1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: Exp_prop.v,v 1.1.2.1 2004/07/16 19:31:32 herbelin Exp $ i*)
Require Rbase.
Require Rfunctions.
Require SeqSeries.
Require Rtrigo.
Require Ranalysis1.
Require PSeries_reg.
Require Div2.
Require Even.
Require Max.
V7only [Import R_scope.].
Open Local Scope nat_scope.
V7only [Import nat_scope.].
Open Local Scope R_scope.
Definition E1 [x:R] : nat->R := [N:nat](sum_f_R0 [k:nat]``/(INR (fact k))*(pow x k)`` N).
Lemma E1_cvg : (x:R) (Un_cv (E1 x) (exp x)).
Intro; Unfold exp; Unfold projT1.
Case (exist_exp x); Intro.
Unfold exp_in Un_cv; Unfold infinit_sum E1; Trivial.
Qed.
Definition Reste_E [x,y:R] : nat->R := [N:nat](sum_f_R0 [k:nat](sum_f_R0 [l:nat]``/(INR (fact (S (plus l k))))*(pow x (S (plus l k)))*(/(INR (fact (minus N l)))*(pow y (minus N l)))`` (pred (minus N k))) (pred N)).
Lemma exp_form : (x,y:R;n:nat) (lt O n) -> ``(E1 x n)*(E1 y n)-(Reste_E x y n)==(E1 (x+y) n)``.
Intros; Unfold E1.
Rewrite cauchy_finite.
Unfold Reste_E; Unfold Rminus; Rewrite Rplus_assoc; Rewrite Rplus_Ropp_r; Rewrite Rplus_Or; Apply sum_eq; Intros.
Rewrite binomial.
Rewrite scal_sum; Apply sum_eq; Intros.
Unfold C; Unfold Rdiv; Repeat Rewrite Rmult_assoc; Rewrite (Rmult_sym (INR (fact i))); Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym.
Rewrite Rmult_1r; Rewrite Rinv_Rmult.
Ring.
Apply INR_fact_neq_0.
Apply INR_fact_neq_0.
Apply INR_fact_neq_0.
Apply H.
Qed.
Definition maj_Reste_E [x,y:R] : nat->R := [N:nat]``4*(pow (Rmax R1 (Rmax (Rabsolu x) (Rabsolu y))) (mult (S (S O)) N))/(Rsqr (INR (fact (div2 (pred N)))))``.
Lemma Rle_Rinv : (x,y:R) ``0<x`` -> ``0<y`` -> ``x<=y`` -> ``/y<=/x``.
Intros; Apply Rle_monotony_contra with x.
Apply H.
Rewrite <- Rinv_r_sym.
Apply Rle_monotony_contra with y.
Apply H0.
Rewrite Rmult_1r; Rewrite Rmult_sym; Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym.
Rewrite Rmult_1r; Apply H1.
Red; Intro; Rewrite H2 in H0; Elim (Rlt_antirefl ? H0).
Red; Intro; Rewrite H2 in H; Elim (Rlt_antirefl ? H).
Qed.
(**********)
Lemma div2_double : (N:nat) (div2 (mult (2) N))=N.
Intro; Induction N.
Reflexivity.
Replace (mult (2) (S N)) with (S (S (mult (2) N))).
Simpl; Simpl in HrecN; Rewrite HrecN; Reflexivity.
Apply INR_eq; Do 2 Rewrite S_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring.
Qed.
Lemma div2_S_double : (N:nat) (div2 (S (mult (2) N)))=N.
Intro; Induction N.
Reflexivity.
Replace (mult (2) (S N)) with (S (S (mult (2) N))).
Simpl; Simpl in HrecN; Rewrite HrecN; Reflexivity.
Apply INR_eq; Do 2 Rewrite S_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring.
Qed.
Lemma div2_not_R0 : (N:nat) (lt (1) N) -> (lt O (div2 N)).
Intros; Induction N.
Elim (lt_n_O ? H).
Cut (lt (1) N)\/N=(1).
Intro; Elim H0; Intro.
Assert H2 := (even_odd_dec N).
Elim H2; Intro.
Rewrite <- (even_div2 ? a); Apply HrecN; Assumption.
Rewrite <- (odd_div2 ? b); Apply lt_O_Sn.
Rewrite H1; Simpl; Apply lt_O_Sn.
Inversion H.
Right; Reflexivity.
Left; Apply lt_le_trans with (2); [Apply lt_n_Sn | Apply H1].
Qed.
Lemma Reste_E_maj : (x,y:R;N:nat) (lt O N) -> ``(Rabsolu (Reste_E x y N))<=(maj_Reste_E x y N)``.
Intros; Pose M := (Rmax R1 (Rmax (Rabsolu x) (Rabsolu y))).
Apply Rle_trans with (Rmult (pow M (mult (2) N)) (sum_f_R0 [k:nat](sum_f_R0 [l:nat]``/(Rsqr (INR (fact (div2 (S N)))))`` (pred (minus N k))) (pred N))).
Unfold Reste_E.
Apply Rle_trans with (sum_f_R0 [k:nat](Rabsolu (sum_f_R0 [l:nat]``/(INR (fact (S (plus l k))))*(pow x (S (plus l k)))*(/(INR (fact (minus N l)))*(pow y (minus N l)))`` (pred (minus N k)))) (pred N)).
Apply (sum_Rabsolu [k:nat](sum_f_R0 [l:nat]``/(INR (fact (S (plus l k))))*(pow x (S (plus l k)))*(/(INR (fact (minus N l)))*(pow y (minus N l)))`` (pred (minus N k))) (pred N)).
Apply Rle_trans with (sum_f_R0 [k:nat](sum_f_R0 [l:nat]``(Rabsolu (/(INR (fact (S (plus l k))))*(pow x (S (plus l k)))*(/(INR (fact (minus N l)))*(pow y (minus N l)))))`` (pred (minus N k))) (pred N)).
