigma rty) in
let a = type_of env sigma (mkRel lind) in
let (na,_,_) = lookup_rel lind env in
(* We move [lind] to [1] and lift other rels > [lind] by 1 *)
let rty = lift (1-lind) (liftn lind (lind+1) rty) in
(* Now [lind] is [mkRel 1] and we abstract on (na:a) *)
let p = mkLambda (na, a, rty) in
(applist(exist_term,[a;p;(mkRel lind);rterm]),
applist(sig_term,[a;p]))
(* check that the free-references of the type of [c] are contained in
the free-references of the normal-form of that type. If the normal
form of the type contains fewer references, we want to return that
instead. *)
let minimal_free_rels env sigma (c,cty) =
let cty_rels = free_rels cty in
let nf_cty = nf_betadeltaiota env sigma cty in
let nf_rels = free_rels nf_cty in
if Intset.subset cty_rels nf_rels then
(cty,cty_rels)
else
(nf_cty,nf_rels)
(* [sig_clausal_form siglen ty]
Will explode [siglen] [sigS,sigT ]'s on [ty] (depending on the
type of ty), and return:
(1) a pattern, with meta-variables in it for various arguments,
which, when the metavariables are replaced with appropriate
terms, will have type [ty]
(2) an integer, which is the last argument - the one which we just
returned.
(3) a pattern, for the type of that last meta
(4) a typing for each patvar
WARNING: No checking is done to make sure that the
sigS(or sigT)'s are actually there.
- Only homogenious pairs are built i.e. pairs where all the
dependencies are of the same sort
[sig_clausal_form] proceed as follows: the default tuple is
constructed by taking the tuple-type, exploding the first [tuplen]
[sigS]'s, and replacing at each step the binder in the
right-hand-type by a fresh metavariable. In addition, on the way
back out, we will construct the pattern for the tuple which uses
these meta-vars.
This gives us a pattern, which we use to match against the type of
[dflt]; if that fails, then against the S(TRONG)NF of that type. If
both fail, then we just cannot construct our tuple. If one of
those succeed, then we can construct our value easily - we just use
the tuple-pattern.
*)
let sig_clausal_form env sigma sort_of_ty siglen ty (dFLT,dFLTty) =
let { intro = exist_term } = find_sigma_data sort_of_ty in
let isevars = Evarutil.create_evar_defs sigma in
let rec sigrec_clausal_form siglen p_i =
if siglen = 0 then
if Evarconv.the_conv_x_leq env isevars dFLTty p_i then
(* the_conv_x had a side-effect on isevars *)
dFLT
else
error "Cannot solve an unification problem"
else
let (a,p_i_minus_1) = match whd_beta_stack p_i with
| (_sigS,[a;p]) -> (a,p)
| _ -> anomaly "sig_clausal_form: should be a sigma type" in
let ev = Evarutil.new_isevar isevars env (dummy_loc,InternalHole)
(Evarutil.new_Type ()) in
let rty = beta_applist(p_i_minus_1,[ev]) in
let tuple_tail = sigrec_clausal_form (siglen-1) rty in
match
Instantiate.existential_opt_value (Evarutil.evars_of isevars)
(destEvar ev)
with
| Some w -> applist(exist_term,[a;p_i_minus_1;w;tuple_tail])
| None -> anomaly "Not enough components to build the dependent tuple"
in
let scf = sigrec_clausal_form siglen ty in
Evarutil.nf_evar (Evarutil.evars_of isevars) scf
(* The problem is to build a destructor (a generalization of the
predecessor) which, when applied to a term made of constructors
(say [Ci(e1,Cj(e2,Ck(...,term,...),...),...)]), returns a given
subterm of the term (say [term]).
Let [typ] be the type of [term]. If [term] has no dependencies in
the [e1], [e2], etc, then all is simple. If not, then we need to
encapsulated the dependencies into a dependent tuple in such a way
that the destructor has not a dependent type and rewriting can then
be applied. The destructor has the form
[e]Cases e of
| ...
| Ci (x1,x2,...) =>
Cases x2 of
| ...
| Cj (y1,y2,...) =>
Cases y2 of
| ...
| Ck (...,z,...) => z
| ... end
| ... end
| ... end
and the dependencies is expressed by the fact that [z] has a type
dependent in the x1, y1, ...
