1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: R_sqrt.v,v 1.1.2.1 2004/07/16 19:31:33 herbelin Exp $ i*)
Require Rbase.
Require Rfunctions.
Require Rsqrt_def.
V7only [Import R_scope.]. Open Local Scope R_scope.
(* Here is a continuous extension of Rsqrt on R *)
Definition sqrt : R->R := [x:R](Cases (case_Rabsolu x) of
(leftT _) => R0
| (rightT a) => (Rsqrt (mknonnegreal x (Rle_sym2 ? ? a))) end).
Lemma sqrt_positivity : (x:R) ``0<=x`` -> ``0<=(sqrt x)``.
Intros.
Unfold sqrt.
Case (case_Rabsolu x); Intro.
Elim (Rlt_antirefl ? (Rlt_le_trans ? ? ? r H)).
Apply Rsqrt_positivity.
Qed.
Lemma sqrt_sqrt : (x:R) ``0<=x`` -> ``(sqrt x)*(sqrt x)==x``.
Intros.
Unfold sqrt.
Case (case_Rabsolu x); Intro.
Elim (Rlt_antirefl ? (Rlt_le_trans ? ? ? r H)).
Rewrite Rsqrt_Rsqrt; Reflexivity.
Qed.
Lemma sqrt_0 : ``(sqrt 0)==0``.
Apply Rsqr_eq_0; Unfold Rsqr; Apply sqrt_sqrt; Right; Reflexivity.
Qed.
Lemma sqrt_1 : ``(sqrt 1)==1``.
Apply (Rsqr_inj (sqrt R1) R1); [Apply sqrt_positivity; Left | Left | Unfold Rsqr; Rewrite -> sqrt_sqrt; [Ring | Left]]; Apply Rlt_R0_R1.
Qed.
Lemma sqrt_eq_0 : (x:R) ``0<=x``->``(sqrt x)==0``->``x==0``.
Intros; Cut ``(Rsqr (sqrt x))==0``.
Intro; Unfold Rsqr in H1; Rewrite -> sqrt_sqrt in H1; Assumption.
Rewrite H0; Apply Rsqr_O.
Qed.
Lemma sqrt_lem_0 : (x,y:R) ``0<=x``->``0<=y``->(sqrt x)==y->``y*y==x``.
Intros; Rewrite <- H1; Apply (sqrt_sqrt x H).
Qed.
Lemma sqtr_lem_1 : (x,y:R) ``0<=x``->``0<=y``->``y*y==x``->(sqrt x)==y.
Intros; Apply Rsqr_inj; [Apply (sqrt_positivity x H) | Assumption | Unfold Rsqr; Rewrite -> H1; Apply (sqrt_sqrt x H)].
Qed.
Lemma sqrt_def : (x:R) ``0<=x``->``(sqrt x)*(sqrt x)==x``.
Intros; Apply (sqrt_sqrt x H).
Qed.
Lemma sqrt_square : (x:R) ``0<=x``->``(sqrt (x*x))==x``.
Intros; Apply (Rsqr_inj (sqrt (Rsqr x)) x (sqrt_positivity (Rsqr x) (pos_Rsqr x)) H); Unfold Rsqr; Apply (sqrt_sqrt (Rsqr x) (pos_Rsqr x)).
Qed.
Lemma sqrt_Rsqr : (x:R) ``0<=x``->``(sqrt (Rsqr x))==x``.
Intros; Unfold Rsqr; Apply sqrt_square; Assumption.
Qed.
Lemma sqrt_Rsqr_abs : (x:R) (sqrt (Rsqr x))==(Rabsolu x).
Intro x; Rewrite -> Rsqr_abs; Apply sqrt_Rsqr; Apply Rabsolu_pos.
Qed.
Lemma Rsqr_sqrt : (x:R) ``0<=x``->(Rsqr (sqrt x))==x.
Intros x H1; Unfold Rsqr; Apply (sqrt_sqrt x H1).
Qed.
Lemma sqrt_times : (x,y:R) ``0<=x``->``0<=y``->``(sqrt (x*y))==(sqrt x)*(sqrt y)``.
