1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: Binomial.v,v 1.1.2.1 2004/07/16 19:31:31 herbelin Exp $ i*)
Require Rbase.
Require Rfunctions.
Require PartSum.
V7only [ Import nat_scope. Import Z_scope. Import R_scope. ].
Open Local Scope R_scope.
Definition C [n,p:nat] : R := ``(INR (fact n))/((INR (fact p))*(INR (fact (minus n p))))``.
Lemma pascal_step1 : (n,i:nat) (le i n) -> (C n i) == (C n (minus n i)).
Intros; Unfold C; Replace (minus n (minus n i)) with i.
Rewrite Rmult_sym.
Reflexivity.
Apply plus_minus; Rewrite plus_sym; Apply le_plus_minus; Assumption.
Qed.
Lemma pascal_step2 : (n,i:nat) (le i n) -> (C (S n) i) == ``(INR (S n))/(INR (minus (S n) i))*(C n i)``.
Intros; Unfold C; Replace (minus (S n) i) with (S (minus n i)).
Cut (n:nat) (fact (S n))=(mult (S n) (fact n)).
Intro; Repeat Rewrite H0.
Unfold Rdiv; Repeat Rewrite mult_INR; Repeat Rewrite Rinv_Rmult.
Ring.
Apply INR_fact_neq_0.
Apply INR_fact_neq_0.
Apply not_O_INR; Discriminate.
Apply INR_fact_neq_0.
Apply INR_fact_neq_0.
Apply prod_neq_R0.
Apply not_O_INR; Discriminate.
Apply INR_fact_neq_0.
Intro; Reflexivity.
Apply minus_Sn_m; Assumption.
Qed.
Lemma pascal_step3 : (n,i:nat) (lt i n) -> (C n (S i)) == ``(INR (minus n i))/(INR (S i))*(C n i)``.
Intros; Unfold C.
Cut (n:nat) (fact (S n))=(mult (S n) (fact n)).
Intro.
Cut (minus n i) = (S (minus n (S i))).
Intro.
Pattern 2 (minus n i); Rewrite H1.
Repeat Rewrite H0; Unfold Rdiv; Repeat Rewrite mult_INR; Repeat Rewrite Rinv_Rmult.
Rewrite <- H1; Rewrite (Rmult_sym ``/(INR (minus n i))``); Repeat Rewrite Rmult_assoc; Rewrite (Rmult_sym (INR (minus n i))); Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym.
Ring.
Apply not_O_INR; Apply minus_neq_O; Assumption.
Apply not_O_INR; Discriminate.
Apply INR_fact_neq_0.
Apply INR_fact_neq_0.
Apply prod_neq_R0; [Apply not_O_INR; Discriminate | Apply INR_fact_neq_0].
Apply not_O_INR; Discriminate.
Apply INR_fact_neq_0.
Apply prod_neq_R0; [Apply not_O_INR; Discriminate | Apply INR_fact_neq_0].
Apply INR_fact_neq_0.
Rewrite minus_Sn_m.
Simpl; Reflexivity.
Apply lt_le_S; Assumption.
Intro; Reflexivity.
Qed.
(**********)
Lemma pascal : (n,i:nat) (lt i n) -> ``(C n i)+(C n (S i))==(C (S n) (S i))``.
Intros.
Rewrite pascal_step3; [Idtac | Assumption].
Replace ``(C n i)+(INR (minus n i))/(INR (S i))*(C n i)`` with ``(C n i)*(1+(INR (minus n i))/(INR (S i)))``; [Idtac | Ring].
Replace ``1+(INR (minus n i))/(INR (S i))`` with ``(INR (S n))/(INR (S i))``.
Rewrite pascal_step1.
Rewrite Rmult_sym; Replace (S i) with (minus (S n) (minus n i)).
Rewrite <- pascal_step2.
Apply pascal_step1.
Apply le_trans with n.
Apply le_minusni_n.
Apply lt_le_weak; Assumption.
Apply le_n_Sn.
Apply le_minusni_n.
Apply lt_le_weak; Assumption.
Rewrite <- minus_Sn_m.
Cut (minus n (minus n i))=i.
Intro; Rewrite H0; Reflexivity.
Symmetry; Apply plus_minus.
Rewrite plus_sym; Rewrite le_plus_minus_r.
Reflexivity.
Apply lt_le_weak; Assumption.
Apply le_minusni_n; Apply lt_le_weak; Assumption.
Apply lt_le_weak; Assumption.
Unfold Rdiv.
Repeat Rewrite S_INR.
Rewrite minus_INR.
Cut ``((INR i)+1)<>0``.
Intro.
Apply r_Rmult_mult with ``(INR i)+1``; [Idtac | Assumption].
Rewrite Rmult_Rplus_distr.
Rewrite Rmult_1r.
Do 2 Rewrite (Rmult_sym ``(INR i)+1``).
Repeat Rewrite Rmult_assoc.
Rewrite <- Rinv_l_sym; [Idtac | Assumption].
Ring.
Rewrite <- S_INR.
Apply not_O_INR; Discriminate.
Apply lt_le_weak; Assumption.
Qed.
(*********************)
(*********************)
Lemma binomial : (x,y:R;n:nat) ``(pow (x+y) n)``==(sum_f_R0 [i:nat]``(C n i)*(pow x i)*(pow y (minus n i))`` n).
