1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: R_sqr.v,v 1.1.2.1 2004/07/16 19:31:33 herbelin Exp $ i*)
Require Rbase.
Require Rbasic_fun.
V7only [Import R_scope.]. Open Local Scope R_scope.
(****************************************************)
(* Rsqr : some results *)
(****************************************************)
Tactic Definition SqRing := Unfold Rsqr; Ring.
Lemma Rsqr_neg : (x:R) ``(Rsqr x)==(Rsqr (-x))``.
Intros; SqRing.
Qed.
Lemma Rsqr_times : (x,y:R) ``(Rsqr (x*y))==(Rsqr x)*(Rsqr y)``.
Intros; SqRing.
Qed.
Lemma Rsqr_plus : (x,y:R) ``(Rsqr (x+y))==(Rsqr x)+(Rsqr y)+2*x*y``.
Intros; SqRing.
Qed.
Lemma Rsqr_minus : (x,y:R) ``(Rsqr (x-y))==(Rsqr x)+(Rsqr y)-2*x*y``.
Intros; SqRing.
Qed.
Lemma Rsqr_neg_minus : (x,y:R) ``(Rsqr (x-y))==(Rsqr (y-x))``.
Intros; SqRing.
Qed.
Lemma Rsqr_1 : ``(Rsqr 1)==1``.
SqRing.
Qed.
Lemma Rsqr_gt_0_0 : (x:R) ``0<(Rsqr x)`` -> ~``x==0``.
Intros; Red; Intro; Rewrite H0 in H; Rewrite Rsqr_O in H; Elim (Rlt_antirefl ``0`` H).
Qed.
Lemma Rsqr_pos_lt : (x:R) ~(x==R0)->``0<(Rsqr x)``.
Intros; Case (total_order R0 x); Intro; [Unfold Rsqr; Apply Rmult_lt_pos; Assumption | Elim H0; Intro; [Elim H; Symmetry; Exact H1 | Rewrite Rsqr_neg; Generalize (Rlt_Ropp x ``0`` H1); Rewrite Ropp_O; Intro; Unfold Rsqr; Apply Rmult_lt_pos; Assumption]].
Qed.
Lemma Rsqr_div : (x,y:R) ~``y==0`` -> ``(Rsqr (x/y))==(Rsqr x)/(Rsqr y)``.
Intros; Unfold Rsqr.
Unfold Rdiv.
Rewrite Rinv_Rmult.
Repeat Rewrite Rmult_assoc.
Apply Rmult_mult_r.
Pattern 2 x; Rewrite Rmult_sym.
Repeat Rewrite Rmult_assoc.
Apply Rmult_mult_r.
Reflexivity.
Assumption.
Assumption.
Qed.
Lemma Rsqr_eq_0 : (x:R) ``(Rsqr x)==0`` -> ``x==0``.
Unfold Rsqr; Intros; Generalize (without_div_Od x x H); Intro; Elim H0; Intro ; Assumption.
Qed.
Lemma Rsqr_minus_plus : (a,b:R) ``(a-b)*(a+b)==(Rsqr a)-(Rsqr b)``.
Intros; SqRing.
Qed.
Lemma Rsqr_plus_minus : (a,b:R) ``(a+b)*(a-b)==(Rsqr a)-(Rsqr b)``.
Intros; SqRing.
Qed.
Lemma Rsqr_incr_0 : (x,y:R) ``(Rsqr x)<=(Rsqr y)`` -> ``0<=x`` -> ``0<=y`` -> ``x<=y``.
Intros; Case (total_order_Rle x y); Intro; [Assumption | Cut ``y<x``; [Intro; Unfold Rsqr in H; Generalize (Rmult_lt2 y x y x H1 H1 H2 H2); Intro; Generalize (Rle_lt_trans ``x*x`` ``y*y`` ``x*x`` H H3); Intro; Elim (Rlt_antirefl ``x*x`` H4) | Auto with real]].
Qed.
Lemma Rsqr_incr_0_var : (x,y:R) ``(Rsqr x)<=(Rsqr y)`` -> ``0<=y`` -> ``x<=y``.
Intros; Case (total_order_Rle x y); Intro; [Assumption | Cut ``y<x``; [Intro; Unfold Rsqr in H; Generalize (Rmult_lt2 y x y x H0 H0 H1 H1); Intro; Generalize (Rle_lt_trans ``x*x`` ``y*y`` ``x*x`` H H2); Intro; Elim (Rlt_antirefl ``x*x`` H3) | Auto with real]].
Qed.
