1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: Ranalysis1.v,v 1.1.2.1 2004/07/16 19:31:33 herbelin Exp $ i*)
Require Rbase.
Require Rfunctions.
Require Export Rlimit.
Require Export Rderiv.
V7only [Import R_scope.]. Open Local Scope R_scope.
Implicit Variable Type f:R->R.
(****************************************************)
(** Basic operations on functions *)
(****************************************************)
Definition plus_fct [f1,f2:R->R] : R->R := [x:R] ``(f1 x)+(f2 x)``.
Definition opp_fct [f:R->R] : R->R := [x:R] ``-(f x)``.
Definition mult_fct [f1,f2:R->R] : R->R := [x:R] ``(f1 x)*(f2 x)``.
Definition mult_real_fct [a:R;f:R->R] : R->R := [x:R] ``a*(f x)``.
Definition minus_fct [f1,f2:R->R] : R->R := [x:R] ``(f1 x)-(f2 x)``.
Definition div_fct [f1,f2:R->R] : R->R := [x:R] ``(f1 x)/(f2 x)``.
Definition div_real_fct [a:R;f:R->R] : R->R := [x:R] ``a/(f x)``.
Definition comp [f1,f2:R->R] : R->R := [x:R] ``(f1 (f2 x))``.
Definition inv_fct [f:R->R] : R->R := [x:R]``/(f x)``.
V8Infix "+" plus_fct : Rfun_scope.
V8Notation "- x" := (opp_fct x) : Rfun_scope.
V8Infix "*" mult_fct : Rfun_scope.
V8Infix "-" minus_fct : Rfun_scope.
V8Infix "/" div_fct : Rfun_scope.
Notation Local "f1 'o' f2" := (comp f1 f2) (at level 2, right associativity)
: Rfun_scope
V8only (at level 20, right associativity).
V8Notation "/ x" := (inv_fct x) : Rfun_scope.
Delimits Scope Rfun_scope with F.
Definition fct_cte [a:R] : R->R := [x:R]a.
Definition id := [x:R]x.
(****************************************************)
(** Variations of functions *)
(****************************************************)
Definition increasing [f:R->R] : Prop := (x,y:R) ``x<=y``->``(f x)<=(f y)``.
Definition decreasing [f:R->R] : Prop := (x,y:R) ``x<=y``->``(f y)<=(f x)``.
Definition strict_increasing [f:R->R] : Prop := (x,y:R) ``x<y``->``(f x)<(f y)``.
Definition strict_decreasing [f:R->R] : Prop := (x,y:R) ``x<y``->``(f y)<(f x)``.
Definition constant [f:R->R] : Prop := (x,y:R) ``(f x)==(f y)``.
(**********)
Definition no_cond : R->Prop := [x:R] True.
(**********)
Definition constant_D_eq [f:R->R;D:R->Prop;c:R] : Prop := (x:R) (D x) -> (f x)==c.
(***************************************************)
(** Definition of continuity as a limit *)
(***************************************************)
(**********)
Definition continuity_pt [f:R->R; x0:R] : Prop := (continue_in f no_cond x0).
Definition continuity [f:R->R] : Prop := (x:R) (continuity_pt f x).
Arguments Scope continuity_pt [Rfun_scope R_scope].
Arguments Scope continuity [Rfun_scope].
(**********)
Lemma continuity_pt_plus : (f1,f2:R->R; x0:R) (continuity_pt f1 x0) -> (continuity_pt f2 x0) -> (continuity_pt (plus_fct f1 f2) x0).
Unfold continuity_pt plus_fct; Unfold continue_in; Intros; Apply limit_plus; Assumption.
Qed.
Lemma continuity_pt_opp : (f:R->R; x0:R) (continuity_pt f x0) -> (continuity_pt (opp_fct f) x0).
Unfold continuity_pt opp_fct; Unfold continue_in; Intros; Apply limit_Ropp; Assumption.
Qed.
Lemma continuity_pt_minus : (f1,f2:R->R; x0:R) (continuity_pt f1 x0) -> (continuity_pt f2 x0) -> (continuity_pt (minus_fct f1 f2) x0).
Unfold continuity_pt minus_fct; Unfold continue_in; Intros; Apply limit_minus; Assumption.
Qed.
Lemma continuity_pt_mult : (f1,f2:R->R; x0:R) (continuity_pt f1 x0) -> (continuity_pt f2 x0) -> (continuity_pt (mult_fct f1 f2) x0).
Unfold continuity_pt mult_fct; Unfold continue_in; Intros; Apply limit_mul; Assumption.
Qed.
Lemma continuity_pt_const : (f:R->R; x0:R) (constant f) -> (continuity_pt f x0).
Unfold constant continuity_pt; Unfold continue_in; Unfold limit1_in; Unfold limit_in; Intros; Exists ``1``; Split; [Apply Rlt_R0_R1 | Intros; Generalize (H x x0); Intro; Rewrite H2; Simpl; Rewrite R_dist_eq; Assumption].