Assume [z] is typed as follows: env |- z:zty
If [zty] has no dependencies, this is simple. Otherwise, assume
[zty] has free (de Bruijn) variables in,...i1 then the role of
[make_iterated_tuple sigma env (term,typ) (z,zty)] is to build the
tuple
[existS [xn]Pn Rel(in) .. (existS [x2]P2 Rel(i2) (existS [x1]P1 Rel(i1) z))]
where P1 is zty[i1/x1], P2 is {x1 | P1[i2/x2]} etc.
To do this, we find the free (relative) references of the strong NF
of [z]'s type, gather them together in left-to-right order
(i.e. highest-numbered is farthest-left), and construct a big
iterated pair out of it. This only works when the references are
all themselves to members of [Set]s, because we use [sigS] to
construct the tuple.
Suppose now that our constructed tuple is of length [tuplen]. We
need also to construct a default value for the other branches of
the destructor. As default value, we take a tuple of the form
[existS [xn]Pn ?n (... existS [x2]P2 ?2 (existS [x1]P1 ?1 term))]
but for this we have to solve the following unification problem:
typ = zty[i1/?1;...;in/?n]
This is done by [sig_clausal_form].
*)
let make_iterated_tuple env sigma dflt (z,zty) =
let (zty,rels) = minimal_free_rels env sigma (z,zty) in
let sort_of_zty = get_sort_of env sigma zty in
let sorted_rels = Sort.list (<) (Intset.elements rels) in
let (tuple,tuplety) =
List.fold_left (make_tuple env sigma) (z,zty) sorted_rels
in
assert (closed0 tuplety);
let n = List.length sorted_rels in
let dfltval = sig_clausal_form env sigma sort_of_zty n tuplety dflt in
(tuple,tuplety,dfltval)
let rec build_injrec sigma env (t1,t2) c = function
| [] ->
make_iterated_tuple env sigma (t1,type_of env sigma t1)
(c,type_of env sigma c)
| ((sp,cnum),argnum)::l ->
let cty = type_of env sigma c in
let (ity,_) = find_mrectype env sigma cty in
let (mib,mip) = lookup_mind_specif env ity in
let nparams = mip.mind_nparams in
let (cnum_nlams,cnum_env,kont) = descend_then sigma env c cnum in
let newc = mkRel(cnum_nlams-(argnum-nparams)) in
let (subval,tuplety,dfltval) =
build_injrec sigma cnum_env (t1,t2) newc l
in
(kont subval (dfltval,tuplety),
tuplety,dfltval)
let build_injector sigma env (t1,t2) c cpath =
let (injcode,resty,_) = build_injrec sigma env (t1,t2) c cpath in
(injcode,resty)
let try_delta_expand env sigma t =
let whdt = whd_betadeltaiota env sigma t in
let rec hd_rec c =
match kind_of_term c with
| Construct _ -> whdt
| App (f,_) -> hd_rec f
| Cast (c,_) -> hd_rec c
| _ -> t
in
hd_rec whdt
(* Given t1=t2 Inj calculates the whd normal forms of t1 and t2 and it
expands then only when the whdnf has a constructor of an inductive type
in hd position, otherwise delta expansion is not done *)
let injEq (eq,(t,t1,t2)) id gls =
let sigma = project gls in
let env = pf_env gls in
match find_positions env sigma t1 t2 with
| Inl _ ->
errorlabstrm "Inj"
(str (string_of_id id) ++
str" is not a projectable equality but a discriminable one")
| Inr [] ->
errorlabstrm "Equality.inj"
(str"Nothing to do, it is an equality between convertible terms")
| Inr posns ->
let e = pf_get_new_id (id_of_string "e") gls in
let e_env = push_named (e,None,t) env in
let injectors =
map_succeed
(fun (cpath,t1_0,t2_0) ->
try
let (injbody,resty) =
build_injector sigma e_env (t1_0,t2_0) (mkVar e) cpath in
let injfun = mkNamedLambda e t injbody in
let _ = type_of env sigma injfun in (injfun,resty)
with e when catchable_exception e ->
(* may fail because ill-typed or because of a Prop argument *)
(* error "find_sigma_data" *)
failwith "caught")
posns
in
if injectors = [] then
errorlabstrm "Equality.inj"
(str "Failed to decompose the equality");
tclMAP
(fun (injfun,resty) ->
let pf = applist(eq.congr,
[t;resty;injfun;
try_delta_expand env sigma t1;
try_delta_expand env sigma t2;
mkVar id])
in
let ty =
try pf_nf gls (pf_type_of gls pf)