Intros x y H1 H2; Apply (Rsqr_inj (sqrt (Rmult x y)) (Rmult (sqrt x) (sqrt y)) (sqrt_positivity (Rmult x y) (Rmult_le_pos x y H1 H2)) (Rmult_le_pos (sqrt x) (sqrt y) (sqrt_positivity x H1) (sqrt_positivity y H2))); Rewrite Rsqr_times; Repeat Rewrite Rsqr_sqrt; [Ring | Assumption |Assumption | Apply (Rmult_le_pos x y H1 H2)].
Qed.
Lemma sqrt_lt_R0 : (x:R) ``0<x`` -> ``0<(sqrt x)``.
Intros x H1; Apply Rsqr_incrst_0; [Rewrite Rsqr_O; Rewrite Rsqr_sqrt ; [Assumption | Left; Assumption] | Right; Reflexivity | Apply (sqrt_positivity x (Rlt_le R0 x H1))].
Qed.
Lemma sqrt_div : (x,y:R) ``0<=x``->``0<y``->``(sqrt (x/y))==(sqrt x)/(sqrt y)``.
Intros x y H1 H2; Apply Rsqr_inj; [ Apply sqrt_positivity; Apply (Rmult_le_pos x (Rinv y)); [ Assumption | Generalize (Rlt_Rinv y H2); Clear H2; Intro H2; Left; Assumption] | Apply (Rmult_le_pos (sqrt x) (Rinv (sqrt y))) ; [ Apply (sqrt_positivity x H1) | Generalize (sqrt_lt_R0 y H2); Clear H2; Intro H2; Generalize (Rlt_Rinv (sqrt y) H2); Clear H2; Intro H2; Left; Assumption] | Rewrite Rsqr_div; Repeat Rewrite Rsqr_sqrt; [ Reflexivity | Left; Assumption | Assumption | Generalize (Rlt_Rinv y H2); Intro H3; Generalize (Rlt_le R0 (Rinv y) H3); Intro H4; Apply (Rmult_le_pos x (Rinv y) H1 H4) |Red; Intro H3; Generalize (Rlt_le R0 y H2); Intro H4; Generalize (sqrt_eq_0 y H4 H3); Intro H5; Rewrite H5 in H2; Elim (Rlt_antirefl R0 H2)]].
Qed.
Lemma sqrt_lt_0 : (x,y:R) ``0<=x``->``0<=y``->``(sqrt x)<(sqrt y)``->``x<y``.
Intros x y H1 H2 H3; Generalize (Rsqr_incrst_1 (sqrt x) (sqrt y) H3 (sqrt_positivity x H1) (sqrt_positivity y H2)); Intro H4; Rewrite (Rsqr_sqrt x H1) in H4; Rewrite (Rsqr_sqrt y H2) in H4; Assumption.
Qed.
Lemma sqrt_lt_1 : (x,y:R) ``0<=x``->``0<=y``->``x<y``->``(sqrt x)<(sqrt y)``.
Intros x y H1 H2 H3; Apply Rsqr_incrst_0; [Rewrite (Rsqr_sqrt x H1); Rewrite (Rsqr_sqrt y H2); Assumption | Apply (sqrt_positivity x H1) | Apply (sqrt_positivity y H2)].
Qed.
Lemma sqrt_le_0 : (x,y:R) ``0<=x``->``0<=y``->``(sqrt x)<=(sqrt y)``->``x<=y``.
Intros x y H1 H2 H3; Generalize (Rsqr_incr_1 (sqrt x) (sqrt y) H3 (sqrt_positivity x H1) (sqrt_positivity y H2)); Intro H4; Rewrite (Rsqr_sqrt x H1) in H4; Rewrite (Rsqr_sqrt y H2) in H4; Assumption.
Qed.
Lemma sqrt_le_1 : (x,y:R) ``0<=x``->``0<=y``->``x<=y``->``(sqrt x)<=(sqrt y)``.
Intros x y H1 H2 H3; Apply Rsqr_incr_0; [ Rewrite (Rsqr_sqrt x H1); Rewrite (Rsqr_sqrt y H2); Assumption | Apply (sqrt_positivity x H1) | Apply (sqrt_positivity y H2)].
Qed.
Lemma sqrt_inj : (x,y:R) ``0<=x``->``0<=y``->(sqrt x)==(sqrt y)->x==y.
Intros; Cut ``(Rsqr (sqrt x))==(Rsqr (sqrt y))``.
Intro; Rewrite (Rsqr_sqrt x H) in H2; Rewrite (Rsqr_sqrt y H0) in H2; Assumption.