Apply sum_Rle; Intros.
Apply (sum_Rabsolu [l:nat]``/(INR (fact (S (plus l n))))*(pow x (S (plus l n)))*(/(INR (fact (minus N l)))*(pow y (minus N l)))``).
Apply Rle_trans with (sum_f_R0 [k:nat](sum_f_R0 [l:nat]``(pow M (mult (S (S O)) N))*/(INR (fact (S l)))*/(INR (fact (minus N l)))`` (pred (minus N k))) (pred N)).
Apply sum_Rle; Intros.
Apply sum_Rle; Intros.
Repeat Rewrite Rabsolu_mult.
Do 2 Rewrite <- Pow_Rabsolu.
Rewrite (Rabsolu_right ``/(INR (fact (S (plus n0 n))))``).
Rewrite (Rabsolu_right ``/(INR (fact (minus N n0)))``).
Replace ``/(INR (fact (S (plus n0 n))))*(pow (Rabsolu x) (S (plus n0 n)))*
(/(INR (fact (minus N n0)))*(pow (Rabsolu y) (minus N n0)))`` with ``/(INR (fact (minus N n0)))*/(INR (fact (S (plus n0 n))))*(pow (Rabsolu x) (S (plus n0 n)))*(pow (Rabsolu y) (minus N n0))``; [Idtac | Ring].
Rewrite <- (Rmult_sym ``/(INR (fact (minus N n0)))``).
Repeat Rewrite Rmult_assoc.
Apply Rle_monotony.
Left; Apply Rlt_Rinv; Apply INR_fact_lt_0.
Apply Rle_trans with ``/(INR (fact (S n0)))*(pow (Rabsolu x) (S (plus n0 n)))*(pow (Rabsolu y) (minus N n0))``.
Rewrite (Rmult_sym ``/(INR (fact (S (plus n0 n))))``); Rewrite (Rmult_sym ``/(INR (fact (S n0)))``); Repeat Rewrite Rmult_assoc; Apply Rle_monotony.
Apply pow_le; Apply Rabsolu_pos.
Rewrite (Rmult_sym ``/(INR (fact (S n0)))``); Apply Rle_monotony.
Apply pow_le; Apply Rabsolu_pos.
Apply Rle_Rinv.
Apply INR_fact_lt_0.
Apply INR_fact_lt_0.
Apply le_INR; Apply fact_growing; Apply le_n_S.
Apply le_plus_l.
Rewrite (Rmult_sym ``(pow M (mult (S (S O)) N))``); Rewrite Rmult_assoc; Apply Rle_monotony.
Left; Apply Rlt_Rinv; Apply INR_fact_lt_0.
Apply Rle_trans with ``(pow M (S (plus n0 n)))*(pow (Rabsolu y) (minus N n0))``.
Do 2 Rewrite <- (Rmult_sym ``(pow (Rabsolu y) (minus N n0))``).
Apply Rle_monotony.
Apply pow_le; Apply Rabsolu_pos.
Apply pow_incr; Split.
Apply Rabsolu_pos.
Apply Rle_trans with (Rmax (Rabsolu x) (Rabsolu y)).
Apply RmaxLess1.
Unfold M; Apply RmaxLess2.
Apply Rle_trans with ``(pow M (S (plus n0 n)))*(pow M (minus N n0))``.
Apply Rle_monotony.
Apply pow_le; Apply Rle_trans with R1.
Left; Apply Rlt_R0_R1.
Unfold M; Apply RmaxLess1.
Apply pow_incr; Split.
Apply Rabsolu_pos.
Apply Rle_trans with (Rmax (Rabsolu x) (Rabsolu y)).
Apply RmaxLess2.
Unfold M; Apply RmaxLess2.
Rewrite <- pow_add; Replace (plus (S (plus n0 n)) (minus N n0)) with (plus N (S n)).
Apply Rle_pow.
Unfold M; Apply RmaxLess1.
Replace (mult (2) N) with (plus N N); [Idtac | Ring].
Apply le_reg_l.
Replace N with (S (pred N)).
Apply le_n_S; Apply H0.
Symmetry; Apply S_pred with O; Apply H.
Apply INR_eq; Do 2 Rewrite plus_INR; Do 2 Rewrite S_INR; Rewrite plus_INR; Rewrite minus_INR.
Ring.
Apply le_trans with (pred (minus N n)).
Apply H1.
Apply le_S_n.
Replace (S (pred (minus N n))) with (minus N n).
Apply le_trans with N.
Apply simpl_le_plus_l with n.
Rewrite <- le_plus_minus.
Apply le_plus_r.
Apply le_trans with (pred N).
Apply H0.
Apply le_pred_n.
Apply le_n_Sn.
Apply S_pred with O.
Apply simpl_lt_plus_l with n.
Rewrite <- le_plus_minus.
Replace (plus n (0)) with n; [Idtac | Ring].
Apply le_lt_trans with (pred N).
Apply H0.
Apply lt_pred_n_n.
Apply H.
Apply le_trans with (pred N).
Apply H0.
Apply le_pred_n.
Apply Rle_sym1; Left; Apply Rlt_Rinv; Apply INR_fact_lt_0.
Apply Rle_sym1; Left; Apply Rlt_Rinv; Apply INR_fact_lt_0.
Rewrite scal_sum.
Apply sum_Rle; Intros.
Rewrite <- Rmult_sym.
Rewrite scal_sum.
Apply sum_Rle; Intros.
Rewrite (Rmult_sym ``/(Rsqr (INR (fact (div2 (S N)))))``).
Rewrite Rmult_assoc; Apply Rle_monotony.
Apply pow_le.
Apply Rle_trans with R1.
Left; Apply Rlt_R0_R1.
Unfold M; Apply RmaxLess1.
Assert H2 := (even_odd_cor N).
Elim H2; Intros N0 H3.
Elim H3; Intro.