with
| UserError("refiner__fail",_) ->
errorlabstrm "InjClause"
(str (string_of_id id) ++ str" Not a projectable equality")
in ((tclTHENS (cut ty) ([tclIDTAC;refine pf]))))
injectors
gls
let inj = onEquality injEq
let injClause = function
| None -> onNegatedEquality injEq
| Some id -> try_intros_until inj id
let injConcl gls = injClause None gls
let injHyp id gls = injClause (Some id) gls
let decompEqThen ntac (lbeq,(t,t1,t2)) id gls =
let sort = pf_type_of gls (pf_concl gls) in
let sigma = project gls in
let env = pf_env gls in
(match find_positions env sigma t1 t2 with
| Inl (cpath, (_,dirn), _) ->
let e = pf_get_new_id (id_of_string "e") gls in
let e_env = push_named (e,None,t) env in
let discriminator =
build_discriminator sigma e_env dirn (mkVar e) sort cpath in
let (pf, absurd_term) =
discrimination_pf e (t,t1,t2) discriminator lbeq gls in
tclCOMPLETE
((tclTHENS (cut_intro absurd_term)
([onLastHyp gen_absurdity;
refine (mkApp (pf, [| mkVar id |]))]))) gls
| Inr [] -> (* Change: do not fail, simplify clear this trivial hyp *)
ntac 0 gls
| Inr posns ->
(let e = pf_get_new_id (id_of_string "e") gls in
let e_env = push_named (e,None,t) env in
let injectors =
map_succeed
(fun (cpath,t1_0,t2_0) ->
let (injbody,resty) =
build_injector sigma e_env (t1_0,t2_0) (mkVar e) cpath in
let injfun = mkNamedLambda e t injbody in
try
let _ = type_of env sigma injfun in (injfun,resty)
with e when catchable_exception e -> failwith "caught")
posns
in
if injectors = [] then
errorlabstrm "Equality.decompEqThen"
(str "Discriminate failed to decompose the equality");
(tclTHEN
(tclMAP (fun (injfun,resty) ->
let pf = applist(lbeq.congr,
[t;resty;injfun;t1;t2;
mkVar id]) in
let ty = pf_nf gls (pf_type_of gls pf) in
((tclTHENS (cut ty)
([tclIDTAC;refine pf]))))
(List.rev injectors))
(ntac (List.length injectors)))
gls))
let dEqThen ntac = function
| None -> onNegatedEquality (decompEqThen ntac)
| Some id -> try_intros_until (onEquality (decompEqThen ntac)) id
let dEq = dEqThen (fun x -> tclIDTAC)
let rewrite_msg = function
| None -> str "passed term is not a primitive equality"
| Some id -> pr_id id ++ str "does not satisfy preconditions "
let swap_equands gls eqn =
let (lbeq,(t,e1,e2)) = find_eq_data_decompose eqn in
applist(lbeq.eq,[t;e2;e1])
let swapEquandsInConcl gls =
let (lbeq,(t,e1,e2)) = find_eq_data_decompose (pf_concl gls) in
let sym_equal = lbeq.sym in
refine (applist(sym_equal,[t;e2;e1;mkMeta (Clenv.new_meta())])) gls
let swapEquandsInHyp id gls =
((tclTHENS (cut_replacing id (swap_equands gls (pf_get_hyp_typ gls id)))
([tclIDTAC;
(tclTHEN (swapEquandsInConcl) (exact_no_check (mkVar id)))]))) gls
(* find_elim determines which elimination principle is necessary to
eliminate lbeq on sort_of_gl. It yields the boolean true wether
it is a dependent elimination principle (as idT.rect) and false
otherwise *)
let find_elim sort_of_gl lbeq =
match kind_of_term sort_of_gl with
| Sort(Prop Null) (* Prop *) -> (lbeq.ind, false)
| Sort(Prop Pos) (* Set *) ->
(match lbeq.rrec with
| Some eq_rec -> (eq_rec, false)
| None -> errorlabstrm "find_elim"
(str "this type of elimination is not allowed"))
| _ (* Type *) ->
(match lbeq.rect with
| Some eq_rect -> (eq_rect, true)
| None -> errorlabstrm "find_elim"
(str "this type of elimination is not allowed"))
(* builds a predicate [e:t][H:(lbeq t e t1)](body e)
to be used as an argument for equality dependent elimination principle:
Preconditon: dependent body (mkRel 1) *)
let build_dependent_rewrite_predicate (t,t1,t2) body lbeq gls =
let e = pf_get_new_id (id_of_string "e") gls in
let h = pf_get_new_id (id_of_string "HH") gls in
let eq_term = lbeq.eq in
(mkNamedLambda e t
(mkNamedLambda h (applist (eq_term, [t;t1;(mkRel 1)]))
(lift 1 body)))
(* builds a predicate [e:t](body e) ???