Qed.
Lemma continuity_pt_scal : (f:R->R;a:R; x0:R) (continuity_pt f x0) -> (continuity_pt (mult_real_fct a f) x0).
Unfold continuity_pt mult_real_fct; Unfold continue_in; Intros; Apply (limit_mul ([x:R] a) f (D_x no_cond x0) a (f x0) x0).
Unfold limit1_in; Unfold limit_in; Intros; Exists ``1``; Split.
Apply Rlt_R0_R1.
Intros; Rewrite R_dist_eq; Assumption.
Assumption.
Qed.
Lemma continuity_pt_inv : (f:R->R; x0:R) (continuity_pt f x0) -> ~``(f x0)==0`` -> (continuity_pt (inv_fct f) x0).
Intros.
Replace (inv_fct f) with [x:R]``/(f x)``.
Unfold continuity_pt; Unfold continue_in; Intros; Apply limit_inv; Assumption.
Unfold inv_fct; Reflexivity.
Qed.
Lemma div_eq_inv : (f1,f2:R->R) (div_fct f1 f2)==(mult_fct f1 (inv_fct f2)).
Intros; Reflexivity.
Qed.
Lemma continuity_pt_div : (f1,f2:R->R; x0:R) (continuity_pt f1 x0) -> (continuity_pt f2 x0) -> ~``(f2 x0)==0`` -> (continuity_pt (div_fct f1 f2) x0).
Intros; Rewrite -> (div_eq_inv f1 f2); Apply continuity_pt_mult; [Assumption | Apply continuity_pt_inv; Assumption].
Qed.
Lemma continuity_pt_comp : (f1,f2:R->R;x:R) (continuity_pt f1 x) -> (continuity_pt f2 (f1 x)) -> (continuity_pt (comp f2 f1) x).
Unfold continuity_pt; Unfold continue_in; Intros; Unfold comp.
Cut (limit1_in [x0:R](f2 (f1 x0)) (Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1)
(f2 (f1 x)) x) -> (limit1_in [x0:R](f2 (f1 x0)) (D_x no_cond x) (f2 (f1 x)) x).
Intro; Apply H1.
EApply limit_comp.
Apply H.
Apply H0.
Unfold limit1_in; Unfold limit_in; Unfold dist; Simpl; Unfold R_dist; Intros.
Assert H3 := (H1 eps H2).
Elim H3; Intros.
Exists x0.
Split.
Elim H4; Intros; Assumption.
Intros; Case (Req_EM (f1 x) (f1 x1)); Intro.
Rewrite H6; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Assumption.
Elim H4; Intros; Apply H8.
Split.
Unfold Dgf D_x no_cond.
Split.
Split.
Trivial.
Elim H5; Unfold D_x no_cond; Intros.
Elim H9; Intros; Assumption.
Split.
Trivial.
Assumption.
Elim H5; Intros; Assumption.
Qed.
(**********)
Lemma continuity_plus : (f1,f2:R->R) (continuity f1)->(continuity f2)->(continuity (plus_fct f1 f2)).
Unfold continuity; Intros; Apply (continuity_pt_plus f1 f2 x (H x) (H0 x)).
Qed.
Lemma continuity_opp : (f:R->R) (continuity f)->(continuity (opp_fct f)).
Unfold continuity; Intros; Apply (continuity_pt_opp f x (H x)).
Qed.
Lemma continuity_minus : (f1,f2:R->R) (continuity f1)->(continuity f2)->(continuity (minus_fct f1 f2)).
Unfold continuity; Intros; Apply (continuity_pt_minus f1 f2 x (H x) (H0 x)).
Qed.
Lemma continuity_mult : (f1,f2:R->R) (continuity f1)->(continuity f2)->(continuity (mult_fct f1 f2)).
Unfold continuity; Intros; Apply (continuity_pt_mult f1 f2 x (H x) (H0 x)).
Qed.
Lemma continuity_const : (f:R->R) (constant f) -> (continuity f).
Unfold continuity; Intros; Apply (continuity_pt_const f x H).
Qed.
Lemma continuity_scal : (f:R->R;a:R) (continuity f) -> (continuity (mult_real_fct a f)).
Unfold continuity; Intros; Apply (continuity_pt_scal f a x (H x)).
Qed.
Lemma continuity_inv : (f:R->R) (continuity f)->((x:R) ~``(f x)==0``)->(continuity (inv_fct f)).
Unfold continuity; Intros; Apply (continuity_pt_inv f x (H x) (H0 x)).
Qed.
Lemma continuity_div : (f1,f2:R->R) (continuity f1)->(continuity f2)->((x:R) ~``(f2 x)==0``)->(continuity (div_fct f1 f2)).
Unfold continuity; Intros; Apply (continuity_pt_div f1 f2 x (H x) (H0 x) (H1 x)).
Qed.