Rewrite H1; Reflexivity.
Qed.
Lemma sqrt_less : (x:R) ``0<=x``->``1<x``->``(sqrt x)<x``.
Intros x H1 H2; Generalize (sqrt_lt_1 R1 x (Rlt_le R0 R1 (Rlt_R0_R1)) H1 H2); Intro H3; Rewrite sqrt_1 in H3; Generalize (Rmult_ne (sqrt x)); Intro H4; Elim H4; Intros H5 H6; Rewrite <- H5; Pattern 2 x; Rewrite <- (sqrt_def x H1); Apply (Rlt_monotony (sqrt x) R1 (sqrt x) (sqrt_lt_R0 x (Rlt_trans R0 R1 x Rlt_R0_R1 H2)) H3).
Qed.
Lemma sqrt_more : (x:R) ``0<x``->``x<1``->``x<(sqrt x)``.
Intros x H1 H2; Generalize (sqrt_lt_1 x R1 (Rlt_le R0 x H1) (Rlt_le R0 R1 (Rlt_R0_R1)) H2); Intro H3; Rewrite sqrt_1 in H3; Generalize (Rmult_ne (sqrt x)); Intro H4; Elim H4; Intros H5 H6; Rewrite <- H5; Pattern 1 x; Rewrite <- (sqrt_def x (Rlt_le R0 x H1)); Apply (Rlt_monotony (sqrt x) (sqrt x) R1 (sqrt_lt_R0 x H1) H3).
Qed.
Lemma sqrt_cauchy : (a,b,c,d:R) ``a*c+b*d<=(sqrt ((Rsqr a)+(Rsqr b)))*(sqrt ((Rsqr c)+(Rsqr d)))``.
Intros a b c d; Apply Rsqr_incr_0_var; [Rewrite Rsqr_times; Repeat Rewrite Rsqr_sqrt; Unfold Rsqr; [Replace ``(a*c+b*d)*(a*c+b*d)`` with ``(a*a*c*c+b*b*d*d)+(2*a*b*c*d)``; [Replace ``(a*a+b*b)*(c*c+d*d)`` with ``(a*a*c*c+b*b*d*d)+(a*a*d*d+b*b*c*c)``; [Apply Rle_compatibility; Replace ``a*a*d*d+b*b*c*c`` with ``(2*a*b*c*d)+(a*a*d*d+b*b*c*c-2*a*b*c*d)``; [Pattern 1 ``2*a*b*c*d``; Rewrite <- Rplus_Or; Apply Rle_compatibility; Replace ``a*a*d*d+b*b*c*c-2*a*b*c*d`` with (Rsqr (Rminus (Rmult a d) (Rmult b c))); [Apply pos_Rsqr | Unfold Rsqr; Ring] | Ring] | Ring] | Ring] | Apply (ge0_plus_ge0_is_ge0 (Rsqr c) (Rsqr d) (pos_Rsqr c) (pos_Rsqr d)) | Apply (ge0_plus_ge0_is_ge0 (Rsqr a) (Rsqr b) (pos_Rsqr a) (pos_Rsqr b))] | Apply Rmult_le_pos; Apply sqrt_positivity; Apply ge0_plus_ge0_is_ge0; Apply pos_Rsqr].
Qed.
(************************************************************)
(* Resolution of [a*X^2+b*X+c=0] *)
(************************************************************)
Definition Delta [a:nonzeroreal;b,c:R] : R := ``(Rsqr b)-4*a*c``.
Definition Delta_is_pos [a:nonzeroreal;b,c:R] : Prop := ``0<=(Delta a b c)``.
Definition sol_x1 [a:nonzeroreal;b,c:R] : R := ``(-b+(sqrt (Delta a b c)))/(2*a)``.
Definition sol_x2 [a:nonzeroreal;b,c:R] : R := ``(-b-(sqrt (Delta a b c)))/(2*a)``.
Lemma Rsqr_sol_eq_0_1 : (a:nonzeroreal;b,c,x:R) (Delta_is_pos a b c) -> (x==(sol_x1 a b c))\/(x==(sol_x2 a b c)) -> ``a*(Rsqr x)+b*x+c==0``.
Intros; Elim H0; Intro.
Unfold sol_x1 in H1; Unfold Delta in H1; Rewrite H1; Unfold Rdiv; Repeat Rewrite Rsqr_times; Rewrite Rsqr_plus; Rewrite <- Rsqr_neg; Rewrite Rsqr_sqrt.