to be used as an argument for equality non-dependent elimination principle:
Preconditon: dependent body (mkRel 1) *)
let build_non_dependent_rewrite_predicate (t,t1,t2) body gls =
lambda_create (pf_env gls) (t,body)
let bareRevSubstInConcl lbeq body (t,e1,e2) gls =
let (eq_elim,dep) =
try
find_elim (pf_type_of gls (pf_concl gls)) lbeq
with e when catchable_exception e ->
errorlabstrm "RevSubstIncConcl"
(str "this type of substitution is not allowed")
in
let p =
if dep then
(build_dependent_rewrite_predicate (t,e1,e2) body lbeq gls)
else
(build_non_dependent_rewrite_predicate (t,e1,e2) body gls)
in
refine (applist(eq_elim,[t;e1;p;mkMeta(Clenv.new_meta());
e2;mkMeta(Clenv.new_meta())])) gls
(* [subst_tuple_term dep_pair B]
Given that dep_pair looks like:
(existS e1 (existS e2 ... (existS en en+1) ... ))
and B might contain instances of the ei, we will return the term:
([x1:ty(e1)]...[xn:ty(en)]B
(projS1 (mkRel 1))
(projS1 (projS2 (mkRel 1)))
... etc ...)
That is, we will abstract out the terms e1...en+1 as usual, but
will then produce a term in which the abstraction is on a single
term - the debruijn index [mkRel 1], which will be of the same type
as dep_pair.
ALGORITHM for abstraction:
We have a list of terms, [e1]...[en+1], which we want to abstract
out of [B]. For each term [ei], going backwards from [n+1], we
just do a [subst_term], and then do a lambda-abstraction to the
type of the [ei].
*)
let decomp_tuple_term env c t =
let rec decomprec inner_code ex exty =
try
let {proj1 = p1; proj2 = p2 },(a,p,car,cdr) =
find_sigma_data_decompose ex in
let car_code = applist (p1,[a;p;inner_code])
and cdr_code = applist (p2,[a;p;inner_code]) in
let cdrtyp = beta_applist (p,[car]) in
((car,a),car_code)::(decomprec cdr_code cdr cdrtyp)
with PatternMatchingFailure ->
[((ex,exty),inner_code)]
in
List.split (decomprec (mkRel 1) c t)
let subst_tuple_term env sigma dep_pair b =
let typ = get_type_of env sigma dep_pair in
let e_list,proj_list = decomp_tuple_term env dep_pair typ in
let abst_B =
List.fold_right
(fun (e,t) body -> lambda_create env (t,subst_term e body)) e_list b in
let app_B = applist(abst_B,proj_list) in app_B
(* |- (P e2)
BY RevSubstInConcl (eq T e1 e2)
|- (P e1)
|- (eq T e1 e2)
*)
(* Redondant avec Replace ! *)
let substInConcl_RL eqn gls =
let (lbeq,(t,e1,e2)) = find_eq_data_decompose eqn in
let body = subst_tuple_term (pf_env gls) (project gls) e2 (pf_concl gls) in
assert (dependent (mkRel 1) body);
bareRevSubstInConcl lbeq body (t,e1,e2) gls
(* |- (P e1)
BY SubstInConcl (eq T e1 e2)
|- (P e2)
|- (eq T e1 e2)
*)
let substInConcl_LR eqn gls =
(tclTHENS (substInConcl_RL (swap_equands gls eqn))
([tclIDTAC;
swapEquandsInConcl])) gls
let substInConcl l2r = if l2r then substInConcl_LR else substInConcl_RL
let substInHyp_LR eqn id gls =
let (lbeq,(t,e1,e2)) = find_eq_data_decompose eqn in
let body = subst_term e1 (pf_get_hyp_typ gls id) in
if not (dependent (mkRel 1) body) then errorlabstrm "SubstInHyp" (mt ());
(tclTHENS (cut_replacing id (subst1 e2 body))
([tclIDTAC;
(tclTHENS (bareRevSubstInConcl lbeq body (t,e1,e2))
([exact_no_check (mkVar id);tclIDTAC]))])) gls
let substInHyp_RL eqn id gls =
(tclTHENS (substInHyp_LR (swap_equands gls eqn) id)