Apply Rle_trans with ``/(INR (fact n0))*/(INR (fact (minus N n0)))``.
Do 2 Rewrite <- (Rmult_sym ``/(INR (fact (minus N n0)))``).
Apply Rle_monotony.
Left; Apply Rlt_Rinv; Apply INR_fact_lt_0.
Apply Rle_Rinv.
Apply INR_fact_lt_0.
Apply INR_fact_lt_0.
Apply le_INR.
Apply fact_growing.
Apply le_n_Sn.
Replace ``/(INR (fact n0))*/(INR (fact (minus N n0)))`` with ``(C N n0)/(INR (fact N))``.
Pattern 1 N; Rewrite H4.
Apply Rle_trans with ``(C N N0)/(INR (fact N))``.
Unfold Rdiv; Do 2 Rewrite <- (Rmult_sym ``/(INR (fact N))``).
Apply Rle_monotony.
Left; Apply Rlt_Rinv; Apply INR_fact_lt_0.
Rewrite H4.
Apply C_maj.
Rewrite <- H4; Apply le_trans with (pred (minus N n)).
Apply H1.
Apply le_S_n.
Replace (S (pred (minus N n))) with (minus N n).
Apply le_trans with N.
Apply simpl_le_plus_l with n.
Rewrite <- le_plus_minus.
Apply le_plus_r.
Apply le_trans with (pred N).
Apply H0.
Apply le_pred_n.
Apply le_n_Sn.
Apply S_pred with O.
Apply simpl_lt_plus_l with n.
Rewrite <- le_plus_minus.
Replace (plus n (0)) with n; [Idtac | Ring].
Apply le_lt_trans with (pred N).
Apply H0.
Apply lt_pred_n_n.
Apply H.
Apply le_trans with (pred N).
Apply H0.
Apply le_pred_n.
Replace ``(C N N0)/(INR (fact N))`` with ``/(Rsqr (INR (fact N0)))``.
Rewrite H4; Rewrite div2_S_double; Right; Reflexivity.
Unfold Rsqr C Rdiv.
Repeat Rewrite Rinv_Rmult.
Rewrite (Rmult_sym (INR (fact N))).
Repeat Rewrite Rmult_assoc.
Rewrite <- Rinv_r_sym.
Rewrite Rmult_1r; Replace (minus N N0) with N0.
Ring.
Replace N with (plus N0 N0).
Symmetry; Apply minus_plus.
Rewrite H4.
Apply INR_eq; Rewrite plus_INR; Rewrite mult_INR; Do 2 Rewrite S_INR; Ring.
Apply INR_fact_neq_0.
Apply INR_fact_neq_0.
Apply INR_fact_neq_0.
Apply INR_fact_neq_0.
Apply INR_fact_neq_0.
Unfold C Rdiv.
Rewrite (Rmult_sym (INR (fact N))).
Repeat Rewrite Rmult_assoc.
Rewrite <- Rinv_r_sym.
Rewrite Rinv_Rmult.
Rewrite Rmult_1r; Ring.
Apply INR_fact_neq_0.
Apply INR_fact_neq_0.
Apply INR_fact_neq_0.
Replace ``/(INR (fact (S n0)))*/(INR (fact (minus N n0)))`` with ``(C (S N) (S n0))/(INR (fact (S N)))``.
Apply Rle_trans with ``(C (S N) (S N0))/(INR (fact (S N)))``.
Unfold Rdiv; Do 2 Rewrite <- (Rmult_sym ``/(INR (fact (S N)))``).
Apply Rle_monotony.
Left; Apply Rlt_Rinv; Apply INR_fact_lt_0.
Cut (S N) = (mult (2) (S N0)).
Intro; Rewrite H5; Apply C_maj.
Rewrite <- H5; Apply le_n_S.
Apply le_trans with (pred (minus N n)).
Apply H1.
Apply le_S_n.
Replace (S (pred (minus N n))) with (minus N n).
Apply le_trans with N.
Apply simpl_le_plus_l with n.
Rewrite <- le_plus_minus.
Apply le_plus_r.
Apply le_trans with (pred N).
Apply H0.
Apply le_pred_n.
Apply le_n_Sn.
Apply S_pred with O.
Apply simpl_lt_plus_l with n.
Rewrite <- le_plus_minus.
Replace (plus n (0)) with n; [Idtac | Ring].
Apply le_lt_trans with (pred N).
Apply H0.
Apply lt_pred_n_n.
Apply H.
Apply le_trans with (pred N).
Apply H0.
Apply le_pred_n.
Apply INR_eq; Rewrite H4.
Do 2 Rewrite S_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring.
Cut (S N) = (mult (2) (S N0)).
Intro.
Replace ``(C (S N) (S N0))/(INR (fact (S N)))`` with ``/(Rsqr (INR (fact (S N0))))``.
Rewrite H5; Rewrite div2_double.
Right; Reflexivity.
Unfold Rsqr C Rdiv.
Repeat Rewrite Rinv_Rmult.
Replace (minus (S N) (S N0)) with (S N0).
Rewrite (Rmult_sym (INR (fact (S N)))).
Repeat Rewrite Rmult_assoc.
Rewrite <- Rinv_r_sym.
Rewrite Rmult_1r; Reflexivity.
Apply INR_fact_neq_0.
Replace (S N) with (plus (S N0) (S N0)).
Symmetry; Apply minus_plus.
Rewrite H5; Ring.
Apply INR_fact_neq_0.
Apply INR_fact_neq_0.
Apply INR_fact_neq_0.
Apply INR_fact_neq_0.
Apply INR_eq; Rewrite H4; Do 2 Rewrite S_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring.
Unfold C Rdiv.
Rewrite (Rmult_sym (INR (fact (S N)))).
Rewrite Rmult_assoc; Rewrite <- Rinv_r_sym.
Rewrite Rmult_1r; Rewrite Rinv_Rmult.
