1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: Cos_rel.v,v 1.1.2.1 2004/07/16 19:31:32 herbelin Exp $ i*)
Require Rbase.
Require Rfunctions.
Require SeqSeries.
Require Rtrigo_def.
V7only [ Import nat_scope. Import Z_scope. Import R_scope. ].
Open Local Scope R_scope.
Definition A1 [x:R] : nat->R := [N:nat](sum_f_R0 [k:nat]``(pow (-1) k)/(INR (fact (mult (S (S O)) k)))*(pow x (mult (S (S O)) k))`` N).
Definition B1 [x:R] : nat->R := [N:nat](sum_f_R0 [k:nat]``(pow (-1) k)/(INR (fact (plus (mult (S (S O)) k) (S O))))*(pow x (plus (mult (S (S O)) k) (S O)))`` N).
Definition C1 [x,y:R] : nat -> R := [N:nat](sum_f_R0 [k:nat]``(pow (-1) k)/(INR (fact (mult (S (S O)) k)))*(pow (x+y) (mult (S (S O)) k))`` N).
Definition Reste1 [x,y:R] : nat -> R := [N:nat](sum_f_R0 [k:nat](sum_f_R0 [l:nat]``(pow (-1) (S (plus l k)))/(INR (fact (mult (S (S O)) (S (plus l k)))))*(pow x (mult (S (S O)) (S (plus l k))))*(pow (-1) (minus N l))/(INR (fact (mult (S (S O)) (minus N l))))*(pow y (mult (S (S O)) (minus N l)))`` (pred (minus N k))) (pred N)).
Definition Reste2 [x,y:R] : nat -> R := [N:nat](sum_f_R0 [k:nat](sum_f_R0 [l:nat]``(pow (-1) (S (plus l k)))/(INR (fact (plus (mult (S (S O)) (S (plus l k))) (S O))))*(pow x (plus (mult (S (S O)) (S (plus l k))) (S O)))*(pow (-1) (minus N l))/(INR (fact (plus (mult (S (S O)) (minus N l)) (S O))))*(pow y (plus (mult (S (S O)) (minus N l)) (S O)))`` (pred (minus N k))) (pred N)).
Definition Reste [x,y:R] : nat -> R := [N:nat]``(Reste2 x y N)-(Reste1 x y (S N))``.
(* Here is the main result that will be used to prove that (cos (x+y))=(cos x)(cos y)-(sin x)(sin y) *)
Theorem cos_plus_form : (x,y:R;n:nat) (lt O n) -> ``(A1 x (S n))*(A1 y (S n))-(B1 x n)*(B1 y n)+(Reste x y n)``==(C1 x y (S n)).
Intros.
Unfold A1 B1.
Rewrite (cauchy_finite [k:nat]
``(pow ( -1) k)/(INR (fact (mult (S (S O)) k)))*
(pow x (mult (S (S O)) k))`` [k:nat]
``(pow ( -1) k)/(INR (fact (mult (S (S O)) k)))*
(pow y (mult (S (S O)) k))`` (S n)).
Rewrite (cauchy_finite [k:nat]
``(pow ( -1) k)/(INR (fact (plus (mult (S (S O)) k) (S O))))*
(pow x (plus (mult (S (S O)) k) (S O)))`` [k:nat]
``(pow ( -1) k)/(INR (fact (plus (mult (S (S O)) k) (S O))))*
(pow y (plus (mult (S (S O)) k) (S O)))`` n H).
Unfold Reste.
Replace (sum_f_R0
[k:nat]
(sum_f_R0
[l:nat]
``(pow ( -1) (S (plus l k)))/
(INR (fact (mult (S (S O)) (S (plus l k)))))*
(pow x (mult (S (S O)) (S (plus l k))))*
((pow ( -1) (minus (S n) l))/
(INR (fact (mult (S (S O)) (minus (S n) l))))*
(pow y (mult (S (S O)) (minus (S n) l))))``
(pred (minus (S n) k))) (pred (S n))) with (Reste1 x y (S n)).