Intros; Induction n.
Unfold C; Simpl; Unfold Rdiv; Repeat Rewrite Rmult_1r; Rewrite Rinv_R1; Ring.
Pattern 1 (S n); Replace (S n) with (plus n (1)); [Idtac | Ring].
Rewrite pow_add; Rewrite Hrecn.
Replace ``(pow (x+y) (S O))`` with ``x+y``; [Idtac | Simpl; Ring].
Rewrite tech5.
Cut (p:nat)(C p p)==R1.
Cut (p:nat)(C p O)==R1.
Intros; Rewrite H0; Rewrite <- minus_n_n; Rewrite Rmult_1l.
Replace (pow y O) with R1; [Rewrite Rmult_1r | Simpl; Reflexivity].
Induction n.
Simpl; Do 2 Rewrite H; Ring.
(* N >= 1 *)
Pose N := (S n).
Rewrite Rmult_Rplus_distr.
Replace (Rmult (sum_f_R0 ([i:nat]``(C N i)*(pow x i)*(pow y (minus N i))``) N) x) with (sum_f_R0 [i:nat]``(C N i)*(pow x (S i))*(pow y (minus N i))`` N).
Replace (Rmult (sum_f_R0 ([i:nat]``(C N i)*(pow x i)*(pow y (minus N i))``) N) y) with (sum_f_R0 [i:nat]``(C N i)*(pow x i)*(pow y (minus (S N) i))`` N).
Rewrite (decomp_sum [i:nat]``(C (S N) i)*(pow x i)*(pow y (minus (S N) i))`` N).
Rewrite H; Replace (pow x O) with R1; [Idtac | Reflexivity].
Do 2 Rewrite Rmult_1l.
Replace (minus (S N) O) with (S N); [Idtac | Reflexivity].
Pose An := [i:nat]``(C N i)*(pow x (S i))*(pow y (minus N i))``.
Pose Bn := [i:nat]``(C N (S i))*(pow x (S i))*(pow y (minus N i))``.
Replace (pred N) with n.
Replace (sum_f_R0 ([i:nat]``(C (S N) (S i))*(pow x (S i))*(pow y (minus (S N) (S i)))``) n) with (sum_f_R0 [i:nat]``(An i)+(Bn i)`` n).
Rewrite plus_sum.
Replace (pow x (S N)) with (An (S n)).
Rewrite (Rplus_sym (sum_f_R0 An n)).
Repeat Rewrite Rplus_assoc.
Rewrite <- tech5.
Fold N.
Pose Cn := [i:nat]``(C N i)*(pow x i)*(pow y (minus (S N) i))``.
Cut (i:nat) (lt i N)-> (Cn (S i))==(Bn i).
Intro; Replace (sum_f_R0 Bn n) with (sum_f_R0 [i:nat](Cn (S i)) n).
Replace (pow y (S N)) with (Cn O).
Rewrite <- Rplus_assoc; Rewrite (decomp_sum Cn N).
Replace (pred N) with n.
Ring.
Unfold N; Simpl; Reflexivity.
Unfold N; Apply lt_O_Sn.
Unfold Cn; Rewrite H; Simpl; Ring.
Apply sum_eq.
Intros; Apply H1.
Unfold N; Apply le_lt_trans with n; [Assumption | Apply lt_n_Sn].
Intros; Unfold Bn Cn.
Replace (minus (S N) (S i)) with (minus N i); Reflexivity.
Unfold An; Fold N; Rewrite <- minus_n_n; Rewrite H0; Simpl; Ring.
Apply sum_eq.
Intros; Unfold An Bn; Replace (minus (S N) (S i)) with (minus N i); [Idtac | Reflexivity].
Rewrite <- pascal; [Ring | Apply le_lt_trans with n; [Assumption | Unfold N; Apply lt_n_Sn]].
Unfold N; Reflexivity.
Unfold N; Apply lt_O_Sn.
Rewrite <- (Rmult_sym y); Rewrite scal_sum; Apply sum_eq.
Intros; Replace (minus (S N) i) with (S (minus N i)).
Replace (S (minus N i)) with (plus (minus N i) (1)); [Idtac | Ring].
Rewrite pow_add; Replace (pow y (S O)) with y; [Idtac | Simpl; Ring]; Ring.
Apply minus_Sn_m; Assumption.
Rewrite <- (Rmult_sym x); Rewrite scal_sum; Apply sum_eq.
Intros; Replace (S i) with (plus i (1)); [Idtac | Ring]; Rewrite pow_add; Replace (pow x (S O)) with x; [Idtac | Simpl; Ring]; Ring.
Intro; Unfold C.
Replace (INR (fact O)) with R1; [Idtac | Reflexivity].
Replace (minus p O) with p; [Idtac | Apply minus_n_O].
Rewrite Rmult_1l; Unfold Rdiv; Rewrite <- Rinv_r_sym; [Reflexivity | Apply INR_fact_neq_0].
Intro; Unfold C.
Replace (minus p p) with O; [Idtac | Apply minus_n_n].
Replace (INR (fact O)) with R1; [Idtac | Reflexivity].
Rewrite Rmult_1r; Unfold Rdiv; Rewrite <- Rinv_r_sym; [Reflexivity | Apply INR_fact_neq_0].
Qed.
|