Reflexivity.
Apply INR_fact_neq_0.
Apply INR_fact_neq_0.
Apply INR_fact_neq_0.
Unfold maj_Reste_E.
Unfold Rdiv; Rewrite (Rmult_sym ``4``).
Rewrite Rmult_assoc.
Apply Rle_monotony.
Apply pow_le.
Apply Rle_trans with R1.
Left; Apply Rlt_R0_R1.
Apply RmaxLess1.
Apply Rle_trans with (sum_f_R0 [k:nat]``(INR (minus N k))*/(Rsqr (INR (fact (div2 (S N)))))`` (pred N)).
Apply sum_Rle; Intros.
Rewrite sum_cte.
Replace (S (pred (minus N n))) with (minus N n).
Right; Apply Rmult_sym.
Apply S_pred with O.
Apply simpl_lt_plus_l with n.
Rewrite <- le_plus_minus.
Replace (plus n (0)) with n; [Idtac | Ring].
Apply le_lt_trans with (pred N).
Apply H0.
Apply lt_pred_n_n.
Apply H.
Apply le_trans with (pred N).
Apply H0.
Apply le_pred_n.
Apply Rle_trans with (sum_f_R0 [k:nat]``(INR N)*/(Rsqr (INR (fact (div2 (S N)))))`` (pred N)).
Apply sum_Rle; Intros.
Do 2 Rewrite <- (Rmult_sym ``/(Rsqr (INR (fact (div2 (S N)))))``).
Apply Rle_monotony.
Left; Apply Rlt_Rinv; Apply Rsqr_pos_lt.
Apply INR_fact_neq_0.
Apply le_INR.
Apply simpl_le_plus_l with n.
Rewrite <- le_plus_minus.
Apply le_plus_r.
Apply le_trans with (pred N).
Apply H0.
Apply le_pred_n.
Rewrite sum_cte; Replace (S (pred N)) with N.
Cut (div2 (S N)) = (S (div2 (pred N))).
Intro; Rewrite H0.
Rewrite fact_simpl; Rewrite mult_sym; Rewrite mult_INR; Rewrite Rsqr_times.
Rewrite Rinv_Rmult.
Rewrite (Rmult_sym (INR N)); Repeat Rewrite Rmult_assoc; Apply Rle_monotony.
Left; Apply Rlt_Rinv; Apply Rsqr_pos_lt; Apply INR_fact_neq_0.
Rewrite <- H0.
Cut ``(INR N)<=(INR (mult (S (S O)) (div2 (S N))))``.
Intro; Apply Rle_monotony_contra with ``(Rsqr (INR (div2 (S N))))``.
Apply Rsqr_pos_lt.
Apply not_O_INR; Red; Intro.
Cut (lt (1) (S N)).
Intro; Assert H4 := (div2_not_R0 ? H3).
Rewrite H2 in H4; Elim (lt_n_O ? H4).
Apply lt_n_S; Apply H.
Repeat Rewrite <- Rmult_assoc.
Rewrite <- Rinv_r_sym.
Rewrite Rmult_1l.
Replace ``(INR N)*(INR N)`` with (Rsqr (INR N)); [Idtac | Reflexivity].
Rewrite Rmult_assoc.
Rewrite Rmult_sym.
Replace ``4`` with (Rsqr ``2``); [Idtac | SqRing].
Rewrite <- Rsqr_times.
Apply Rsqr_incr_1.
Replace ``2`` with (INR (2)).
Rewrite <- mult_INR; Apply H1.
Reflexivity.
Left; Apply lt_INR_0; Apply H.
Left; Apply Rmult_lt_pos.
Sup0.
Apply lt_INR_0; Apply div2_not_R0.
Apply lt_n_S; Apply H.
Cut (lt (1) (S N)).
Intro; Unfold Rsqr; Apply prod_neq_R0; Apply not_O_INR; Intro; Assert H4 := (div2_not_R0 ? H2); Rewrite H3 in H4; Elim (lt_n_O ? H4).
Apply lt_n_S; Apply H.
Assert H1 := (even_odd_cor N).
Elim H1; Intros N0 H2.
Elim H2; Intro.
Pattern 2 N; Rewrite H3.
Rewrite div2_S_double.
Right; Rewrite H3; Reflexivity.
Pattern 2 N; Rewrite H3.
Replace (S (S (mult (2) N0))) with (mult (2) (S N0)).
Rewrite div2_double.
Rewrite H3.
Rewrite S_INR; Do 2 Rewrite mult_INR.
Rewrite (S_INR N0).
Rewrite Rmult_Rplus_distr.
Apply Rle_compatibility.
Rewrite Rmult_1r.
Simpl.
Pattern 1 R1; Rewrite <- Rplus_Or; Apply Rle_compatibility; Left; Apply Rlt_R0_R1.
Apply INR_eq; Do 2 Rewrite S_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring.
Unfold Rsqr; Apply prod_neq_R0; Apply INR_fact_neq_0.
Unfold Rsqr; Apply prod_neq_R0; Apply not_O_INR; Discriminate.
Assert H0 := (even_odd_cor N).
Elim H0; Intros N0 H1.
Elim H1; Intro.
Cut (lt O N0).
Intro; Rewrite H2.
Rewrite div2_S_double.
Replace (mult (2) N0) with (S (S (mult (2) (pred N0)))).
Replace (pred (S (S (mult (2) (pred N0))))) with (S (mult (2) (pred N0))).
Rewrite div2_S_double.
Apply S_pred with O; Apply H3.
Reflexivity.
Replace N0 with (S (pred N0)).
Apply INR_eq; Do 2 Rewrite S_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring.
Symmetry; Apply S_pred with O; Apply H3.
Rewrite H2 in H.
Apply neq_O_lt.
Red; Intro.
Rewrite <- H3 in H.
Simpl in H.
Elim (lt_n_O ? H).
