1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: MVT.v,v 1.1.2.1 2004/07/16 19:31:32 herbelin Exp $ i*)
Require Rbase.
Require Rfunctions.
Require Ranalysis1.
Require Rtopology.
V7only [Import R_scope.]. Open Local Scope R_scope.
(* The Mean Value Theorem *)
Theorem MVT : (f,g:R->R;a,b:R;pr1:(c:R)``a<c<b``->(derivable_pt f c);pr2:(c:R)``a<c<b``->(derivable_pt g c)) ``a<b`` -> ((c:R)``a<=c<=b``->(continuity_pt f c)) -> ((c:R)``a<=c<=b``->(continuity_pt g c)) -> (EXT c : R | (EXT P : ``a<c<b`` | ``((g b)-(g a))*(derive_pt f c (pr1 c P))==((f b)-(f a))*(derive_pt g c (pr2 c P))``)).
Intros; Assert H2 := (Rlt_le ? ? H).
Pose h := [y:R]``((g b)-(g a))*(f y)-((f b)-(f a))*(g y)``.
Cut (c:R)``a<c<b``->(derivable_pt h c).
Intro; Cut ((c:R)``a<=c<=b``->(continuity_pt h c)).
Intro; Assert H4 := (continuity_ab_maj h a b H2 H3).
Assert H5 := (continuity_ab_min h a b H2 H3).
Elim H4; Intros Mx H6.
Elim H5; Intros mx H7.
Cut (h a)==(h b).
Intro; Pose M := (h Mx); Pose m := (h mx).
Cut (c:R;P:``a<c<b``) (derive_pt h c (X c P))==``((g b)-(g a))*(derive_pt f c (pr1 c P))-((f b)-(f a))*(derive_pt g c (pr2 c P))``.
Intro; Case (Req_EM (h a) M); Intro.
Case (Req_EM (h a) m); Intro.
Cut ((c:R)``a<=c<=b``->(h c)==M).
Intro; Cut ``a<(a+b)/2<b``.
(*** h constant ***)
Intro; Exists ``(a+b)/2``.
Exists H13.
Apply Rminus_eq; Rewrite <- H9; Apply deriv_constant2 with a b.
Elim H13; Intros; Assumption.
Elim H13; Intros; Assumption.
Intros; Rewrite (H12 ``(a+b)/2``).
Apply H12; Split; Left; Assumption.
Elim H13; Intros; Split; Left; Assumption.
Split.
Apply Rlt_monotony_contra with ``2``.
Sup0.
Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym.
Rewrite Rmult_1l; Rewrite double; Apply Rlt_compatibility; Apply H.
DiscrR.
Apply Rlt_monotony_contra with ``2``.
Sup0.
Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym.
Rewrite Rmult_1l; Rewrite Rplus_sym; Rewrite double; Apply Rlt_compatibility; Apply H.
DiscrR.
Intros; Elim H6; Intros H13 _.
Elim H7; Intros H14 _.
Apply Rle_antisym.
Apply H13; Apply H12.
Rewrite H10 in H11; Rewrite H11; Apply H14; Apply H12.
Cut ``a<mx<b``.
(*** h admet un minimum global sur [a,b] ***)
Intro; Exists mx.
Exists H12.
Apply Rminus_eq; Rewrite <- H9; Apply deriv_minimum with a b.
Elim H12; Intros; Assumption.
Elim H12; Intros; Assumption.
Intros; Elim H7; Intros.
Apply H15; Split; Left; Assumption.
Elim H7; Intros _ H12; Elim H12; Intros; Split.
Inversion H13.
Apply H15.
Rewrite H15 in H11; Elim H11; Reflexivity.
Inversion H14.
Apply H15.
Rewrite H8 in H11; Rewrite <- H15 in H11; Elim H11; Reflexivity.
Cut ``a<Mx<b``.
(*** h admet un maximum global sur [a,b] ***)
Intro; Exists Mx.
Exists H11.
Apply Rminus_eq; Rewrite <- H9; Apply deriv_maximum with a b.
Elim H11; Intros; Assumption.
Elim H11; Intros; Assumption.
Intros; Elim H6; Intros; Apply H14.
Split; Left; Assumption.
Elim H6; Intros _ H11; Elim H11; Intros; Split.
Inversion H12.
Apply H14.
Rewrite H14 in H10; Elim H10; Reflexivity.
Inversion H13.
Apply H14.