Lemma Rsqr_incr_1 : (x,y:R) ``x<=y``->``0<=x``->``0<= y``->``(Rsqr x)<=(Rsqr y)``.
Intros; Unfold Rsqr; Apply Rle_Rmult_comp; Assumption.
Qed.
Lemma Rsqr_incrst_0 : (x,y:R) ``(Rsqr x)<(Rsqr y)``->``0<=x``->``0<=y``-> ``x<y``.
Intros; Case (total_order x y); Intro; [Assumption | Elim H2; Intro; [Rewrite H3 in H; Elim (Rlt_antirefl (Rsqr y) H) | Generalize (Rmult_lt2 y x y x H1 H1 H3 H3); Intro; Unfold Rsqr in H; Generalize (Rlt_trans ``x*x`` ``y*y`` ``x*x`` H H4); Intro; Elim (Rlt_antirefl ``x*x`` H5)]].
Qed.
Lemma Rsqr_incrst_1 : (x,y:R) ``x<y``->``0<=x``->``0<=y``->``(Rsqr x)<(Rsqr y)``.
Intros; Unfold Rsqr; Apply Rmult_lt2; Assumption.
Qed.
Lemma Rsqr_neg_pos_le_0 : (x,y:R) ``(Rsqr x)<=(Rsqr y)``->``0<=y``->``-y<=x``.
Intros; Case (case_Rabsolu x); Intro.
Generalize (Rlt_Ropp x ``0`` r); Rewrite Ropp_O; Intro; Generalize (Rlt_le ``0`` ``-x`` H1); Intro; Rewrite (Rsqr_neg x) in H; Generalize (Rsqr_incr_0 (Ropp x) y H H2 H0); Intro; Rewrite <- (Ropp_Ropp x); Apply Rge_Ropp; Apply Rle_sym1; Assumption.
Apply Rle_trans with ``0``; [Rewrite <- Ropp_O; Apply Rge_Ropp; Apply Rle_sym1; Assumption | Apply Rle_sym2; Assumption].
Qed.
Lemma Rsqr_neg_pos_le_1 : (x,y:R) ``(-y)<=x`` -> ``x<=y`` -> ``0<=y`` -> ``(Rsqr x)<=(Rsqr y)``.
Intros; Case (case_Rabsolu x); Intro.
Generalize (Rlt_Ropp x ``0`` r); Rewrite Ropp_O; Intro; Generalize (Rlt_le ``0`` ``-x`` H2); Intro; Generalize (Rle_Ropp ``-y`` x H); Rewrite Ropp_Ropp; Intro; Generalize (Rle_sym2 ``-x`` y H4); Intro; Rewrite (Rsqr_neg x); Apply Rsqr_incr_1; Assumption.
Generalize (Rle_sym2 ``0`` x r); Intro; Apply Rsqr_incr_1; Assumption.
Qed.
Lemma neg_pos_Rsqr_le : (x,y:R) ``(-y)<=x``->``x<=y``->``(Rsqr x)<=(Rsqr y)``.
Intros; Case (case_Rabsolu x); Intro.
Generalize (Rlt_Ropp x ``0`` r); Rewrite Ropp_O; Intro; Generalize (Rle_Ropp ``-y`` x H); Rewrite Ropp_Ropp; Intro; Generalize (Rle_sym2 ``-x`` y H2); Intro; Generalize (Rlt_le ``0`` ``-x`` H1); Intro; Generalize (Rle_trans ``0`` ``-x`` y H4 H3); Intro; Rewrite (Rsqr_neg x); Apply Rsqr_incr_1; Assumption.
Generalize (Rle_sym2 ``0`` x r); Intro; Generalize (Rle_trans ``0`` x y H1 H0); Intro; Apply Rsqr_incr_1; Assumption.
Qed.
Lemma Rsqr_abs : (x:R) ``(Rsqr x)==(Rsqr (Rabsolu x))``.
Intro; Unfold Rabsolu; Case (case_Rabsolu x); Intro; [Apply Rsqr_neg | Reflexivity].
Qed.
Lemma Rsqr_le_abs_0 : (x,y:R) ``(Rsqr x)<=(Rsqr y)`` -> ``(Rabsolu x)<=(Rabsolu y)``.
Intros; Apply Rsqr_incr_0; Repeat Rewrite <- Rsqr_abs; [Assumption | Apply Rabsolu_pos | Apply Rabsolu_pos].
Qed.
Lemma Rsqr_le_abs_1 : (x,y:R) ``(Rabsolu x)<=(Rabsolu y)`` -> ``(Rsqr x)<=(Rsqr y)``.