Replace (sum_f_R0
[k:nat]
(sum_f_R0
[l:nat]
``(pow ( -1) (S (plus l k)))/
(INR (fact (plus (mult (S (S O)) (S (plus l k))) (S O))))*
(pow x (plus (mult (S (S O)) (S (plus l k))) (S O)))*
((pow ( -1) (minus n l))/
(INR (fact (plus (mult (S (S O)) (minus n l)) (S O))))*
(pow y (plus (mult (S (S O)) (minus n l)) (S O))))``
(pred (minus n k))) (pred n)) with (Reste2 x y n).
Ring.
Replace (sum_f_R0
[k:nat]
(sum_f_R0
[p:nat]
``(pow ( -1) p)/(INR (fact (mult (S (S O)) p)))*
(pow x (mult (S (S O)) p))*((pow ( -1) (minus k p))/
(INR (fact (mult (S (S O)) (minus k p))))*
(pow y (mult (S (S O)) (minus k p))))`` k) (S n)) with (sum_f_R0 [k:nat](Rmult ``(pow (-1) k)/(INR (fact (mult (S (S O)) k)))`` (sum_f_R0 [l:nat]``(C (mult (S (S O)) k) (mult (S (S O)) l))*(pow x (mult (S (S O)) l))*(pow y (mult (S (S O)) (minus k l)))`` k)) (S n)).
Pose sin_nnn := [n:nat]Cases n of O => R0 | (S p) => (Rmult ``(pow (-1) (S p))/(INR (fact (mult (S (S O)) (S p))))`` (sum_f_R0 [l:nat]``(C (mult (S (S O)) (S p)) (S (mult (S (S O)) l)))*(pow x (S (mult (S (S O)) l)))*(pow y (S (mult (S (S O)) (minus p l))))`` p)) end.
Replace (Ropp (sum_f_R0
[k:nat]
(sum_f_R0
[p:nat]
``(pow ( -1) p)/
(INR (fact (plus (mult (S (S O)) p) (S O))))*
(pow x (plus (mult (S (S O)) p) (S O)))*
((pow ( -1) (minus k p))/
(INR (fact (plus (mult (S (S O)) (minus k p)) (S O))))*
(pow y (plus (mult (S (S O)) (minus k p)) (S O))))`` k)
n)) with (sum_f_R0 sin_nnn (S n)).
Rewrite <- sum_plus.
Unfold C1.
Apply sum_eq; Intros.
Induction i.
Simpl.
Rewrite Rplus_Ol.
Replace (C O O) with R1.
Unfold Rdiv; Rewrite Rinv_R1.
Ring.
Unfold C.
Rewrite <- minus_n_n.
Simpl.
Unfold Rdiv; Rewrite Rmult_1r; Rewrite Rinv_R1; Ring.
Unfold sin_nnn.
Rewrite <- Rmult_Rplus_distr.
Apply Rmult_mult_r.
Rewrite binomial.
Pose Wn := [i0:nat]``(C (mult (S (S O)) (S i)) i0)*(pow x i0)*
(pow y (minus (mult (S (S O)) (S i)) i0))``.
Replace (sum_f_R0
[l:nat]
``(C (mult (S (S O)) (S i)) (mult (S (S O)) l))*
(pow x (mult (S (S O)) l))*
(pow y (mult (S (S O)) (minus (S i) l)))`` (S i)) with (sum_f_R0 [l:nat](Wn (mult (2) l)) (S i)).
Replace (sum_f_R0
[l:nat]
``(C (mult (S (S O)) (S i)) (S (mult (S (S O)) l)))*
(pow x (S (mult (S (S O)) l)))*
(pow y (S (mult (S (S O)) (minus i l))))`` i) with (sum_f_R0 [l:nat](Wn (S (mult (2) l))) i).
Rewrite Rplus_sym.
Apply sum_decomposition.
Apply sum_eq; Intros.
Unfold Wn.
Apply Rmult_mult_r.
Replace (minus (mult (2) (S i)) (S (mult (2) i0))) with (S (mult (2) (minus i i0))).
Reflexivity.
Apply INR_eq.
Rewrite S_INR; Rewrite mult_INR.
Repeat Rewrite minus_INR.
Rewrite mult_INR; Repeat Rewrite S_INR.