Rewrite H8 in H10; Rewrite <- H14 in H10; Elim H10; Reflexivity.
Intros; Unfold h; Replace (derive_pt [y:R]``((g b)-(g a))*(f y)-((f b)-(f a))*(g y)`` c (X c P)) with (derive_pt (minus_fct (mult_fct (fct_cte ``(g b)-(g a)``) f) (mult_fct (fct_cte ``(f b)-(f a)``) g)) c (derivable_pt_minus ? ? ? (derivable_pt_mult ? ? ? (derivable_pt_const ``(g b)-(g a)`` c) (pr1 c P)) (derivable_pt_mult ? ? ? (derivable_pt_const ``(f b)-(f a)`` c) (pr2 c P)))); [Idtac | Apply pr_nu].
Rewrite derive_pt_minus; Do 2 Rewrite derive_pt_mult; Do 2 Rewrite derive_pt_const; Do 2 Rewrite Rmult_Ol; Do 2 Rewrite Rplus_Ol; Reflexivity.
Unfold h; Ring.
Intros; Unfold h; Change (continuity_pt (minus_fct (mult_fct (fct_cte ``(g b)-(g a)``) f) (mult_fct (fct_cte ``(f b)-(f a)``) g)) c).
Apply continuity_pt_minus; Apply continuity_pt_mult.
Apply derivable_continuous_pt; Apply derivable_const.
Apply H0; Apply H3.
Apply derivable_continuous_pt; Apply derivable_const.
Apply H1; Apply H3.
Intros; Change (derivable_pt (minus_fct (mult_fct (fct_cte ``(g b)-(g a)``) f) (mult_fct (fct_cte ``(f b)-(f a)``) g)) c).
Apply derivable_pt_minus; Apply derivable_pt_mult.
Apply derivable_pt_const.
Apply (pr1 ? H3).
Apply derivable_pt_const.
Apply (pr2 ? H3).
Qed.
(* Corollaries ... *)
Lemma MVT_cor1 : (f:(R->R); a,b:R; pr:(derivable f)) ``a < b``->(EXT c:R | ``(f b)-(f a) == (derive_pt f c (pr c))*(b-a)``/\``a < c < b``).
Intros f a b pr H; Cut (c:R)``a<c<b``->(derivable_pt f c); [Intro | Intros; Apply pr].
Cut (c:R)``a<c<b``->(derivable_pt id c); [Intro | Intros; Apply derivable_pt_id].
Cut ((c:R)``a<=c<=b``->(continuity_pt f c)); [Intro | Intros; Apply derivable_continuous_pt; Apply pr].
Cut ((c:R)``a<=c<=b``->(continuity_pt id c)); [Intro | Intros; Apply derivable_continuous_pt; Apply derivable_id].
Assert H2 := (MVT f id a b X X0 H H0 H1).
Elim H2; Intros c H3; Elim H3; Intros.
Exists c; Split.
Cut (derive_pt id c (X0 c x)) == (derive_pt id c (derivable_pt_id c)); [Intro | Apply pr_nu].
Rewrite H5 in H4; Rewrite (derive_pt_id c) in H4; Rewrite Rmult_1r in H4; Rewrite <- H4; Replace (derive_pt f c (X c x)) with (derive_pt f c (pr c)); [Idtac | Apply pr_nu]; Apply Rmult_sym.
Apply x.
Qed.
Theorem MVT_cor2 : (f,f':R->R;a,b:R) ``a<b`` -> ((c:R)``a<=c<=b``->(derivable_pt_lim f c (f' c))) -> (EXT c:R | ``(f b)-(f a)==(f' c)*(b-a)``/\``a<c<b``).
Intros f f' a b H H0; Cut ((c:R)``a<=c<=b``->(derivable_pt f c)).
Intro; Cut ((c:R)``a<c<b``->(derivable_pt f c)).
Intro; Cut ((c:R)``a<=c<=b``->(continuity_pt f c)).
Intro; Cut ((c:R)``a<=c<=b``->(derivable_pt id c)).
Intro; Cut ((c:R)``a<c<b``->(derivable_pt id c)).
Intro; Cut ((c:R)``a<=c<=b``->(continuity_pt id c)).
Intro; Elim (MVT f id a b X0 X2 H H1 H2); Intros; Elim H3; Clear H3; Intros; Exists x; Split.
Cut (derive_pt id x (X2 x x0))==R1.