Intros; Rewrite (Rsqr_abs x); Rewrite (Rsqr_abs y); Apply (Rsqr_incr_1 (Rabsolu x) (Rabsolu y) H (Rabsolu_pos x) (Rabsolu_pos y)).
Qed.
Lemma Rsqr_lt_abs_0 : (x,y:R) ``(Rsqr x)<(Rsqr y)`` -> ``(Rabsolu x)<(Rabsolu y)``.
Intros; Apply Rsqr_incrst_0; Repeat Rewrite <- Rsqr_abs; [Assumption | Apply Rabsolu_pos | Apply Rabsolu_pos].
Qed.
Lemma Rsqr_lt_abs_1 : (x,y:R) ``(Rabsolu x)<(Rabsolu y)`` -> ``(Rsqr x)<(Rsqr y)``.
Intros; Rewrite (Rsqr_abs x); Rewrite (Rsqr_abs y); Apply (Rsqr_incrst_1 (Rabsolu x) (Rabsolu y) H (Rabsolu_pos x) (Rabsolu_pos y)).
Qed.
Lemma Rsqr_inj : (x,y:R) ``0<=x`` -> ``0<=y`` -> (Rsqr x)==(Rsqr y) -> x==y.
Intros; Generalize (Rle_le_eq (Rsqr x) (Rsqr y)); Intro; Elim H2; Intros _ H3; Generalize (H3 H1); Intro; Elim H4; Intros; Apply Rle_antisym; Apply Rsqr_incr_0; Assumption.
Qed.
Lemma Rsqr_eq_abs_0 : (x,y:R) (Rsqr x)==(Rsqr y) -> (Rabsolu x)==(Rabsolu y).
Intros; Unfold Rabsolu; Case (case_Rabsolu x); Case (case_Rabsolu y); Intros.
Rewrite -> (Rsqr_neg x) in H; Rewrite -> (Rsqr_neg y) in H; Generalize (Rlt_Ropp y ``0`` r); Generalize (Rlt_Ropp x ``0`` r0); Rewrite Ropp_O; Intros; Generalize (Rlt_le ``0`` ``-x`` H0); Generalize (Rlt_le ``0`` ``-y`` H1); Intros; Apply Rsqr_inj; Assumption.
Rewrite -> (Rsqr_neg x) in H; Generalize (Rle_sym2 ``0`` y r); Intro; Generalize (Rlt_Ropp x ``0`` r0); Rewrite Ropp_O; Intro; Generalize (Rlt_le ``0`` ``-x`` H1); Intro; Apply Rsqr_inj; Assumption.
Rewrite -> (Rsqr_neg y) in H; Generalize (Rle_sym2 ``0`` x r0); Intro; Generalize (Rlt_Ropp y ``0`` r); Rewrite Ropp_O; Intro; Generalize (Rlt_le ``0`` ``-y`` H1); Intro; Apply Rsqr_inj; Assumption.
Generalize (Rle_sym2 ``0`` x r0); Generalize (Rle_sym2 ``0`` y r); Intros; Apply Rsqr_inj; Assumption.
Qed.
Lemma Rsqr_eq_asb_1 : (x,y:R) (Rabsolu x)==(Rabsolu y) -> (Rsqr x)==(Rsqr y).
Intros; Cut ``(Rsqr (Rabsolu x))==(Rsqr (Rabsolu y))``.
Intro; Repeat Rewrite <- Rsqr_abs in H0; Assumption.
Rewrite H; Reflexivity.
Qed.
Lemma triangle_rectangle : (x,y,z:R) ``0<=z``->``(Rsqr x)+(Rsqr y)<=(Rsqr z)``->``-z<=x<=z`` /\``-z<=y<=z``.
Intros; Generalize (plus_le_is_le (Rsqr x) (Rsqr y) (Rsqr z) (pos_Rsqr y) H0); Rewrite Rplus_sym in H0; Generalize (plus_le_is_le (Rsqr y) (Rsqr x) (Rsqr z) (pos_Rsqr x) H0); Intros; Split; [Split; [Apply Rsqr_neg_pos_le_0; Assumption | Apply Rsqr_incr_0_var; Assumption] | Split; [Apply Rsqr_neg_pos_le_0; Assumption | Apply Rsqr_incr_0_var; Assumption]].
Qed.
Lemma triangle_rectangle_lt : (x,y,z:R) ``(Rsqr x)+(Rsqr y)<(Rsqr z)`` -> ``(Rabsolu x)<(Rabsolu z)``/\``(Rabsolu y)<(Rabsolu z)``.