Rewrite H2.
Replace (pred (S (mult (2) N0))) with (mult (2) N0); [Idtac | Reflexivity].
Replace (S (S (mult (2) N0))) with (mult (2) (S N0)).
Do 2 Rewrite div2_double.
Reflexivity.
Apply INR_eq; Do 2 Rewrite S_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring.
Apply S_pred with O; Apply H.
Qed.
Lemma maj_Reste_cv_R0 : (x,y:R) (Un_cv (maj_Reste_E x y) ``0``).
Intros; Assert H := (Majxy_cv_R0 x y).
Unfold Un_cv in H; Unfold Un_cv; Intros.
Cut ``0<eps/4``; [Intro | Unfold Rdiv; Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup0]].
Elim (H ? H1); Intros N0 H2.
Exists (max (mult (2) (S N0)) (2)); Intros.
Unfold R_dist in H2; Unfold R_dist; Rewrite minus_R0; Unfold Majxy in H2; Unfold maj_Reste_E.
Rewrite Rabsolu_right.
Apply Rle_lt_trans with ``4*(pow (Rmax 1 (Rmax (Rabsolu x) (Rabsolu y))) (mult (S (S (S (S O)))) (S (div2 (pred n)))))/(INR (fact (div2 (pred n))))``.
Apply Rle_monotony.
Left; Sup0.
Unfold Rdiv Rsqr; Rewrite Rinv_Rmult.
Rewrite (Rmult_sym ``(pow (Rmax 1 (Rmax (Rabsolu x) (Rabsolu y))) (mult (S (S O)) n))``); Rewrite (Rmult_sym ``(pow (Rmax 1 (Rmax (Rabsolu x) (Rabsolu y))) (mult (S (S (S (S O)))) (S (div2 (pred n)))))``); Rewrite Rmult_assoc; Apply Rle_monotony.
Left; Apply Rlt_Rinv; Apply INR_fact_lt_0.
Apply Rle_trans with ``(pow (Rmax 1 (Rmax (Rabsolu x) (Rabsolu y))) (mult (S (S O)) n))``.
Rewrite Rmult_sym; Pattern 2 (pow (Rmax R1 (Rmax (Rabsolu x) (Rabsolu y))) (mult (2) n)); Rewrite <- Rmult_1r; Apply Rle_monotony.
Apply pow_le; Apply Rle_trans with R1.
Left; Apply Rlt_R0_R1.
Apply RmaxLess1.
Apply Rle_monotony_contra with ``(INR (fact (div2 (pred n))))``.
Apply INR_fact_lt_0.
Rewrite Rmult_1r; Rewrite <- Rinv_r_sym.
Replace R1 with (INR (1)); [Apply le_INR | Reflexivity].
Apply lt_le_S.
Apply INR_lt.
Apply INR_fact_lt_0.
Apply INR_fact_neq_0.
Apply Rle_pow.
Apply RmaxLess1.
Assert H4 := (even_odd_cor n).
Elim H4; Intros N1 H5.
Elim H5; Intro.
Cut (lt O N1).
Intro.
Rewrite H6.
Replace (pred (mult (2) N1)) with (S (mult (2) (pred N1))).
Rewrite div2_S_double.
Replace (S (pred N1)) with N1.
Apply INR_le.
Right.
Do 3 Rewrite mult_INR; Repeat Rewrite S_INR; Ring.
Apply S_pred with O; Apply H7.
Replace (mult (2) N1) with (S (S (mult (2) (pred N1)))).
Reflexivity.
Pattern 2 N1; Replace N1 with (S (pred N1)).
Apply INR_eq; Do 2 Rewrite S_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring.
Symmetry ; Apply S_pred with O; Apply H7.
Apply INR_lt.
Apply Rlt_monotony_contra with (INR (2)).
Simpl; Sup0.
Rewrite Rmult_Or; Rewrite <- mult_INR.
Apply lt_INR_0.
Rewrite <- H6.
Apply lt_le_trans with (2).
Apply lt_O_Sn.
Apply le_trans with (max (mult (2) (S N0)) (2)).
Apply le_max_r.
Apply H3.
Rewrite H6.
Replace (pred (S (mult (2) N1))) with (mult (2) N1).
Rewrite div2_double.
Replace (mult (4) (S N1)) with (mult (2) (mult (2) (S N1))).
Apply mult_le.
Replace (mult (2) (S N1)) with (S (S (mult (2) N1))).
Apply le_n_Sn.
Apply INR_eq; Do 2 Rewrite S_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring.
Ring.
Reflexivity.
Apply INR_fact_neq_0.
Apply INR_fact_neq_0.
Apply Rlt_monotony_contra with ``/4``.
Apply Rlt_Rinv; Sup0.
Rewrite <- Rmult_assoc; Rewrite <- Rinv_l_sym.
Rewrite Rmult_1l; Rewrite Rmult_sym.
Replace ``(pow (Rmax 1 (Rmax (Rabsolu x) (Rabsolu y))) (mult (S (S (S (S O)))) (S (div2 (pred n)))))/(INR (fact (div2 (pred n))))`` with ``(Rabsolu ((pow (Rmax 1 (Rmax (Rabsolu x) (Rabsolu y))) (mult (S (S (S (S O)))) (S (div2 (pred n)))))/(INR (fact (div2 (pred n))))-0))``.
Apply H2; Unfold ge.
Cut (le (mult (2) (S N0)) n).
Intro; Apply le_S_n.
Apply INR_le; Apply Rle_monotony_contra with (INR (2)).
Simpl; Sup0.
Do 2 Rewrite <- mult_INR; Apply le_INR.
Apply le_trans with n.
Apply H4.
Assert H5 := (even_odd_cor n).
Elim H5; Intros N1 H6.
Elim H6; Intro.
Cut (lt O N1).
Intro.
Rewrite H7.
Apply mult_le.