Cut (derive_pt f x (X0 x x0))==(f' x).
Intros; Rewrite H4 in H3; Rewrite H5 in H3; Unfold id in H3; Rewrite Rmult_1r in H3; Rewrite Rmult_sym; Symmetry; Assumption.
Apply derive_pt_eq_0; Apply H0; Elim x0; Intros; Split; Left; Assumption.
Apply derive_pt_eq_0; Apply derivable_pt_lim_id.
Assumption.
Intros; Apply derivable_continuous_pt; Apply X1; Assumption.
Intros; Apply derivable_pt_id.
Intros; Apply derivable_pt_id.
Intros; Apply derivable_continuous_pt; Apply X; Assumption.
Intros; Elim H1; Intros; Apply X; Split; Left; Assumption.
Intros; Unfold derivable_pt; Apply Specif.existT with (f' c); Apply H0; Apply H1.
Qed.
Lemma MVT_cor3 : (f,f':(R->R); a,b:R) ``a < b`` -> ((x:R)``a <= x`` -> ``x <= b``->(derivable_pt_lim f x (f' x))) -> (EXT c:R | ``a<=c``/\``c<=b``/\``(f b)==(f a) + (f' c)*(b-a)``).
Intros f f' a b H H0; Assert H1 : (EXT c:R | ``(f b) -(f a) == (f' c)*(b-a)``/\``a<c<b``); [Apply MVT_cor2; [Apply H | Intros; Elim H1; Intros; Apply (H0 ? H2 H3)] | Elim H1; Intros; Exists x; Elim H2; Intros; Elim H4; Intros; Split; [Left; Assumption | Split; [Left; Assumption | Rewrite <- H3; Ring]]].
Qed.
Lemma Rolle : (f:R->R;a,b:R;pr:(x:R)``a<x<b``->(derivable_pt f x)) ((x:R)``a<=x<=b``->(continuity_pt f x)) -> ``a<b`` -> (f a)==(f b) -> (EXT c:R | (EXT P: ``a<c<b`` | ``(derive_pt f c (pr c P))==0``)).
Intros; Assert H2 : (x:R)``a<x<b``->(derivable_pt id x).
Intros; Apply derivable_pt_id.
Assert H3 := (MVT f id a b pr H2 H0 H); Assert H4 : (x:R)``a<=x<=b``->(continuity_pt id x).
Intros; Apply derivable_continuous; Apply derivable_id.
Elim (H3 H4); Intros; Elim H5; Intros; Exists x; Exists x0; Rewrite H1 in H6; Unfold id in H6; Unfold Rminus in H6; Rewrite Rplus_Ropp_r in H6; Rewrite Rmult_Ol in H6; Apply r_Rmult_mult with ``b-a``; [Rewrite Rmult_Or; Apply H6 | Apply Rminus_eq_contra; Red; Intro; Rewrite H7 in H0; Elim (Rlt_antirefl ? H0)].
Qed.
(**********)
Lemma nonneg_derivative_1 : (f:R->R;pr:(derivable f)) ((x:R) ``0<=(derive_pt f x (pr x))``) -> (increasing f).
Intros.
Unfold increasing.
Intros.
Case (total_order_T x y); Intro.
Elim s; Intro.
Apply Rle_anti_compatibility with ``-(f x)``.
Rewrite Rplus_Ropp_l; Rewrite Rplus_sym.
Assert H1 := (MVT_cor1 f ? ? pr a).
Elim H1; Intros.
Elim H2; Intros.
Unfold Rminus in H3.
Rewrite H3.
Apply Rmult_le_pos.
Apply H.
Apply Rle_anti_compatibility with x.
Rewrite Rplus_Or; Replace ``x+(y+ -x)`` with y; [Assumption | Ring].
Rewrite b; Right; Reflexivity.
Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H0 r)).
Qed.
(**********)
Lemma nonpos_derivative_0 : (f:R->R;pr:(derivable f)) (decreasing f) -> ((x:R) ``(derive_pt f x (pr x))<=0``).
Intros f pr H x; Assert H0 :=H; Unfold decreasing in H0; Generalize (derivable_derive f x (pr x)); Intro; Elim H1; Intros l H2.
Rewrite H2; Case (total_order l R0); Intro.
Left; Assumption.
Elim H3; Intro.
Right; Assumption.
Generalize (derive_pt_eq_1 f x l (pr x) H2); Intros; Cut ``0< (l/2)``.