Lemma continuity_comp : (f1,f2:R->R) (continuity f1) -> (continuity f2) -> (continuity (comp f2 f1)).
Unfold continuity; Intros.
Apply (continuity_pt_comp f1 f2 x (H x) (H0 (f1 x))).
Qed.
(*****************************************************)
(** Derivative's definition using Landau's kernel *)
(*****************************************************)
Definition derivable_pt_lim [f:R->R;x,l:R] : Prop := ((eps:R) ``0<eps``->(EXT delta : posreal | ((h:R) ~``h==0``->``(Rabsolu h)<delta`` -> ``(Rabsolu ((((f (x+h))-(f x))/h)-l))<eps``))).
Definition derivable_pt_abs [f:R->R;x:R] : R -> Prop := [l:R](derivable_pt_lim f x l).
Definition derivable_pt [f:R->R;x:R] := (SigT R (derivable_pt_abs f x)).
Definition derivable [f:R->R] := (x:R)(derivable_pt f x).
Definition derive_pt [f:R->R;x:R;pr:(derivable_pt f x)] := (projT1 ? ? pr).
Definition derive [f:R->R;pr:(derivable f)] := [x:R](derive_pt f x (pr x)).
Arguments Scope derivable_pt_lim [Rfun_scope R_scope].
Arguments Scope derivable_pt_abs [Rfun_scope R_scope R_scope].
Arguments Scope derivable_pt [Rfun_scope R_scope].
Arguments Scope derivable [Rfun_scope].
Arguments Scope derive_pt [Rfun_scope R_scope _].
Arguments Scope derive [Rfun_scope _].
Definition antiderivative [f,g:R->R;a,b:R] : Prop := ((x:R)``a<=x<=b``->(EXT pr : (derivable_pt g x) | (f x)==(derive_pt g x pr)))/\``a<=b``.
(************************************)
(** Class of differential functions *)
(************************************)
Record Differential : Type := mkDifferential {
d1 :> R->R;
cond_diff : (derivable d1) }.
Record Differential_D2 : Type := mkDifferential_D2 {
d2 :> R->R;
cond_D1 : (derivable d2);
cond_D2 : (derivable (derive d2 cond_D1)) }.
(**********)
Lemma unicite_step1 : (f:R->R;x,l1,l2:R) (limit1_in [h:R]``((f (x+h))-(f x))/h`` [h:R]``h<>0`` l1 R0) -> (limit1_in [h:R]``((f (x+h))-(f x))/h`` [h:R]``h<>0`` l2 R0) -> l1 == l2.
Intros; Apply (single_limit [h:R]``((f (x+h))-(f x))/h`` [h:R]``h<>0`` l1 l2 R0); Try Assumption.
Unfold adhDa; Intros; Exists ``alp/2``.
Split.
Unfold Rdiv; Apply prod_neq_R0.
Red; Intro; Rewrite H2 in H1; Elim (Rlt_antirefl ? H1).
Apply Rinv_neq_R0; DiscrR.
Unfold R_dist; Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Unfold Rdiv; Rewrite Rabsolu_mult.
Replace ``(Rabsolu (/2))`` with ``/2``.
Replace (Rabsolu alp) with alp.
Apply Rlt_monotony_contra with ``2``.
Sup0.
Rewrite (Rmult_sym ``2``); Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym; [Idtac | DiscrR]; Rewrite Rmult_1r; Rewrite double; Pattern 1 alp; Replace alp with ``alp+0``; [Idtac | Ring]; Apply Rlt_compatibility; Assumption.
Symmetry; Apply Rabsolu_right; Left; Assumption.
Symmetry; Apply Rabsolu_right; Left; Change ``0</2``; Apply Rlt_Rinv; Sup0.
Qed.
Lemma unicite_step2 : (f:R->R;x,l:R) (derivable_pt_lim f x l) -> (limit1_in [h:R]``((f (x+h))-(f x))/h`` [h:R]``h<>0`` l R0).
Unfold derivable_pt_lim; Intros; Unfold limit1_in; Unfold limit_in; Intros.
Assert H1 := (H eps H0).
Elim H1 ; Intros.
Exists (pos x0).
Split.
Apply (cond_pos x0).
Simpl; Unfold R_dist; Intros.
Elim H3; Intros.
Apply H2; [Assumption |Unfold Rminus in H5; Rewrite Ropp_O in H5; Rewrite Rplus_Or in H5; Assumption].
Qed.
Lemma unicite_step3 : (f:R->R;x,l:R) (limit1_in [h:R]``((f (x+h))-(f x))/h`` [h:R]``h<>0`` l R0) -> (derivable_pt_lim f x l).
Unfold limit1_in derivable_pt_lim; Unfold limit_in; Unfold dist; Simpl; Intros.
Elim (H eps H0).
Intros; Elim H1; Intros.
Exists (mkposreal x0 H2).
Simpl; Intros; Unfold R_dist in H3; Apply (H3 h).