Replace (pred (mult (2) N1)) with (S (mult (2) (pred N1))).
Rewrite div2_S_double.
Replace (S (pred N1)) with N1.
Apply le_n.
Apply S_pred with O; Apply H8.
Replace (mult (2) N1) with (S (S (mult (2) (pred N1)))).
Reflexivity.
Pattern 2 N1; Replace N1 with (S (pred N1)).
Apply INR_eq; Do 2 Rewrite S_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring.
Symmetry; Apply S_pred with O; Apply H8.
Apply INR_lt.
Apply Rlt_monotony_contra with (INR (2)).
Simpl; Sup0.
Rewrite Rmult_Or; Rewrite <- mult_INR.
Apply lt_INR_0.
Rewrite <- H7.
Apply lt_le_trans with (2).
Apply lt_O_Sn.
Apply le_trans with (max (mult (2) (S N0)) (2)).
Apply le_max_r.
Apply H3.
Rewrite H7.
Replace (pred (S (mult (2) N1))) with (mult (2) N1).
Rewrite div2_double.
Replace (mult (2) (S N1)) with (S (S (mult (2) N1))).
Apply le_n_Sn.
Apply INR_eq; Do 2 Rewrite S_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring.
Reflexivity.
Apply le_trans with (max (mult (2) (S N0)) (2)).
Apply le_max_l.
Apply H3.
Rewrite minus_R0; Apply Rabsolu_right.
Apply Rle_sym1.
Unfold Rdiv; Repeat Apply Rmult_le_pos.
Apply pow_le.
Apply Rle_trans with R1.
Left; Apply Rlt_R0_R1.
Apply RmaxLess1.
Left; Apply Rlt_Rinv; Apply INR_fact_lt_0.
DiscrR.
Apply Rle_sym1.
Unfold Rdiv; Apply Rmult_le_pos.
Left; Sup0.
Apply Rmult_le_pos.
Apply pow_le.
Apply Rle_trans with R1.
Left; Apply Rlt_R0_R1.
Apply RmaxLess1.
Left; Apply Rlt_Rinv; Apply Rsqr_pos_lt; Apply INR_fact_neq_0.
Qed.
(**********)
Lemma Reste_E_cv : (x,y:R) (Un_cv (Reste_E x y) R0).
Intros; Assert H := (maj_Reste_cv_R0 x y).
Unfold Un_cv in H; Unfold Un_cv; Intros; Elim (H ? H0); Intros.
Exists (max x0 (1)); Intros.
Unfold R_dist; Rewrite minus_R0.
Apply Rle_lt_trans with (maj_Reste_E x y n).
Apply Reste_E_maj.
Apply lt_le_trans with (1).
Apply lt_O_Sn.
Apply le_trans with (max x0 (1)).
Apply le_max_r.
Apply H2.
Replace (maj_Reste_E x y n) with (R_dist (maj_Reste_E x y n) R0).
Apply H1.
Unfold ge; Apply le_trans with (max x0 (1)).
Apply le_max_l.
Apply H2.
Unfold R_dist; Rewrite minus_R0; Apply Rabsolu_right.
Apply Rle_sym1; Apply Rle_trans with (Rabsolu (Reste_E x y n)).
Apply Rabsolu_pos.
Apply Reste_E_maj.
Apply lt_le_trans with (1).
Apply lt_O_Sn.
Apply le_trans with (max x0 (1)).
Apply le_max_r.
Apply H2.
Qed.
(**********)
Lemma exp_plus : (x,y:R) ``(exp (x+y))==(exp x)*(exp y)``.
Intros; Assert H0 := (E1_cvg x).
Assert H := (E1_cvg y).
Assert H1 := (E1_cvg ``x+y``).
EApply UL_sequence.
Apply H1.
Assert H2 := (CV_mult ? ? ? ? H0 H).
Assert H3 := (CV_minus ? ? ? ? H2 (Reste_E_cv x y)).
Unfold Un_cv; Unfold Un_cv in H3; Intros.
Elim (H3 ? H4); Intros.
Exists (S x0); Intros.
Rewrite <- (exp_form x y n).
Rewrite minus_R0 in H5.
Apply H5.
Unfold ge; Apply le_trans with (S x0).
Apply le_n_Sn.
Apply H6.
Apply lt_le_trans with (S x0).
Apply lt_O_Sn.
Apply H6.
Qed.
(**********)
Lemma exp_pos_pos : (x:R) ``0<x`` -> ``0<(exp x)``.
Intros; Pose An := [N:nat]``/(INR (fact N))*(pow x N)``.
Cut (Un_cv [n:nat](sum_f_R0 An n) (exp x)).
Intro; Apply Rlt_le_trans with (sum_f_R0 An O).
Unfold An; Simpl; Rewrite Rinv_R1; Rewrite Rmult_1r; Apply Rlt_R0_R1.
Apply sum_incr.
Assumption.
Intro; Unfold An; Left; Apply Rmult_lt_pos.
Apply Rlt_Rinv; Apply INR_fact_lt_0.
Apply (pow_lt ? n H).
Unfold exp; Unfold projT1; Case (exist_exp x); Intro.
Unfold exp_in; Unfold infinit_sum Un_cv; Trivial.
Qed.
(**********)
Lemma exp_pos : (x:R) ``0<(exp x)``.
Intro; Case (total_order_T R0 x); Intro.
Elim s; Intro.
Apply (exp_pos_pos ? a).
Rewrite <- b; Rewrite exp_0; Apply Rlt_R0_R1.
Replace (exp x) with ``1/(exp (-x))``.
Unfold Rdiv; Apply Rmult_lt_pos.
Apply Rlt_R0_R1.
Apply Rlt_Rinv; Apply exp_pos_pos.
Apply (Rgt_RO_Ropp ? r).
Cut ``(exp (-x))<>0``.
Intro; Unfold Rdiv; Apply r_Rmult_mult with ``(exp (-x))``.