Intro; Elim (H5 ``(l/2)`` H6); Intros delta H7; Cut ``delta/2<>0``/\``0<delta/2``/\``(Rabsolu delta/2)<delta``.
Intro; Decompose [and] H8; Intros; Generalize (H7 ``delta/2`` H9 H12); Cut ``((f (x+delta/2))-(f x))/(delta/2)<=0``.
Intro; Cut ``0< -(((f (x+delta/2))-(f x))/(delta/2)-l)``.
Intro; Unfold Rabsolu; Case (case_Rabsolu ``((f (x+delta/2))-(f x))/(delta/2)-l``).
Intros; Generalize (Rlt_compatibility_r ``-l`` ``-(((f (x+delta/2))-(f x))/(delta/2)-l)`` ``(l/2)`` H14); Unfold Rminus.
Replace ``(l/2)+ -l`` with ``-(l/2)``.
Replace `` -(((f (x+delta/2))+ -(f x))/(delta/2)+ -l)+ -l`` with ``-(((f (x+delta/2))+ -(f x))/(delta/2))``.
Intro.
Generalize (Rlt_Ropp ``-(((f (x+delta/2))+ -(f x))/(delta/2))`` ``-(l/2)`` H15).
Repeat Rewrite Ropp_Ropp.
Intro.
Generalize (Rlt_trans ``0`` ``l/2`` ``((f (x+delta/2))-(f x))/(delta/2)`` H6 H16); Intro.
Elim (Rlt_antirefl ``0`` (Rlt_le_trans ``0`` ``((f (x+delta/2))-(f x))/(delta/2)`` ``0`` H17 H10)).
Ring.
Pattern 3 l; Rewrite double_var.
Ring.
Intros.
Generalize (Rge_Ropp ``((f (x+delta/2))-(f x))/(delta/2)-l`` ``0`` r).
Rewrite Ropp_O.
Intro.
Elim (Rlt_antirefl ``0`` (Rlt_le_trans ``0`` ``-(((f (x+delta/2))-(f x))/(delta/2)-l)`` ``0`` H13 H15)).
Replace ``-(((f (x+delta/2))-(f x))/(delta/2)-l)`` with ``(((f (x))-(f (x+delta/2)))/(delta/2)) +l``.
Unfold Rminus.
Apply ge0_plus_gt0_is_gt0.
Unfold Rdiv; Apply Rmult_le_pos.
Cut ``x<=(x+(delta*/2))``.
Intro; Generalize (H0 x ``x+(delta*/2)`` H13); Intro; Generalize (Rle_compatibility ``-(f (x+delta/2))`` ``(f (x+delta/2))`` ``(f x)`` H14); Rewrite Rplus_Ropp_l; Rewrite Rplus_sym; Intro; Assumption.
Pattern 1 x; Rewrite <- (Rplus_Or x); Apply Rle_compatibility; Left; Assumption.
Left; Apply Rlt_Rinv; Assumption.
Assumption.
Rewrite Ropp_distr2.
Unfold Rminus.
Rewrite (Rplus_sym l).
Unfold Rdiv.
Rewrite <- Ropp_mul1.
Rewrite Ropp_distr1.
Rewrite Ropp_Ropp.
Rewrite (Rplus_sym (f x)).
Reflexivity.
Replace ``((f (x+delta/2))-(f x))/(delta/2)`` with ``-(((f x)-(f (x+delta/2)))/(delta/2))``.
Rewrite <- Ropp_O.
Apply Rge_Ropp.
Apply Rle_sym1.
Unfold Rdiv; Apply Rmult_le_pos.
Cut ``x<=(x+(delta*/2))``.
Intro; Generalize (H0 x ``x+(delta*/2)`` H10); Intro.
Generalize (Rle_compatibility ``-(f (x+delta/2))`` ``(f (x+delta/2))`` ``(f x)`` H13); Rewrite Rplus_Ropp_l; Rewrite Rplus_sym; Intro; Assumption.
Pattern 1 x; Rewrite <- (Rplus_Or x); Apply Rle_compatibility; Left; Assumption.
Left; Apply Rlt_Rinv; Assumption.
Unfold Rdiv; Rewrite <- Ropp_mul1.
Rewrite Ropp_distr2.
Reflexivity.
Split.
Unfold Rdiv; Apply prod_neq_R0.