Split; [Assumption | Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Assumption].
Qed.
Lemma unicite_limite : (f:R->R;x,l1,l2:R) (derivable_pt_lim f x l1) -> (derivable_pt_lim f x l2) -> l1==l2.
Intros.
Assert H1 := (unicite_step2 ? ? ? H).
Assert H2 := (unicite_step2 ? ? ? H0).
Assert H3 := (unicite_step1 ? ? ? ? H1 H2).
Assumption.
Qed.
Lemma derive_pt_eq : (f:R->R;x,l:R;pr:(derivable_pt f x)) (derive_pt f x pr)==l <-> (derivable_pt_lim f x l).
Intros; Split.
Intro; Assert H1 := (projT2 ? ? pr); Unfold derive_pt in H; Rewrite H in H1; Assumption.
Intro; Assert H1 := (projT2 ? ? pr); Unfold derivable_pt_abs in H1.
Assert H2 := (unicite_limite ? ? ? ? H H1).
Unfold derive_pt; Unfold derivable_pt_abs.
Symmetry; Assumption.
Qed.
(**********)
Lemma derive_pt_eq_0 : (f:R->R;x,l:R;pr:(derivable_pt f x)) (derivable_pt_lim f x l) -> (derive_pt f x pr)==l.
Intros; Elim (derive_pt_eq f x l pr); Intros.
Apply (H1 H).
Qed.
(**********)
Lemma derive_pt_eq_1 : (f:R->R;x,l:R;pr:(derivable_pt f x)) (derive_pt f x pr)==l -> (derivable_pt_lim f x l).
Intros; Elim (derive_pt_eq f x l pr); Intros.
Apply (H0 H).
Qed.
(********************************************************************)
(** Equivalence of this definition with the one using limit concept *)
(********************************************************************)
Lemma derive_pt_D_in : (f,df:R->R;x:R;pr:(derivable_pt f x)) (D_in f df no_cond x) <-> (derive_pt f x pr)==(df x).
Intros; Split.
Unfold D_in; Unfold limit1_in; Unfold limit_in; Simpl; Unfold R_dist; Intros.
Apply derive_pt_eq_0.
Unfold derivable_pt_lim.
Intros; Elim (H eps H0); Intros alpha H1; Elim H1; Intros; Exists (mkposreal alpha H2); Intros; Generalize (H3 ``x+h``); Intro; Cut ``x+h-x==h``; [Intro; Cut ``(D_x no_cond x (x+h))``/\``(Rabsolu (x+h-x)) < alpha``; [Intro; Generalize (H6 H8); Rewrite H7; Intro; Assumption | Split; [Unfold D_x; Split; [Unfold no_cond; Trivial | Apply Rminus_not_eq_right; Rewrite H7; Assumption] | Rewrite H7; Assumption]] | Ring].
Intro.
Assert H0 := (derive_pt_eq_1 f x (df x) pr H).
Unfold D_in; Unfold limit1_in; Unfold limit_in; Unfold dist; Simpl; Unfold R_dist; Intros.
Elim (H0 eps H1); Intros alpha H2; Exists (pos alpha); Split.
Apply (cond_pos alpha).
Intros; Elim H3; Intros; Unfold D_x in H4; Elim H4; Intros; Cut ``x0-x<>0``.
Intro; Generalize (H2 ``x0-x`` H8 H5); Replace ``x+(x0-x)`` with x0.
Intro; Assumption.
Ring.
Auto with real.
Qed.
Lemma derivable_pt_lim_D_in : (f,df:R->R;x:R) (D_in f df no_cond x) <-> (derivable_pt_lim f x (df x)).
Intros; Split.
Unfold D_in; Unfold limit1_in; Unfold limit_in; Simpl; Unfold R_dist; Intros.
Unfold derivable_pt_lim.
Intros; Elim (H eps H0); Intros alpha H1; Elim H1; Intros; Exists (mkposreal alpha H2); Intros; Generalize (H3 ``x+h``); Intro; Cut ``x+h-x==h``; [Intro; Cut ``(D_x no_cond x (x+h))``/\``(Rabsolu (x+h-x)) < alpha``; [Intro; Generalize (H6 H8); Rewrite H7; Intro; Assumption | Split; [Unfold D_x; Split; [Unfold no_cond; Trivial | Apply Rminus_not_eq_right; Rewrite H7; Assumption] | Rewrite H7; Assumption]] | Ring].
Intro.
Unfold derivable_pt_lim in H.
Unfold D_in; Unfold limit1_in; Unfold limit_in; Unfold dist; Simpl; Unfold R_dist; Intros.
Elim (H eps H0); Intros alpha H2; Exists (pos alpha); Split.
Apply (cond_pos alpha).
Intros.
Elim H1; Intros; Unfold D_x in H3; Elim H3; Intros; Cut ``x0-x<>0``.
Intro; Generalize (H2 ``x0-x`` H7 H4); Replace ``x+(x0-x)`` with x0.