Rewrite mult_INR; Repeat Rewrite S_INR; Ring.
Replace (mult (2) (S i)) with (S (S (mult (2) i))).
Apply le_n_S.
Apply le_trans with (mult (2) i).
Apply mult_le; Assumption.
Apply le_n_Sn.
Apply INR_eq; Do 2 Rewrite S_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring.
Assumption.
Apply sum_eq; Intros.
Unfold Wn.
Apply Rmult_mult_r.
Replace (minus (mult (2) (S i)) (mult (2) i0)) with (mult (2) (minus (S i) i0)).
Reflexivity.
Apply INR_eq.
Rewrite mult_INR.
Repeat Rewrite minus_INR.
Rewrite mult_INR; Repeat Rewrite S_INR.
Rewrite mult_INR; Repeat Rewrite S_INR; Ring.
Apply mult_le; Assumption.
Assumption.
Rewrite <- (Ropp_Ropp (sum_f_R0 sin_nnn (S n))).
Apply eq_Ropp.
Replace ``-(sum_f_R0 sin_nnn (S n))`` with ``-1*(sum_f_R0 sin_nnn (S n))``; [Idtac | Ring].
Rewrite scal_sum.
Rewrite decomp_sum.
Replace (sin_nnn O) with R0.
Rewrite Rmult_Ol; Rewrite Rplus_Ol.
Replace (pred (S n)) with n; [Idtac | Reflexivity].
Apply sum_eq; Intros.
Rewrite Rmult_sym.
Unfold sin_nnn.
Rewrite scal_sum.
Rewrite scal_sum.
Apply sum_eq; Intros.
Unfold Rdiv.
Repeat Rewrite Rmult_assoc.
Rewrite (Rmult_sym ``/(INR (fact (mult (S (S O)) (S i))))``).
Repeat Rewrite <- Rmult_assoc.
Rewrite <- (Rmult_sym ``/(INR (fact (mult (S (S O)) (S i))))``).
Repeat Rewrite <- Rmult_assoc.
Replace ``/(INR (fact (mult (S (S O)) (S i))))*
(C (mult (S (S O)) (S i)) (S (mult (S (S O)) i0)))`` with ``/(INR (fact (plus (mult (S (S O)) i0) (S O))))*/(INR (fact (plus (mult (S (S O)) (minus i i0)) (S O))))``.
Replace (S (mult (2) i0)) with (plus (mult (2) i0) (1)); [Idtac | Ring].
Replace (S (mult (2) (minus i i0))) with (plus (mult (2) (minus i i0)) (1)); [Idtac | Ring].
Replace ``(pow (-1) (S i))`` with ``-1*(pow (-1) i0)*(pow (-1) (minus i i0))``.
Ring.
Simpl.
Pattern 2 i; Replace i with (plus i0 (minus i i0)).
Rewrite pow_add.
Ring.
Symmetry; Apply le_plus_minus; Assumption.
Unfold C.
Unfold Rdiv; Repeat Rewrite <- Rmult_assoc.
Rewrite <- Rinv_l_sym.
Rewrite Rmult_1l.
Rewrite Rinv_Rmult.
Replace (S (mult (S (S O)) i0)) with (plus (mult (2) i0) (1)); [Apply Rmult_mult_r | Ring].
Replace (minus (mult (2) (S i)) (plus (mult (2) i0) (1))) with (plus (mult (2) (minus i i0)) (1)).
Reflexivity.
Apply INR_eq.
Rewrite plus_INR; Rewrite mult_INR; Repeat Rewrite minus_INR.
Rewrite plus_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring.
Replace (plus (mult (2) i0) (1)) with (S (mult (2) i0)).
Replace (mult (2) (S i)) with (S (S (mult (2) i))).
Apply le_n_S.
Apply le_trans with (mult (2) i).
Apply mult_le; Assumption.
Apply le_n_Sn.
Apply INR_eq; Do 2 Rewrite S_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring.
Apply INR_eq; Rewrite S_INR; Rewrite plus_INR; Rewrite mult_INR; Repeat Rewrite S_INR; Ring.
Assumption.
Apply INR_fact_neq_0.
Apply INR_fact_neq_0.