Generalize (cond_pos delta); Intro; Red; Intro H9; Rewrite H9 in H8; Elim (Rlt_antirefl ``0`` H8).
Apply Rinv_neq_R0; DiscrR.
Split.
Unfold Rdiv; Apply Rmult_lt_pos; [Apply (cond_pos delta) | Apply Rlt_Rinv; Sup0].
Rewrite Rabsolu_right.
Unfold Rdiv; Apply Rlt_monotony_contra with ``2``.
Sup0.
Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym.
Rewrite Rmult_1l; Rewrite double; Pattern 1 (pos delta); Rewrite <- Rplus_Or.
Apply Rlt_compatibility; Apply (cond_pos delta).
DiscrR.
Apply Rle_sym1; Unfold Rdiv; Left; Apply Rmult_lt_pos.
Apply (cond_pos delta).
Apply Rlt_Rinv; Sup0.
Unfold Rdiv; Apply Rmult_lt_pos; [Apply H4 | Apply Rlt_Rinv; Sup0].
Qed.
(**********)
Lemma increasing_decreasing_opp : (f:R->R) (increasing f) -> (decreasing (opp_fct f)).
Unfold increasing decreasing opp_fct; Intros; Generalize (H x y H0); Intro; Apply Rge_Ropp; Apply Rle_sym1; Assumption.
Qed.
(**********)
Lemma nonpos_derivative_1 : (f:R->R;pr:(derivable f)) ((x:R) ``(derive_pt f x (pr x))<=0``) -> (decreasing f).
Intros.
Cut (h:R)``-(-(f h))==(f h)``.
Intro.
Generalize (increasing_decreasing_opp (opp_fct f)).
Unfold decreasing.
Unfold opp_fct.
Intros.
Rewrite <- (H0 x); Rewrite <- (H0 y).
Apply H1.
Cut (x:R)``0<=(derive_pt (opp_fct f) x ((derivable_opp f pr) x))``.
Intros.
Replace [x:R]``-(f x)`` with (opp_fct f); [Idtac | Reflexivity].
Apply (nonneg_derivative_1 (opp_fct f) (derivable_opp f pr) H3).
Intro.
Assert H3 := (derive_pt_opp f x0 (pr x0)).
Cut ``(derive_pt (opp_fct f) x0 (derivable_pt_opp f x0 (pr x0)))==(derive_pt (opp_fct f) x0 (derivable_opp f pr x0))``.
Intro.
Rewrite <- H4.
Rewrite H3.
Rewrite <- Ropp_O; Apply Rge_Ropp; Apply Rle_sym1; Apply (H x0).
Apply pr_nu.
Assumption.
Intro; Ring.
Qed.
(**********)
Lemma positive_derivative : (f:R->R;pr:(derivable f)) ((x:R) ``0<(derive_pt f x (pr x))``)->(strict_increasing f).
Intros.
Unfold strict_increasing.
Intros.
Apply Rlt_anti_compatibility with ``-(f x)``.
Rewrite Rplus_Ropp_l; Rewrite Rplus_sym.
Assert H1 := (MVT_cor1 f ? ? pr H0).
Elim H1; Intros.
Elim H2; Intros.
Unfold Rminus in H3.
Rewrite H3.
Apply Rmult_lt_pos.
Apply H.
Apply Rlt_anti_compatibility with x.
Rewrite Rplus_Or; Replace ``x+(y+ -x)`` with y; [Assumption | Ring].
Qed.
(**********)
Lemma strictincreasing_strictdecreasing_opp : (f:R->R) (strict_increasing f) ->
(strict_decreasing (opp_fct f)).
Unfold strict_increasing strict_decreasing opp_fct; Intros; Generalize (H x y H0); Intro; Apply Rlt_Ropp; Assumption.
Qed.
(**********)
Lemma negative_derivative : (f:R->R;pr:(derivable f)) ((x:R) ``(derive_pt f x (pr x))<0``)->(strict_decreasing f).
Intros.
Cut (h:R)``- (-(f h))==(f h)``.
Intros.
Generalize (strictincreasing_strictdecreasing_opp (opp_fct f)).
Unfold strict_decreasing opp_fct.
Intros.
Rewrite <- (H0 x).
Rewrite <- (H0 y).
Apply H1; [Idtac | Assumption].
Cut (x:R)``0<(derive_pt (opp_fct f) x (derivable_opp f pr x))``.
Intros; EApply positive_derivative; Apply H3.
Intro.