Intro; Assumption.
Ring.
Auto with real.
Qed.
(***********************************)
(** derivability -> continuity *)
(***********************************)
(**********)
Lemma derivable_derive : (f:R->R;x:R;pr:(derivable_pt f x)) (EXT l : R | (derive_pt f x pr)==l).
Intros; Exists (projT1 ? ? pr).
Unfold derive_pt; Reflexivity.
Qed.
Theorem derivable_continuous_pt : (f:R->R;x:R) (derivable_pt f x) -> (continuity_pt f x).
Intros.
Generalize (derivable_derive f x X); Intro.
Elim H; Intros l H1.
Cut l==((fct_cte l) x).
Intro.
Rewrite H0 in H1.
Generalize (derive_pt_D_in f (fct_cte l) x); Intro.
Elim (H2 X); Intros.
Generalize (H4 H1); Intro.
Unfold continuity_pt.
Apply (cont_deriv f (fct_cte l) no_cond x H5).
Unfold fct_cte; Reflexivity.
Qed.
Theorem derivable_continuous : (f:R->R) (derivable f) -> (continuity f).
Unfold derivable continuity; Intros.
Apply (derivable_continuous_pt f x (X x)).
Qed.
(****************************************************************)
(** Main rules *)
(****************************************************************)
Lemma derivable_pt_lim_plus : (f1,f2:R->R;x,l1,l2:R) (derivable_pt_lim f1 x l1) -> (derivable_pt_lim f2 x l2) -> (derivable_pt_lim (plus_fct f1 f2) x ``l1+l2``).
Intros.
Apply unicite_step3.
Assert H1 := (unicite_step2 ? ? ? H).
Assert H2 := (unicite_step2 ? ? ? H0).
Unfold plus_fct.
Cut (h:R)``((f1 (x+h))+(f2 (x+h))-((f1 x)+(f2 x)))/h``==``((f1 (x+h))-(f1 x))/h+((f2 (x+h))-(f2 x))/h``.
Intro.
Generalize(limit_plus [h':R]``((f1 (x+h'))-(f1 x))/h'`` [h':R]``((f2 (x+h'))-(f2 x))/h'`` [h:R]``h <> 0`` l1 l2 ``0`` H1 H2).
Unfold limit1_in; Unfold limit_in; Unfold dist; Simpl; Unfold R_dist; Intros.
Elim (H4 eps H5); Intros.
Exists x0.
Elim H6; Intros.
Split.
Assumption.
Intros; Rewrite H3; Apply H8; Assumption.
Intro; Unfold Rdiv; Ring.
Qed.
Lemma derivable_pt_lim_opp : (f:R->R;x,l:R) (derivable_pt_lim f x l) -> (derivable_pt_lim (opp_fct f) x (Ropp l)).
Intros.
Apply unicite_step3.
Assert H1 := (unicite_step2 ? ? ? H).
Unfold opp_fct.
Cut (h:R) ``( -(f (x+h))- -(f x))/h``==(Ropp ``((f (x+h))-(f x))/h``).
Intro.
Generalize (limit_Ropp [h:R]``((f (x+h))-(f x))/h``[h:R]``h <> 0`` l ``0`` H1).
Unfold limit1_in; Unfold limit_in; Unfold dist; Simpl; Unfold R_dist; Intros.
Elim (H2 eps H3); Intros.
Exists x0.
Elim H4; Intros.
Split.
Assumption.
Intros; Rewrite H0; Apply H6; Assumption.
Intro; Unfold Rdiv; Ring.
Qed.
Lemma derivable_pt_lim_minus : (f1,f2:R->R;x,l1,l2:R) (derivable_pt_lim f1 x l1) -> (derivable_pt_lim f2 x l2) -> (derivable_pt_lim (minus_fct f1 f2) x ``l1-l2``).
Intros.
Apply unicite_step3.
Assert H1 := (unicite_step2 ? ? ? H).
Assert H2 := (unicite_step2 ? ? ? H0).
Unfold minus_fct.
Cut (h:R)``((f1 (x+h))-(f1 x))/h-((f2 (x+h))-(f2 x))/h``==``((f1 (x+h))-(f2 (x+h))-((f1 x)-(f2 x)))/h``.
Intro.
Generalize (limit_minus [h':R]``((f1 (x+h'))-(f1 x))/h'`` [h':R]``((f2 (x+h'))-(f2 x))/h'`` [h:R]``h <> 0`` l1 l2 ``0`` H1 H2).
Unfold limit1_in; Unfold limit_in; Unfold dist; Simpl; Unfold R_dist; Intros.
Elim (H4 eps H5); Intros.
Exists x0.
Elim H6; Intros.
Split.
Assumption.
Intros; Rewrite <- H3; Apply H8; Assumption.
Intro; Unfold Rdiv; Ring.
Qed.