Rewrite Rsqr_inv.
Unfold Rsqr; Repeat Rewrite Rinv_Rmult.
Repeat Rewrite Rmult_assoc; Rewrite (Rmult_sym a).
Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym.
Rewrite Rmult_1r; Rewrite Rmult_Rplus_distrl.
Repeat Rewrite Rmult_assoc.
Pattern 2 ``2``; Rewrite (Rmult_sym ``2``).
Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym.
Rewrite Rmult_1r.
Rewrite (Rmult_Rplus_distrl ``-b`` ``(sqrt (b*b-(2*(2*(a*c)))))`` ``(/2*/a)``).
Rewrite Rmult_Rplus_distr; Repeat Rewrite Rplus_assoc.
Replace ``( -b*((sqrt (b*b-(2*(2*(a*c)))))*(/2*/a))+(b*( -b*(/2*/a))+(b*((sqrt (b*b-(2*(2*(a*c)))))*(/2*/a))+c)))`` with ``(b*( -b*(/2*/a)))+c``.
Unfold Rminus; Repeat Rewrite <- Rplus_assoc.
Replace ``b*b+b*b`` with ``2*(b*b)``.
Rewrite Rmult_Rplus_distrl; Repeat Rewrite Rmult_assoc.
Rewrite (Rmult_sym ``2``); Repeat Rewrite Rmult_assoc.
Rewrite <- Rinv_l_sym.
Rewrite Rmult_1r.
Rewrite Ropp_mul1; Repeat Rewrite Rmult_assoc; Rewrite (Rmult_sym ``2``).
Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym.
Rewrite Rmult_1r; Rewrite (Rmult_sym ``/2``); Repeat Rewrite Rmult_assoc; Rewrite (Rmult_sym ``2``).
Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym.
Rewrite Rmult_1r; Repeat Rewrite Rmult_assoc.
Rewrite (Rmult_sym a); Rewrite Rmult_assoc.
Rewrite <- Rinv_l_sym.
Rewrite Rmult_1r; Rewrite <- Ropp_mul2.
Ring.
Apply (cond_nonzero a).
DiscrR.
DiscrR.
DiscrR.
Ring.
Ring.
DiscrR.
Apply (cond_nonzero a).
DiscrR.
Apply (cond_nonzero a).
Apply prod_neq_R0; [DiscrR | Apply (cond_nonzero a)].
Apply prod_neq_R0; [DiscrR | Apply (cond_nonzero a)].
Apply prod_neq_R0; [DiscrR | Apply (cond_nonzero a)].
Assumption.
Unfold sol_x2 in H1; Unfold Delta in H1; Rewrite H1; Unfold Rdiv; Repeat Rewrite Rsqr_times; Rewrite Rsqr_minus; Rewrite <- Rsqr_neg; Rewrite Rsqr_sqrt.
Rewrite Rsqr_inv.
Unfold Rsqr; Repeat Rewrite Rinv_Rmult; Repeat Rewrite Rmult_assoc.
Rewrite (Rmult_sym a); Repeat Rewrite Rmult_assoc.
Rewrite <- Rinv_l_sym.
Rewrite Rmult_1r; Unfold Rminus; Rewrite Rmult_Rplus_distrl.
Rewrite Ropp_mul1; Repeat Rewrite Rmult_assoc; Pattern 2 ``2``; Rewrite (Rmult_sym ``2``).
Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym.
Rewrite Rmult_1r; Rewrite (Rmult_Rplus_distrl ``-b`` ``-(sqrt (b*b+ -(2*(2*(a*c))))) `` ``(/2*/a)``).
Rewrite Rmult_Rplus_distr; Repeat Rewrite Rplus_assoc.
Rewrite Ropp_mul1; Rewrite Ropp_Ropp.
Replace ``(b*((sqrt (b*b+ -(2*(2*(a*c)))))*(/2*/a))+(b*( -b*(/2*/a))+(b*( -(sqrt (b*b+ -(2*(2*(a*c)))))*(/2*/a))+c)))`` with ``(b*( -b*(/2*/a)))+c``.
Repeat Rewrite <- Rplus_assoc; Replace ``b*b+b*b`` with ``2*(b*b)``.