Assert H3 := (derive_pt_opp f x0 (pr x0)).
Cut ``(derive_pt (opp_fct f) x0 (derivable_pt_opp f x0 (pr x0)))==(derive_pt (opp_fct f) x0 (derivable_opp f pr x0))``.
Intro.
Rewrite <- H4; Rewrite H3.
Rewrite <- Ropp_O; Apply Rlt_Ropp; Apply (H x0).
Apply pr_nu.
Intro; Ring.
Qed.
(**********)
Lemma null_derivative_0 : (f:R->R;pr:(derivable f)) (constant f)->((x:R) ``(derive_pt f x (pr x))==0``).
Intros.
Unfold constant in H.
Apply derive_pt_eq_0.
Intros; Exists (mkposreal ``1`` Rlt_R0_R1); Simpl; Intros.
Rewrite (H x ``x+h``); Unfold Rminus; Unfold Rdiv; Rewrite Rplus_Ropp_r; Rewrite Rmult_Ol; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Assumption.
Qed.
(**********)
Lemma increasing_decreasing : (f:R->R) (increasing f) -> (decreasing f) -> (constant f).
Unfold increasing decreasing constant; Intros; Case (total_order x y); Intro.
Generalize (Rlt_le x y H1); Intro; Apply (Rle_antisym (f x) (f y) (H x y H2) (H0 x y H2)).
Elim H1; Intro.
Rewrite H2; Reflexivity.
Generalize (Rlt_le y x H2); Intro; Symmetry; Apply (Rle_antisym (f y) (f x) (H y x H3) (H0 y x H3)).
Qed.
(**********)
Lemma null_derivative_1 : (f:R->R;pr:(derivable f)) ((x:R) ``(derive_pt f x (pr x))==0``)->(constant f).
Intros.
Cut (x:R)``(derive_pt f x (pr x)) <= 0``.
Cut (x:R)``0 <= (derive_pt f x (pr x))``.
Intros.
Assert H2 := (nonneg_derivative_1 f pr H0).
Assert H3 := (nonpos_derivative_1 f pr H1).
Apply increasing_decreasing; Assumption.
Intro; Right; Symmetry; Apply (H x).
Intro; Right; Apply (H x).
Qed.
(**********)
Lemma derive_increasing_interv_ax : (a,b:R;f:R->R;pr:(derivable f)) ``a<b``-> (((t:R) ``a<t<b`` -> ``0<(derive_pt f t (pr t))``) -> ((x,y:R) ``a<=x<=b``->``a<=y<=b``->``x<y``->``(f x)<(f y)``)) /\ (((t:R) ``a<t<b`` -> ``0<=(derive_pt f t (pr t))``) -> ((x,y:R) ``a<=x<=b``->``a<=y<=b``->``x<y``->``(f x)<=(f y)``)).
Intros.
Split; Intros.
Apply Rlt_anti_compatibility with ``-(f x)``.
Rewrite Rplus_Ropp_l; Rewrite Rplus_sym.
Assert H4 := (MVT_cor1 f ? ? pr H3).
Elim H4; Intros.
Elim H5; Intros.
Unfold Rminus in H6.
Rewrite H6.
Apply Rmult_lt_pos.
Apply H0.
Elim H7; Intros.
Split.
Elim H1; Intros.
Apply Rle_lt_trans with x; Assumption.
Elim H2; Intros.
Apply Rlt_le_trans with y; Assumption.
Apply Rlt_anti_compatibility with x.
Rewrite Rplus_Or; Replace ``x+(y+ -x)`` with y; [Assumption | Ring].
Apply Rle_anti_compatibility with ``-(f x)``.
Rewrite Rplus_Ropp_l; Rewrite Rplus_sym.
Assert H4 := (MVT_cor1 f ? ? pr H3).
Elim H4; Intros.
Elim H5; Intros.
Unfold Rminus in H6.
Rewrite H6.
Apply Rmult_le_pos.
Apply H0.
Elim H7; Intros.
Split.
Elim H1; Intros.
Apply Rle_lt_trans with x; Assumption.
Elim H2; Intros.
Apply Rlt_le_trans with y; Assumption.
Apply Rle_anti_compatibility with x.
Rewrite Rplus_Or; Replace ``x+(y+ -x)`` with y; [Left; Assumption | Ring].
Qed.