Lemma derivable_pt_lim_mult : (f1,f2:R->R;x,l1,l2:R) (derivable_pt_lim f1 x l1) -> (derivable_pt_lim f2 x l2) -> (derivable_pt_lim (mult_fct f1 f2) x ``l1*(f2 x)+(f1 x)*l2``).
Intros.
Assert H1 := (derivable_pt_lim_D_in f1 [y:R]l1 x).
Elim H1; Intros.
Assert H4 := (H3 H).
Assert H5 := (derivable_pt_lim_D_in f2 [y:R]l2 x).
Elim H5; Intros.
Assert H8 := (H7 H0).
Clear H1 H2 H3 H5 H6 H7.
Assert H1 := (derivable_pt_lim_D_in (mult_fct f1 f2) [y:R]``l1*(f2 x)+(f1 x)*l2`` x).
Elim H1; Intros.
Clear H1 H3.
Apply H2.
Unfold mult_fct.
Apply (Dmult no_cond [y:R]l1 [y:R]l2 f1 f2 x); Assumption.
Qed.
Lemma derivable_pt_lim_const : (a,x:R) (derivable_pt_lim (fct_cte a) x ``0``).
Intros; Unfold fct_cte derivable_pt_lim.
Intros; Exists (mkposreal ``1`` Rlt_R0_R1); Intros; Unfold Rminus; Rewrite Rplus_Ropp_r; Unfold Rdiv; Rewrite Rmult_Ol; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Assumption.
Qed.
Lemma derivable_pt_lim_scal : (f:R->R;a,x,l:R) (derivable_pt_lim f x l) -> (derivable_pt_lim (mult_real_fct a f) x ``a*l``).
Intros.
Assert H0 := (derivable_pt_lim_const a x).
Replace (mult_real_fct a f) with (mult_fct (fct_cte a) f).
Replace ``a*l`` with ``0*(f x)+a*l``; [Idtac | Ring].
Apply (derivable_pt_lim_mult (fct_cte a) f x ``0`` l); Assumption.
Unfold mult_real_fct mult_fct fct_cte; Reflexivity.
Qed.
Lemma derivable_pt_lim_id : (x:R) (derivable_pt_lim id x ``1``).
Intro; Unfold derivable_pt_lim.
Intros eps Heps; Exists (mkposreal eps Heps); Intros h H1 H2; Unfold id; Replace ``(x+h-x)/h-1`` with ``0``.
Rewrite Rabsolu_R0; Apply Rle_lt_trans with ``(Rabsolu h)``.
Apply Rabsolu_pos.
Assumption.
Unfold Rminus; Rewrite Rplus_assoc; Rewrite (Rplus_sym x); Rewrite Rplus_assoc.
Rewrite Rplus_Ropp_l; Rewrite Rplus_Or; Unfold Rdiv; Rewrite <- Rinv_r_sym.
Symmetry; Apply Rplus_Ropp_r.
Assumption.
Qed.
Lemma derivable_pt_lim_Rsqr : (x:R) (derivable_pt_lim Rsqr x ``2*x``).
Intro; Unfold derivable_pt_lim.
Unfold Rsqr; Intros eps Heps; Exists (mkposreal eps Heps); Intros h H1 H2; Replace ``((x+h)*(x+h)-x*x)/h-2*x`` with ``h``.
Assumption.
Replace ``(x+h)*(x+h)-x*x`` with ``2*x*h+h*h``; [Idtac | Ring].
Unfold Rdiv; Rewrite Rmult_Rplus_distrl.
Repeat Rewrite Rmult_assoc.
Repeat Rewrite <- Rinv_r_sym; [Idtac | Assumption].
Ring.
Qed.
Lemma derivable_pt_lim_comp : (f1,f2:R->R;x,l1,l2:R) (derivable_pt_lim f1 x l1) -> (derivable_pt_lim f2 (f1 x) l2) -> (derivable_pt_lim (comp f2 f1) x ``l2*l1``).
Intros; Assert H1 := (derivable_pt_lim_D_in f1 [y:R]l1 x).
Elim H1; Intros.
Assert H4 := (H3 H).
Assert H5 := (derivable_pt_lim_D_in f2 [y:R]l2 (f1 x)).
Elim H5; Intros.
Assert H8 := (H7 H0).
Clear H1 H2 H3 H5 H6 H7.
Assert H1 := (derivable_pt_lim_D_in (comp f2 f1) [y:R]``l2*l1`` x).
Elim H1; Intros.
Clear H1 H3; Apply H2.
Unfold comp; Cut (D_in [x0:R](f2 (f1 x0)) [y:R]``l2*l1`` (Dgf no_cond no_cond f1) x) -> (D_in [x0:R](f2 (f1 x0)) [y:R]``l2*l1`` no_cond x).
Intro; Apply H1.
Rewrite Rmult_sym; Apply (Dcomp no_cond no_cond [y:R]l1 [y:R]l2 f1 f2 x); Assumption.