Apply INR_fact_neq_0.
Reflexivity.
Apply lt_O_Sn.
Apply sum_eq; Intros.
Rewrite scal_sum.
Apply sum_eq; Intros.
Unfold Rdiv.
Repeat Rewrite <- Rmult_assoc.
Rewrite <- (Rmult_sym ``/(INR (fact (mult (S (S O)) i)))``).
Repeat Rewrite <- Rmult_assoc.
Replace ``/(INR (fact (mult (S (S O)) i)))*
(C (mult (S (S O)) i) (mult (S (S O)) i0))`` with ``/(INR (fact (mult (S (S O)) i0)))*/(INR (fact (mult (S (S O)) (minus i i0))))``.
Replace ``(pow (-1) i)`` with ``(pow (-1) i0)*(pow (-1) (minus i i0))``.
Ring.
Pattern 2 i; Replace i with (plus i0 (minus i i0)).
Rewrite pow_add.
Ring.
Symmetry; Apply le_plus_minus; Assumption.
Unfold C.
Unfold Rdiv; Repeat Rewrite <- Rmult_assoc.
Rewrite <- Rinv_l_sym.
Rewrite Rmult_1l.
Rewrite Rinv_Rmult.
Replace (minus (mult (2) i) (mult (2) i0)) with (mult (2) (minus i i0)).
Reflexivity.
Apply INR_eq.
Rewrite mult_INR; Repeat Rewrite minus_INR.
Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring.
Apply mult_le; Assumption.
Assumption.
Apply INR_fact_neq_0.
Apply INR_fact_neq_0.
Apply INR_fact_neq_0.
Unfold Reste2; Apply sum_eq; Intros.
Apply sum_eq; Intros.
Unfold Rdiv; Ring.
Unfold Reste1; Apply sum_eq; Intros.
Apply sum_eq; Intros.
Unfold Rdiv; Ring.
Apply lt_O_Sn.
Qed.
Lemma pow_sqr : (x:R;i:nat) (pow x (mult (2) i))==(pow ``x*x`` i).
Intros.
Assert H := (pow_Rsqr x i).
Unfold Rsqr in H; Exact H.
Qed.
Lemma A1_cvg : (x:R) (Un_cv (A1 x) (cos x)).
Intro.
Assert H := (exist_cos ``x*x``).
Elim H; Intros.
Assert p_i := p.
Unfold cos_in in p.
Unfold cos_n infinit_sum in p.
Unfold R_dist in p.
Cut ``(cos x)==x0``.
Intro.
Rewrite H0.
Unfold Un_cv; Unfold R_dist; Intros.
Elim (p eps H1); Intros.
Exists x1; Intros.
Unfold A1.
Replace (sum_f_R0 ([k:nat]``(pow ( -1) k)/(INR (fact (mult (S (S O)) k)))*(pow x (mult (S (S O)) k))``) n) with (sum_f_R0 ([i:nat]``(pow ( -1) i)/(INR (fact (mult (S (S O)) i)))*(pow (x*x) i)``) n).
Apply H2; Assumption.
Apply sum_eq.
Intros.
Replace ``(pow (x*x) i)`` with ``(pow x (mult (S (S O)) i))``.
Reflexivity.
Apply pow_sqr.
Unfold cos.
Case (exist_cos (Rsqr x)).
Unfold Rsqr; Intros.
Unfold cos_in in p_i.
Unfold cos_in in c.
Apply unicity_sum with [i:nat]``(cos_n i)*(pow (x*x) i)``; Assumption.
Qed.
Lemma C1_cvg : (x,y:R) (Un_cv (C1 x y) (cos (Rplus x y))).
Intros.
Assert H := (exist_cos ``(x+y)*(x+y)``).
Elim H; Intros.
Assert p_i := p.
Unfold cos_in in p.
Unfold cos_n infinit_sum in p.
Unfold R_dist in p.
Cut ``(cos (x+y))==x0``.
Intro.
Rewrite H0.
Unfold Un_cv; Unfold R_dist; Intros.
Elim (p eps H1); Intros.
Exists x1; Intros.
Unfold C1.