(**********)
Lemma derive_increasing_interv : (a,b:R;f:R->R;pr:(derivable f)) ``a<b``-> ((t:R) ``a<t<b`` -> ``0<(derive_pt f t (pr t))``) -> ((x,y:R) ``a<=x<=b``->``a<=y<=b``->``x<y``->``(f x)<(f y)``).
Intros.
Generalize (derive_increasing_interv_ax a b f pr H); Intro.
Elim H4; Intros H5 _; Apply (H5 H0 x y H1 H2 H3).
Qed.
(**********)
Lemma derive_increasing_interv_var : (a,b:R;f:R->R;pr:(derivable f)) ``a<b``-> ((t:R) ``a<t<b`` -> ``0<=(derive_pt f t (pr t))``) -> ((x,y:R) ``a<=x<=b``->``a<=y<=b``->``x<y``->``(f x)<=(f y)``).
Intros a b f pr H H0 x y H1 H2 H3; Generalize (derive_increasing_interv_ax a b f pr H); Intro; Elim H4; Intros _ H5; Apply (H5 H0 x y H1 H2 H3).
Qed.
(**********)
(**********)
Theorem IAF : (f:R->R;a,b,k:R;pr:(derivable f)) ``a<=b`` -> ((c:R) ``a<=c<=b`` -> ``(derive_pt f c (pr c))<=k``) -> ``(f b)-(f a)<=k*(b-a)``.
Intros.
Case (total_order_T a b); Intro.
Elim s; Intro.
Assert H1 := (MVT_cor1 f ? ? pr a0).
Elim H1; Intros.
Elim H2; Intros.
Rewrite H3.
Do 2 Rewrite <- (Rmult_sym ``(b-a)``).
Apply Rle_monotony.
Apply Rle_anti_compatibility with ``a``; Rewrite Rplus_Or.
Replace ``a+(b-a)`` with b; [Assumption | Ring].
Apply H0.
Elim H4; Intros.
Split; Left; Assumption.
Rewrite b0.
Unfold Rminus; Do 2 Rewrite Rplus_Ropp_r.
Rewrite Rmult_Or; Right; Reflexivity.
Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H r)).
Qed.
Lemma IAF_var : (f,g:R->R;a,b:R;pr1:(derivable f);pr2:(derivable g)) ``a<=b`` -> ((c:R) ``a<=c<=b`` -> ``(derive_pt g c (pr2 c))<=(derive_pt f c (pr1 c))``) -> ``(g b)-(g a)<=(f b)-(f a)``.
Intros.
Cut (derivable (minus_fct g f)).
Intro.
Cut (c:R)``a<=c<=b``->``(derive_pt (minus_fct g f) c (X c))<=0``.
Intro.
Assert H2 := (IAF (minus_fct g f) a b R0 X H H1).
Rewrite Rmult_Ol in H2; Unfold minus_fct in H2.
Apply Rle_anti_compatibility with ``-(f b)+(f a)``.
Replace ``-(f b)+(f a)+((f b)-(f a))`` with R0; [Idtac | Ring].
Replace ``-(f b)+(f a)+((g b)-(g a))`` with ``(g b)-(f b)-((g a)-(f a))``; [Apply H2 | Ring].
Intros.
Cut (derive_pt (minus_fct g f) c (X c))==(derive_pt (minus_fct g f) c (derivable_pt_minus ? ? ? (pr2 c) (pr1 c))).
Intro.
Rewrite H2.
Rewrite derive_pt_minus.
Apply Rle_anti_compatibility with (derive_pt f c (pr1 c)).
Rewrite Rplus_Or.
Replace ``(derive_pt f c (pr1 c))+((derive_pt g c (pr2 c))-(derive_pt f c (pr1 c)))`` with ``(derive_pt g c (pr2 c))``; [Idtac | Ring].
Apply H0; Assumption.
Apply pr_nu.
Apply derivable_minus; Assumption.
Qed.
(* If f has a null derivative in ]a,b[ and is continue in [a,b], *)
(* then f is constant on [a,b] *)
Lemma null_derivative_loc : (f:R->R;a,b:R;pr:(x:R)``a<x<b``->(derivable_pt f x)) ((x:R)``a<=x<=b``->(continuity_pt f x)) -> ((x:R;P:``a<x<b``)(derive_pt f x (pr x P))==R0) -> (constant_D_eq f [x:R]``a<=x<=b`` (f a)).
Intros; Unfold constant_D_eq; Intros; Case (total_order_T a b); Intro.