Unfold Dgf D_in no_cond; Unfold limit1_in; Unfold limit_in; Unfold dist; Simpl; Unfold R_dist; Intros.
Elim (H1 eps H3); Intros.
Exists x0; Intros; Split.
Elim H5; Intros; Assumption.
Intros; Elim H5; Intros; Apply H9; Split.
Unfold D_x; Split.
Split; Trivial.
Elim H6; Intros; Unfold D_x in H10; Elim H10; Intros; Assumption.
Elim H6; Intros; Assumption.
Qed.
Lemma derivable_pt_plus : (f1,f2:R->R;x:R) (derivable_pt f1 x) -> (derivable_pt f2 x) -> (derivable_pt (plus_fct f1 f2) x).
Unfold derivable_pt; Intros.
Elim X; Intros.
Elim X0; Intros.
Apply Specif.existT with ``x0+x1``.
Apply derivable_pt_lim_plus; Assumption.
Qed.
Lemma derivable_pt_opp : (f:R->R;x:R) (derivable_pt f x) -> (derivable_pt (opp_fct f) x).
Unfold derivable_pt; Intros.
Elim X; Intros.
Apply Specif.existT with ``-x0``.
Apply derivable_pt_lim_opp; Assumption.
Qed.
Lemma derivable_pt_minus : (f1,f2:R->R;x:R) (derivable_pt f1 x) -> (derivable_pt f2 x) -> (derivable_pt (minus_fct f1 f2) x).
Unfold derivable_pt; Intros.
Elim X; Intros.
Elim X0; Intros.
Apply Specif.existT with ``x0-x1``.
Apply derivable_pt_lim_minus; Assumption.
Qed.
Lemma derivable_pt_mult : (f1,f2:R->R;x:R) (derivable_pt f1 x) -> (derivable_pt f2 x) -> (derivable_pt (mult_fct f1 f2) x).
Unfold derivable_pt; Intros.
Elim X; Intros.
Elim X0; Intros.
Apply Specif.existT with ``x0*(f2 x)+(f1 x)*x1``.
Apply derivable_pt_lim_mult; Assumption.
Qed.
Lemma derivable_pt_const : (a,x:R) (derivable_pt (fct_cte a) x).
Intros; Unfold derivable_pt.
Apply Specif.existT with ``0``.
Apply derivable_pt_lim_const.
Qed.
Lemma derivable_pt_scal : (f:R->R;a,x:R) (derivable_pt f x) -> (derivable_pt (mult_real_fct a f) x).
Unfold derivable_pt; Intros.
Elim X; Intros.
Apply Specif.existT with ``a*x0``.
Apply derivable_pt_lim_scal; Assumption.
Qed.
Lemma derivable_pt_id : (x:R) (derivable_pt id x).
Unfold derivable_pt; Intro.
Exists ``1``.
Apply derivable_pt_lim_id.
Qed.
Lemma derivable_pt_Rsqr : (x:R) (derivable_pt Rsqr x).
Unfold derivable_pt; Intro; Apply Specif.existT with ``2*x``.
Apply derivable_pt_lim_Rsqr.
Qed.
Lemma derivable_pt_comp : (f1,f2:R->R;x:R) (derivable_pt f1 x) -> (derivable_pt f2 (f1 x)) -> (derivable_pt (comp f2 f1) x).
Unfold derivable_pt; Intros.
Elim X; Intros.
Elim X0 ;Intros.
Apply Specif.existT with ``x1*x0``.
Apply derivable_pt_lim_comp; Assumption.
Qed.
Lemma derivable_plus : (f1,f2:R->R) (derivable f1) -> (derivable f2) -> (derivable (plus_fct f1 f2)).
Unfold derivable; Intros.
Apply (derivable_pt_plus ? ? x (X ?) (X0 ?)).
Qed.
Lemma derivable_opp : (f:R->R) (derivable f) -> (derivable (opp_fct f)).
Unfold derivable; Intros.
Apply (derivable_pt_opp ? x (X ?)).
Qed.
Lemma derivable_minus : (f1,f2:R->R) (derivable f1) -> (derivable f2) -> (derivable (minus_fct f1 f2)).
Unfold derivable; Intros.
Apply (derivable_pt_minus ? ? x (X ?) (X0 ?)).
Qed.
Lemma derivable_mult : (f1,f2:R->R) (derivable f1) -> (derivable f2) -> (derivable (mult_fct f1 f2)).
Unfold derivable; Intros.
Apply (derivable_pt_mult ? ? x (X ?) (X0 ?)).
Qed.
Lemma derivable_const : (a:R) (derivable (fct_cte a)).
Unfold derivable; Intros.
Apply derivable_pt_const.
Qed.
Lemma derivable_scal : (f:R->R;a:R) (derivable f) -> (derivable (mult_real_fct a f)).
Unfold derivable; Intros.
Apply (derivable_pt_scal ? a x (X ?)).
Qed.
Lemma derivable_id : (derivable id).