Intros; Split; [Generalize (plus_lt_is_lt (Rsqr x) (Rsqr y) (Rsqr z) (pos_Rsqr y) H); Intro; Apply Rsqr_lt_abs_0; Assumption | Rewrite Rplus_sym in H; Generalize (plus_lt_is_lt (Rsqr y) (Rsqr x) (Rsqr z) (pos_Rsqr x) H); Intro; Apply Rsqr_lt_abs_0; Assumption].
Qed.
Lemma triangle_rectangle_le : (x,y,z:R) ``(Rsqr x)+(Rsqr y)<=(Rsqr z)`` -> ``(Rabsolu x)<=(Rabsolu z)``/\``(Rabsolu y)<=(Rabsolu z)``.
Intros; Split; [Generalize (plus_le_is_le (Rsqr x) (Rsqr y) (Rsqr z) (pos_Rsqr y) H); Intro; Apply Rsqr_le_abs_0; Assumption | Rewrite Rplus_sym in H; Generalize (plus_le_is_le (Rsqr y) (Rsqr x) (Rsqr z) (pos_Rsqr x) H); Intro; Apply Rsqr_le_abs_0; Assumption].
Qed.
Lemma Rsqr_inv : (x:R) ~``x==0`` -> ``(Rsqr (/x))==/(Rsqr x)``.
Intros; Unfold Rsqr.
Rewrite Rinv_Rmult; Try Reflexivity Orelse Assumption.
Qed.
Lemma canonical_Rsqr : (a:nonzeroreal;b,c,x:R) ``a*(Rsqr x)+b*x+c == a* (Rsqr (x+b/(2*a))) + (4*a*c - (Rsqr b))/(4*a)``.
Intros.
Rewrite Rsqr_plus.
Repeat Rewrite Rmult_Rplus_distr.
Repeat Rewrite Rplus_assoc.
Apply Rplus_plus_r.
Unfold Rdiv Rminus.
Replace ``2*1+2*1`` with ``4``; [Idtac | Ring].
Rewrite (Rmult_Rplus_distrl ``4*a*c`` ``-(Rsqr b)`` ``/(4*a)``).
Rewrite Rsqr_times.
Repeat Rewrite Rinv_Rmult.
Repeat Rewrite (Rmult_sym a).
Repeat Rewrite Rmult_assoc.
Rewrite <- Rinv_l_sym.
Rewrite Rmult_1r.
Rewrite (Rmult_sym ``2``).
Repeat Rewrite Rmult_assoc.
Rewrite <- Rinv_l_sym.
Rewrite Rmult_1r.
Rewrite (Rmult_sym ``/2``).
Rewrite (Rmult_sym ``2``).
Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym.
Rewrite Rmult_1r.
Rewrite (Rmult_sym a).
Repeat Rewrite Rmult_assoc.
Rewrite <- Rinv_l_sym.
Rewrite Rmult_1r.
Rewrite (Rmult_sym ``2``).
Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym.
Rewrite Rmult_1r.
Repeat Rewrite Rplus_assoc.
Rewrite (Rplus_sym ``(Rsqr b)*((Rsqr (/a*/2))*a)``).
Repeat Rewrite Rplus_assoc.
Rewrite (Rmult_sym x).
Apply Rplus_plus_r.
Rewrite (Rmult_sym ``/a``).
Unfold Rsqr; Repeat Rewrite Rmult_assoc.
Rewrite <- Rinv_l_sym.
Rewrite Rmult_1r.
Ring.
Apply (cond_nonzero a).
DiscrR.
Apply (cond_nonzero a).
DiscrR.
DiscrR.
Apply (cond_nonzero a).
DiscrR.
DiscrR.
DiscrR.
Apply (cond_nonzero a).
DiscrR.
Apply (cond_nonzero a).
Qed.
Lemma Rsqr_eq : (x,y:R) (Rsqr x)==(Rsqr y) -> x==y \/ x==``-y``.
Intros; Unfold Rsqr in H; Generalize (Rplus_plus_r ``-(y*y)`` ``x*x`` ``y*y`` H); Rewrite Rplus_Ropp_l; Replace ``-(y*y)+x*x`` with ``(x-y)*(x+y)``.
Intro; Generalize (without_div_Od ``x-y`` ``x+y`` H0); Intro; Elim H1; Intros.
Left; Apply Rminus_eq; Assumption.
Right; Apply Rminus_eq; Unfold Rminus; Rewrite Ropp_Ropp; Assumption.
Ring.
Qed.
|