Rewrite Rmult_1l; Rewrite <- Rinv_r_sym.
Rewrite <- exp_plus.
Rewrite Rplus_Ropp_l; Rewrite exp_0; Reflexivity.
Apply H.
Apply H.
Assert H := (exp_plus x ``-x``).
Rewrite Rplus_Ropp_r in H; Rewrite exp_0 in H.
Red; Intro; Rewrite H0 in H.
Rewrite Rmult_Or in H.
Elim R1_neq_R0; Assumption.
Qed.
(* ((exp h)-1)/h -> 0 quand h->0 *)
Lemma derivable_pt_lim_exp_0 : (derivable_pt_lim exp ``0`` ``1``).
Unfold derivable_pt_lim; Intros.
Pose fn := [N:nat][x:R]``(pow x N)/(INR (fact (S N)))``.
Cut (CVN_R fn).
Intro; Cut (x:R)(sigTT ? [l:R](Un_cv [N:nat](SP fn N x) l)).
Intro cv; Cut ((n:nat)(continuity (fn n))).
Intro; Cut (continuity (SFL fn cv)).
Intro; Unfold continuity in H1.
Assert H2 := (H1 R0).
Unfold continuity_pt in H2; Unfold continue_in in H2; Unfold limit1_in in H2; Unfold limit_in in H2; Simpl in H2; Unfold R_dist in H2.
Elim (H2 ? H); Intros alp H3.
Elim H3; Intros.
Exists (mkposreal ? H4); Intros.
Rewrite Rplus_Ol; Rewrite exp_0.
Replace ``((exp h)-1)/h`` with (SFL fn cv h).
Replace R1 with (SFL fn cv R0).
Apply H5.
Split.
Unfold D_x no_cond; Split.
Trivial.
Apply (not_sym ? ? H6).
Rewrite minus_R0; Apply H7.
Unfold SFL.
Case (cv ``0``); Intros.
EApply UL_sequence.
Apply u.
Unfold Un_cv SP.
Intros; Exists (1); Intros.
Unfold R_dist; Rewrite decomp_sum.
Rewrite (Rplus_sym (fn O R0)).
Replace (fn O R0) with R1.
Unfold Rminus; Rewrite Rplus_assoc; Rewrite Rplus_Ropp_r; Rewrite Rplus_Or.
Replace (sum_f_R0 [i:nat](fn (S i) ``0``) (pred n)) with R0.
Rewrite Rabsolu_R0; Apply H8.
Symmetry; Apply sum_eq_R0; Intros.
Unfold fn.
Simpl.
Unfold Rdiv; Do 2 Rewrite Rmult_Ol; Reflexivity.
Unfold fn; Simpl.
Unfold Rdiv; Rewrite Rinv_R1; Rewrite Rmult_1r; Reflexivity.
Apply lt_le_trans with (1); [Apply lt_n_Sn | Apply H9].
Unfold SFL exp.
Unfold projT1.
Case (cv h); Case (exist_exp h); Intros.
EApply UL_sequence.
Apply u.
Unfold Un_cv; Intros.
Unfold exp_in in e.
Unfold infinit_sum in e.
Cut ``0<eps0*(Rabsolu h)``.
Intro; Elim (e ? H9); Intros N0 H10.
Exists N0; Intros.
Unfold R_dist.
Apply Rlt_monotony_contra with ``(Rabsolu h)``.
Apply Rabsolu_pos_lt; Assumption.
Rewrite <- Rabsolu_mult.
Rewrite Rminus_distr.
Replace ``h*(x-1)/h`` with ``(x-1)``.
Unfold R_dist in H10.
Replace ``h*(SP fn n h)-(x-1)`` with (Rminus (sum_f_R0 [i:nat]``/(INR (fact i))*(pow h i)`` (S n)) x).
Rewrite (Rmult_sym (Rabsolu h)).
Apply H10.
Unfold ge.
Apply le_trans with (S N0).
Apply le_n_Sn.
Apply le_n_S; Apply H11.
Rewrite decomp_sum.
Replace ``/(INR (fact O))*(pow h O)`` with R1.
Unfold Rminus.
Rewrite Ropp_distr1.
Rewrite Ropp_Ropp.
Rewrite <- (Rplus_sym ``-x``).
Rewrite <- (Rplus_sym ``-x+1``).
Rewrite Rplus_assoc; Repeat Apply Rplus_plus_r.
Replace (pred (S n)) with n; [Idtac | Reflexivity].
Unfold SP.
Rewrite scal_sum.
Apply sum_eq; Intros.
Unfold fn.
Replace (pow h (S i)) with ``h*(pow h i)``.
Unfold Rdiv; Ring.
Simpl; Ring.
Simpl; Rewrite Rinv_R1; Rewrite Rmult_1r; Reflexivity.
Apply lt_O_Sn.
Unfold Rdiv.
Rewrite <- Rmult_assoc.
Symmetry; Apply Rinv_r_simpl_m.
Assumption.
Apply Rmult_lt_pos.
Apply H8.
Apply Rabsolu_pos_lt; Assumption.
Apply SFL_continuity; Assumption.
Intro; Unfold fn.
Replace [x:R]``(pow x n)/(INR (fact (S n)))`` with (div_fct (pow_fct n) (fct_cte (INR (fact (S n))))); [Idtac | Reflexivity].
Apply continuity_div.
Apply derivable_continuous; Apply (derivable_pow n).
Apply derivable_continuous; Apply derivable_const.
Intro; Unfold fct_cte; Apply INR_fact_neq_0.
Apply (CVN_R_CVS ? X).
Assert H0 := Alembert_exp.
Unfold CVN_R.
Intro; Unfold CVN_r.
Apply Specif.existT with [N:nat]``(pow r N)/(INR (fact (S N)))``.
Cut (SigT ? [l:R](Un_cv [n:nat](sum_f_R0 [k:nat](Rabsolu ``(pow r k)/(INR (fact (S k)))``) n) l)).