Elim s; Intro.
Assert H2 : (y:R)``a<y<x``->(derivable_pt id y).
Intros; Apply derivable_pt_id.
Assert H3 : (y:R)``a<=y<=x``->(continuity_pt id y).
Intros; Apply derivable_continuous; Apply derivable_id.
Assert H4 : (y:R)``a<y<x``->(derivable_pt f y).
Intros; Apply pr; Elim H4; Intros; Split.
Assumption.
Elim H1; Intros; Apply Rlt_le_trans with x; Assumption.
Assert H5 : (y:R)``a<=y<=x``->(continuity_pt f y).
Intros; Apply H; Elim H5; Intros; Split.
Assumption.
Elim H1; Intros; Apply Rle_trans with x; Assumption.
Elim H1; Clear H1; Intros; Elim H1; Clear H1; Intro.
Assert H7 := (MVT f id a x H4 H2 H1 H5 H3).
Elim H7; Intros; Elim H8; Intros; Assert H10 : ``a<x0<b``.
Elim x1; Intros; Split.
Assumption.
Apply Rlt_le_trans with x; Assumption.
Assert H11 : ``(derive_pt f x0 (H4 x0 x1))==0``.
Replace (derive_pt f x0 (H4 x0 x1)) with (derive_pt f x0 (pr x0 H10)); [Apply H0 | Apply pr_nu].
Assert H12 : ``(derive_pt id x0 (H2 x0 x1))==1``.
Apply derive_pt_eq_0; Apply derivable_pt_lim_id.
Rewrite H11 in H9; Rewrite H12 in H9; Rewrite Rmult_Or in H9; Rewrite Rmult_1r in H9; Apply Rminus_eq; Symmetry; Assumption.
Rewrite H1; Reflexivity.
Assert H2 : x==a.
Rewrite <- b0 in H1; Elim H1; Intros; Apply Rle_antisym; Assumption.
Rewrite H2; Reflexivity.
Elim H1; Intros; Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? (Rle_trans ? ? ? H2 H3) r)).
Qed.
(* Unicity of the antiderivative *)
Lemma antiderivative_Ucte : (f,g1,g2:R->R;a,b:R) (antiderivative f g1 a b) -> (antiderivative f g2 a b) -> (EXT c:R | (x:R)``a<=x<=b``->``(g1 x)==(g2 x)+c``).
Unfold antiderivative; Intros; Elim H; Clear H; Intros; Elim H0; Clear H0; Intros H0 _; Exists ``(g1 a)-(g2 a)``; Intros; Assert H3 : (x:R)``a<=x<=b``->(derivable_pt g1 x).
Intros; Unfold derivable_pt; Apply Specif.existT with (f x0); Elim (H x0 H3); Intros; EApply derive_pt_eq_1; Symmetry; Apply H4.
Assert H4 : (x:R)``a<=x<=b``->(derivable_pt g2 x).
Intros; Unfold derivable_pt; Apply Specif.existT with (f x0); Elim (H0 x0 H4); Intros; EApply derive_pt_eq_1; Symmetry; Apply H5.
Assert H5 : (x:R)``a<x<b``->(derivable_pt (minus_fct g1 g2) x).
Intros; Elim H5; Intros; Apply derivable_pt_minus; [Apply H3; Split; Left; Assumption | Apply H4; Split; Left; Assumption].
Assert H6 : (x:R)``a<=x<=b``->(continuity_pt (minus_fct g1 g2) x).
Intros; Apply derivable_continuous_pt; Apply derivable_pt_minus; [Apply H3 | Apply H4]; Assumption.
Assert H7 : (x:R;P:``a<x<b``)(derive_pt (minus_fct g1 g2) x (H5 x P))==``0``.
Intros; Elim P; Intros; Apply derive_pt_eq_0; Replace R0 with ``(f x0)-(f x0)``; [Idtac | Ring].
Assert H9 : ``a<=x0<=b``.
Split; Left; Assumption.
Apply derivable_pt_lim_minus; [Elim (H ? H9) | Elim (H0 ? H9)]; Intros; EApply derive_pt_eq_1; Symmetry; Apply H10.
Assert H8 := (null_derivative_loc (minus_fct g1 g2) a b H5 H6 H7); Unfold constant_D_eq in H8; Assert H9 := (H8 ? H2); Unfold minus_fct in H9; Rewrite <- H9; Ring.
Qed.
|