Rewrite Rmult_Rplus_distrl; Repeat Rewrite Rmult_assoc; Rewrite (Rmult_sym ``2``); Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym.
Rewrite Ropp_mul1; Repeat Rewrite Rmult_assoc.
Rewrite (Rmult_sym ``2``); Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym.
Rewrite Rmult_1r; Rewrite (Rmult_sym ``/2``); Repeat Rewrite Rmult_assoc.
Rewrite (Rmult_sym ``2``); Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym.
Rewrite Rmult_1r; Repeat Rewrite Rmult_assoc; Rewrite (Rmult_sym a); Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym.
Rewrite Rmult_1r; Rewrite <- Ropp_mul2; Ring.
Apply (cond_nonzero a).
DiscrR.
DiscrR.
DiscrR.
Ring.
Ring.
DiscrR.
Apply (cond_nonzero a).
DiscrR.
DiscrR.
Apply (cond_nonzero a).
Apply prod_neq_R0; DiscrR Orelse Apply (cond_nonzero a).
Apply prod_neq_R0; DiscrR Orelse Apply (cond_nonzero a).
Apply prod_neq_R0; DiscrR Orelse Apply (cond_nonzero a).
Assumption.
Qed.
Lemma Rsqr_sol_eq_0_0 : (a:nonzeroreal;b,c,x:R) (Delta_is_pos a b c) -> ``a*(Rsqr x)+b*x+c==0`` -> (x==(sol_x1 a b c))\/(x==(sol_x2 a b c)).
Intros; Rewrite (canonical_Rsqr a b c x) in H0; Rewrite Rplus_sym in H0; Generalize (Rplus_Ropp ``(4*a*c-(Rsqr b))/(4*a)`` ``a*(Rsqr (x+b/(2*a)))`` H0); Cut ``(Rsqr b)-4*a*c==(Delta a b c)``.
Intro; Replace ``-((4*a*c-(Rsqr b))/(4*a))`` with ``((Rsqr b)-4*a*c)/(4*a)``.
Rewrite H1; Intro; Generalize (Rmult_mult_r ``/a`` ``a*(Rsqr (x+b/(2*a)))`` ``(Delta a b c)/(4*a)`` H2); Replace ``/a*(a*(Rsqr (x+b/(2*a))))`` with ``(Rsqr (x+b/(2*a)))``.
Replace ``/a*(Delta a b c)/(4*a)`` with ``(Rsqr ((sqrt (Delta a b c))/(2*a)))``.
Intro; Generalize (Rsqr_eq ``(x+b/(2*a))`` ``((sqrt (Delta a b c))/(2*a))`` H3); Intro; Elim H4; Intro.
Left; Unfold sol_x1; Generalize (Rplus_plus_r ``-(b/(2*a))`` ``x+b/(2*a)`` ``(sqrt (Delta a b c))/(2*a)`` H5); Replace `` -(b/(2*a))+(x+b/(2*a))`` with x.
Intro; Rewrite H6; Unfold Rdiv; Ring.
Ring.
Right; Unfold sol_x2; Generalize (Rplus_plus_r ``-(b/(2*a))`` ``x+b/(2*a)`` ``-((sqrt (Delta a b c))/(2*a))`` H5); Replace `` -(b/(2*a))+(x+b/(2*a))`` with x.
Intro; Rewrite H6; Unfold Rdiv; Ring.
Ring.
Rewrite Rsqr_div.
Rewrite Rsqr_sqrt.
Unfold Rdiv.
Repeat Rewrite Rmult_assoc.
Rewrite (Rmult_sym ``/a``).
Rewrite Rmult_assoc.
Rewrite <- Rinv_Rmult.
Replace ``(2*(2*a))*a`` with ``(Rsqr (2*a))``.
Reflexivity.
SqRing.
Rewrite <- Rmult_assoc; Apply prod_neq_R0; [DiscrR | Apply (cond_nonzero a)].
Apply (cond_nonzero a).
Assumption.
Apply prod_neq_R0; [DiscrR | Apply (cond_nonzero a)].
Rewrite <- Rmult_assoc; Rewrite <- Rinv_l_sym.
Symmetry; Apply Rmult_1l.
Apply (cond_nonzero a).
Unfold Rdiv; Rewrite <- Ropp_mul1.
Rewrite Ropp_distr2.
Reflexivity.
Reflexivity.
Qed.
|