Replace (sum_f_R0 ([k:nat]``(pow ( -1) k)/(INR (fact (mult (S (S O)) k)))*(pow (x+y) (mult (S (S O)) k))``) n) with (sum_f_R0 ([i:nat]``(pow ( -1) i)/(INR (fact (mult (S (S O)) i)))*(pow ((x+y)*(x+y)) i)``) n).
Apply H2; Assumption.
Apply sum_eq.
Intros.
Replace ``(pow ((x+y)*(x+y)) i)`` with ``(pow (x+y) (mult (S (S O)) i))``.
Reflexivity.
Apply pow_sqr.
Unfold cos.
Case (exist_cos (Rsqr ``x+y``)).
Unfold Rsqr; Intros.
Unfold cos_in in p_i.
Unfold cos_in in c.
Apply unicity_sum with [i:nat]``(cos_n i)*(pow ((x+y)*(x+y)) i)``; Assumption.
Qed.
Lemma B1_cvg : (x:R) (Un_cv (B1 x) (sin x)).
Intro.
Case (Req_EM x R0); Intro.
Rewrite H.
Rewrite sin_0.
Unfold B1.
Unfold Un_cv; Unfold R_dist; Intros; Exists O; Intros.
Replace (sum_f_R0 ([k:nat]``(pow ( -1) k)/(INR (fact (plus (mult (S (S O)) k) (S O))))*(pow 0 (plus (mult (S (S O)) k) (S O)))``) n) with R0.
Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Assumption.
Induction n.
Simpl; Ring.
Rewrite tech5; Rewrite <- Hrecn.
Simpl; Ring.
Unfold ge; Apply le_O_n.
Assert H0 := (exist_sin ``x*x``).
Elim H0; Intros.
Assert p_i := p.
Unfold sin_in in p.
Unfold sin_n infinit_sum in p.
Unfold R_dist in p.
Cut ``(sin x)==x*x0``.
Intro.
Rewrite H1.
Unfold Un_cv; Unfold R_dist; Intros.
Cut ``0<eps/(Rabsolu x)``; [Intro | Unfold Rdiv; Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Apply Rabsolu_pos_lt; Assumption]].
Elim (p ``eps/(Rabsolu x)`` H3); Intros.
Exists x1; Intros.
Unfold B1.
Replace (sum_f_R0 ([k:nat]``(pow ( -1) k)/(INR (fact (plus (mult (S (S O)) k) (S O))))*(pow x (plus (mult (S (S O)) k) (S O)))``) n) with (Rmult x (sum_f_R0 ([i:nat]``(pow ( -1) i)/(INR (fact (plus (mult (S (S O)) i) (S O))))*(pow (x*x) i)``) n)).
Replace (Rminus (Rmult x (sum_f_R0 ([i:nat]``(pow ( -1) i)/(INR (fact (plus (mult (S (S O)) i) (S O))))*(pow (x*x) i)``) n)) (Rmult x x0)) with (Rmult x (Rminus (sum_f_R0 ([i:nat]``(pow ( -1) i)/(INR (fact (plus (mult (S (S O)) i) (S O))))*(pow (x*x) i)``) n) x0)); [Idtac | Ring].
Rewrite Rabsolu_mult.
Apply Rlt_monotony_contra with ``/(Rabsolu x)``.
Apply Rlt_Rinv; Apply Rabsolu_pos_lt; Assumption.
Rewrite <- Rmult_assoc.
Rewrite <- Rinv_l_sym.
Rewrite Rmult_1l; Rewrite <- (Rmult_sym eps); Unfold Rdiv in H4; Apply H4; Assumption.
Apply Rabsolu_no_R0; Assumption.
Rewrite scal_sum.
Apply sum_eq.
Intros.
Rewrite pow_add.
Rewrite pow_sqr.
Simpl.
Ring.
Unfold sin.
Case (exist_sin (Rsqr x)).
Unfold Rsqr; Intros.
Unfold sin_in in p_i.
Unfold sin_in in s.
Assert H1 := (unicity_sum [i:nat]``(sin_n i)*(pow (x*x) i)`` x0 x1 p_i s).
Rewrite H1; Reflexivity.
Qed.
|