Intro.
Elim X; Intros.
Exists x; Intros.
Split.
Apply p.
Unfold Boule; Intros.
Rewrite minus_R0 in H1.
Unfold fn.
Unfold Rdiv; Rewrite Rabsolu_mult.
Cut ``0<(INR (fact (S n)))``.
Intro.
Rewrite (Rabsolu_right ``/(INR (fact (S n)))``).
Do 2 Rewrite <- (Rmult_sym ``/(INR (fact (S n)))``).
Apply Rle_monotony.
Left; Apply Rlt_Rinv; Apply H2.
Rewrite <- Pow_Rabsolu.
Apply pow_maj_Rabs.
Rewrite Rabsolu_Rabsolu; Left; Apply H1.
Apply Rle_sym1; Left; Apply Rlt_Rinv; Apply H2.
Apply INR_fact_lt_0.
Cut (r::R)<>``0``.
Intro; Apply Alembert_C2.
Intro; Apply Rabsolu_no_R0.
Unfold Rdiv; Apply prod_neq_R0.
Apply pow_nonzero; Assumption.
Apply Rinv_neq_R0; Apply INR_fact_neq_0.
Unfold Un_cv in H0.
Unfold Un_cv; Intros.
Cut ``0<eps0/r``; [Intro | Unfold Rdiv; Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Apply (cond_pos r)]].
Elim (H0 ? H3); Intros N0 H4.
Exists N0; Intros.
Cut (ge (S n) N0).
Intro hyp_sn.
Assert H6 := (H4 ? hyp_sn).
Unfold R_dist in H6; Rewrite minus_R0 in H6.
Rewrite Rabsolu_Rabsolu in H6.
Unfold R_dist; Rewrite minus_R0.
Rewrite Rabsolu_Rabsolu.
Replace ``(Rabsolu ((pow r (S n))/(INR (fact (S (S n))))))/
(Rabsolu ((pow r n)/(INR (fact (S n)))))`` with ``r*/(INR (fact (S (S n))))*//(INR (fact (S n)))``.
Rewrite Rmult_assoc; Rewrite Rabsolu_mult.
Rewrite (Rabsolu_right r).
Apply Rlt_monotony_contra with ``/r``.
Apply Rlt_Rinv; Apply (cond_pos r).
Rewrite <- Rmult_assoc; Rewrite <- Rinv_l_sym.
Rewrite Rmult_1l; Rewrite <- (Rmult_sym eps0).
Apply H6.
Assumption.
Apply Rle_sym1; Left; Apply (cond_pos r).
Unfold Rdiv.
Repeat Rewrite Rabsolu_mult.
Repeat Rewrite Rabsolu_Rinv.
Rewrite Rinv_Rmult.
Repeat Rewrite Rabsolu_right.
Rewrite Rinv_Rinv.
Rewrite (Rmult_sym r).
Rewrite (Rmult_sym (pow r (S n))).
Repeat Rewrite Rmult_assoc.
Apply Rmult_mult_r.
Rewrite (Rmult_sym r).
Rewrite <- Rmult_assoc; Rewrite <- (Rmult_sym (INR (fact (S n)))).
Apply Rmult_mult_r.
Simpl.
Rewrite Rmult_assoc; Rewrite <- Rinv_r_sym.
Ring.
Apply pow_nonzero; Assumption.
Apply INR_fact_neq_0.
Apply Rle_sym1; Left; Apply INR_fact_lt_0.
Apply Rle_sym1; Left; Apply pow_lt; Apply (cond_pos r).
Apply Rle_sym1; Left; Apply INR_fact_lt_0.
Apply Rle_sym1; Left; Apply pow_lt; Apply (cond_pos r).
Apply Rabsolu_no_R0; Apply pow_nonzero; Assumption.
Apply Rinv_neq_R0; Apply Rabsolu_no_R0; Apply INR_fact_neq_0.
Apply INR_fact_neq_0.
Apply INR_fact_neq_0.
Unfold ge; Apply le_trans with n.
Apply H5.
Apply le_n_Sn.
Assert H1 := (cond_pos r); Red; Intro; Rewrite H2 in H1; Elim (Rlt_antirefl ? H1).
Qed.
(**********)
Lemma derivable_pt_lim_exp : (x:R) (derivable_pt_lim exp x (exp x)).
Intro; Assert H0 := derivable_pt_lim_exp_0.
Unfold derivable_pt_lim in H0; Unfold derivable_pt_lim; Intros.
Cut ``0<eps/(exp x)``; [Intro | Unfold Rdiv; Apply Rmult_lt_pos; [Apply H | Apply Rlt_Rinv; Apply exp_pos]].
Elim (H0 ? H1); Intros del H2.
Exists del; Intros.
Assert H5 := (H2 ? H3 H4).
Rewrite Rplus_Ol in H5; Rewrite exp_0 in H5.
Replace ``((exp (x+h))-(exp x))/h-(exp x)`` with ``(exp x)*(((exp h)-1)/h-1)``.
Rewrite Rabsolu_mult; Rewrite (Rabsolu_right (exp x)).
Apply Rlt_monotony_contra with ``/(exp x)``.
Apply Rlt_Rinv; Apply exp_pos.
Rewrite <- Rmult_assoc; Rewrite <- Rinv_l_sym.
Rewrite Rmult_1l; Rewrite <- (Rmult_sym eps).
Apply H5.
Assert H6 := (exp_pos x); Red; Intro; Rewrite H7 in H6; Elim (Rlt_antirefl ? H6).
Apply Rle_sym1; Left; Apply exp_pos.
Rewrite Rminus_distr.
Rewrite Rmult_1r; Unfold Rdiv; Rewrite <- Rmult_assoc; Rewrite Rminus_distr.
Rewrite Rmult_1r; Rewrite exp_plus; Reflexivity.
Qed.
|