([tclIDTAC;
swapEquandsInConcl])) gls
let substInHyp l2r = if l2r then substInHyp_LR else substInHyp_RL
let try_rewrite tac gls =
try
tac gls
with
| PatternMatchingFailure ->
errorlabstrm "try_rewrite" (str "Not a primitive equality here")
| e when catchable_exception e ->
errorlabstrm "try_rewrite"
(str "Cannot find a well-typed generalization of the goal that" ++
str " makes the proof progress")
let subst l2r eqn cls gls =
match cls with
| None -> substInConcl l2r eqn gls
| Some id -> substInHyp l2r eqn id gls
(* |- (P a)
* SubstConcl_LR a=b
* |- (P b)
* |- a=b
*)
let substConcl l2r eqn gls = try_rewrite (subst l2r eqn None) gls
let substConcl_LR = substConcl true
(* id:(P a) |- G
* SubstHyp a=b id
* id:(P b) |- G
* id:(P a) |-a=b
*)
let hypSubst l2r id cls gls =
onClauses (function
| None ->
(tclTHENS (substInConcl l2r (pf_get_hyp_typ gls id))
([tclIDTAC; exact_no_check (mkVar id)]))
| Some (hypid,_,_) ->
(tclTHENS (substInHyp l2r (pf_get_hyp_typ gls id) hypid)
([tclIDTAC;exact_no_check (mkVar id)])))
cls gls
let hypSubst_LR = hypSubst true
(* id:a=b |- (P a)
* HypSubst id.
* id:a=b |- (P b)
*)
let substHypInConcl l2r id gls = try_rewrite (hypSubst l2r id onConcl) gls
let substHypInConcl_LR = substHypInConcl true
(* id:a=b H:(P a) |- G
SubstHypInHyp id H.
id:a=b H:(P b) |- G
*)
(* |- (P b)
SubstConcl_RL a=b
|- (P a)
|- a=b
*)
let substConcl_RL = substConcl false
(* id:(P b) |-G
SubstHyp_RL a=b id
id:(P a) |- G
|- a=b
*)
let substHyp l2r eqn id gls = try_rewrite (subst l2r eqn (Some id)) gls
let substHyp_RL = substHyp false
let hypSubst_RL = hypSubst false
(* id:a=b |- (P b)
* HypSubst id.
* id:a=b |- (P a)
*)
let substHypInConcl_RL = substHypInConcl false
(* id:a=b H:(P b) |- G
SubstHypInHyp id H.
id:a=b H:(P a) |- G
*)
(* Substitutions tactics (JCF) *)
let unfold_body x gl =
let hyps = pf_hyps gl in
let xval =
match Sign.lookup_named x hyps with
(_,Some xval,_) -> xval
| _ -> errorlabstrm "unfold_body"
(pr_id x ++ str" is not a defined hypothesis") in
let aft = afterHyp x gl in
let hl = List.fold_right
(fun (y,yval,_) cl -> (y,[],(InHyp,ref None)) :: cl) aft [] in
let xvar = mkVar x in
let rfun _ _ c = replace_term xvar xval c in
tclTHENLIST
[tclMAP (fun h -> reduct_in_hyp rfun h) hl;
reduct_in_concl rfun] gl
exception FoundHyp of (identifier * constr * bool)
(* tests whether hyp [c] is [x = t] or [t = x], [x] not occuring in [t] *)
let is_eq_x x (id,_,c) =
try
let (_,lhs,rhs) = snd (find_eq_data_decompose c) in
if (x = lhs) && not (occur_term x rhs) then raise (FoundHyp (id,rhs,true));
if (x = rhs) && not (occur_term x lhs) then raise (FoundHyp (id,lhs,false))
with PatternMatchingFailure ->
()
let subst_one x gl =
let hyps = pf_hyps gl in
let (_,xval,_) = pf_get_hyp gl x in
(* If x has a body, simply replace x with body and clear x *)
if xval <> None then tclTHEN (unfold_body x) (clear [x]) gl else
(* x is a variable: *)
let varx = mkVar x in
(* Find a non-recursive definition for x *)
let (hyp,rhs,dir) =
try
let test hyp _ = is_eq_x varx hyp in
Sign.fold_named_context test ~init:() hyps;
errorlabstrm "Subst"
(str "cannot find any non-recursive equality over " ++ pr_id x)
with FoundHyp res -> res
in
(* The set of hypotheses using x *)
let depdecls =
let test (id,_,c as dcl) =
if id <> hyp && occur_var_in_decl (pf_env gl) x dcl then dcl
else failwith "caught" in
List.rev (map_succeed test hyps) in
let dephyps = List.map (fun (id,_,_) -> id) depdecls in
(* Decides if x appears in conclusion *)
let depconcl = occur_var (pf_env gl) x (pf_concl gl) in
(* The set of non-defined hypothesis: they must be abstracted,
rewritten and reintroduced *)
let abshyps =
map_succeed
(fun (id,v,_) -> if v=None then mkVar id else failwith "caught")
depdecls in
(* a tactic that either introduce an abstracted and rewritten hyp,
or introduce a definition where x was replaced *)
let introtac = function
(id,None,_) -> intro_using id
| (id,Some hval,htyp) ->
forward true (Name id) (mkCast(replace_term varx rhs hval,
replace_term varx rhs htyp)) in
let need_rewrite = dephyps <> [] || depconcl in
tclTHENLIST
((if need_rewrite then
[generalize abshyps;
(if dir then rewriteLR else rewriteRL) (mkVar hyp);
thin dephyps;
tclMAP introtac depdecls]
else
[thin dephyps;
tclMAP introtac depdecls]) @
[tclTRY (clear [x;hyp])]) gl
let subst = tclMAP subst_one
let subst_all gl =
let test (_,c) =
try
let (_,x,y) = snd (find_eq_data_decompose c) in
match kind_of_term x with Var x -> x | _ ->
match kind_of_term y with Var y -> y | _ -> failwith "caught"
with PatternMatchingFailure -> failwith "caught"
in
let ids = map_succeed test (pf_hyps_types gl) in
let ids = list_uniquize ids in
subst ids gl
(* Rewrite the first assumption for which the condition faildir does not fail
and gives the direction of the rewrite *)
let rewrite_assumption_cond faildir gl =
let rec arec = function
| [] -> error "No such assumption"
| (id,_,t)::rest ->
(try let dir = faildir t gl in
general_rewrite dir (mkVar id) gl
with Failure _ | UserError _ -> arec rest)
in arec (pf_hyps gl)
let rewrite_assumption_cond_in faildir hyp gl =
let rec arec = function
| [] -> error "No such assumption"
| (id,_,t)::rest ->
(try let dir = faildir t gl in
general_rewrite_in dir hyp ((mkVar id),NoBindings) gl
with Failure _ | UserError _ -> arec rest)
in arec (pf_hyps gl)
let cond_eq_term_left c t gl =
try
let (_,x,_) = snd (find_eq_data_decompose t) in
if pf_conv_x gl c x then true else failwith "not convertible"
with PatternMatchingFailure -> failwith "not an equality"
let cond_eq_term_right c t gl =
try
let (_,_,x) = snd (find_eq_data_decompose t) in
if pf_conv_x gl c x then false else failwith "not convertible"
with PatternMatchingFailure -> failwith "not an equality"
let cond_eq_term c t gl =
try
let (_,x,y) = snd (find_eq_data_decompose t) in
if pf_conv_x gl c x then true
else if pf_conv_x gl c y then false
else failwith "not convertible"
with PatternMatchingFailure -> failwith "not an equality"
let replace_term_left t = rewrite_assumption_cond (cond_eq_term_left t)
let replace_term_right t = rewrite_assumption_cond (cond_eq_term_right t)
let replace_term t = rewrite_assumption_cond (cond_eq_term t)
let replace_term_in_left t = rewrite_assumption_cond_in (cond_eq_term_left t)
let replace_term_in_right t = rewrite_assumption_cond_in (cond_eq_term_right t)
let replace_term_in t = rewrite_assumption_cond_in (cond_eq_term t)
|