Unfold derivable; Intro; Apply derivable_pt_id.
Qed.
Lemma derivable_Rsqr : (derivable Rsqr).
Unfold derivable; Intro; Apply derivable_pt_Rsqr.
Qed.
Lemma derivable_comp : (f1,f2:R->R) (derivable f1) -> (derivable f2) -> (derivable (comp f2 f1)).
Unfold derivable; Intros.
Apply (derivable_pt_comp ? ? x (X ?) (X0 ?)).
Qed.
Lemma derive_pt_plus : (f1,f2:R->R;x:R;pr1:(derivable_pt f1 x);pr2:(derivable_pt f2 x)) ``(derive_pt (plus_fct f1 f2) x (derivable_pt_plus ? ? ? pr1 pr2)) == (derive_pt f1 x pr1) + (derive_pt f2 x pr2)``.
Intros.
Assert H := (derivable_derive f1 x pr1).
Assert H0 := (derivable_derive f2 x pr2).
Assert H1 := (derivable_derive (plus_fct f1 f2) x (derivable_pt_plus ? ? ? pr1 pr2)).
Elim H; Clear H; Intros l1 H.
Elim H0; Clear H0; Intros l2 H0.
Elim H1; Clear H1; Intros l H1.
Rewrite H; Rewrite H0; Apply derive_pt_eq_0.
Assert H3 := (projT2 ? ? pr1).
Unfold derive_pt in H; Rewrite H in H3.
Assert H4 := (projT2 ? ? pr2).
Unfold derive_pt in H0; Rewrite H0 in H4.
Apply derivable_pt_lim_plus; Assumption.
Qed.
Lemma derive_pt_opp : (f:R->R;x:R;pr1:(derivable_pt f x)) ``(derive_pt (opp_fct f) x (derivable_pt_opp ? ? pr1)) == -(derive_pt f x pr1)``.
Intros.
Assert H := (derivable_derive f x pr1).
Assert H0 := (derivable_derive (opp_fct f) x (derivable_pt_opp ? ? pr1)).
Elim H; Clear H; Intros l1 H.
Elim H0; Clear H0; Intros l2 H0.
Rewrite H; Apply derive_pt_eq_0.
Assert H3 := (projT2 ? ? pr1).
Unfold derive_pt in H; Rewrite H in H3.
Apply derivable_pt_lim_opp; Assumption.
Qed.
Lemma derive_pt_minus : (f1,f2:R->R;x:R;pr1:(derivable_pt f1 x);pr2:(derivable_pt f2 x)) ``(derive_pt (minus_fct f1 f2) x (derivable_pt_minus ? ? ? pr1 pr2)) == (derive_pt f1 x pr1) - (derive_pt f2 x pr2)``.
Intros.
Assert H := (derivable_derive f1 x pr1).
Assert H0 := (derivable_derive f2 x pr2).
Assert H1 := (derivable_derive (minus_fct f1 f2) x (derivable_pt_minus ? ? ? pr1 pr2)).
Elim H; Clear H; Intros l1 H.
Elim H0; Clear H0; Intros l2 H0.
Elim H1; Clear H1; Intros l H1.
Rewrite H; Rewrite H0; Apply derive_pt_eq_0.
Assert H3 := (projT2 ? ? pr1).
Unfold derive_pt in H; Rewrite H in H3.
Assert H4 := (projT2 ? ? pr2).
Unfold derive_pt in H0; Rewrite H0 in H4.
Apply derivable_pt_lim_minus; Assumption.
Qed.
Lemma derive_pt_mult : (f1,f2:R->R;x:R;pr1:(derivable_pt f1 x);pr2:(derivable_pt f2 x)) ``(derive_pt (mult_fct f1 f2) x (derivable_pt_mult ? ? ? pr1 pr2)) == (derive_pt f1 x pr1)*(f2 x) + (f1 x)*(derive_pt f2 x pr2)``.
Intros.
Assert H := (derivable_derive f1 x pr1).
Assert H0 := (derivable_derive f2 x pr2).
Assert H1 := (derivable_derive (mult_fct f1 f2) x (derivable_pt_mult ? ? ? pr1 pr2)).
Elim H; Clear H; Intros l1 H.
Elim H0; Clear H0; Intros l2 H0.
Elim H1; Clear H1; Intros l H1.
Rewrite H; Rewrite H0; Apply derive_pt_eq_0.
Assert H3 := (projT2 ? ? pr1).
Unfold derive_pt in H; Rewrite H in H3.
Assert H4 := (projT2 ? ? pr2).
Unfold derive_pt in H0; Rewrite H0 in H4.
Apply derivable_pt_lim_mult; Assumption.
Qed.
Lemma derive_pt_const : (a,x:R) (derive_pt (fct_cte a) x (derivable_pt_const a x)) == R0.
Intros.
Apply derive_pt_eq_0.
Apply derivable_pt_lim_const.
Qed.
Lemma derive_pt_scal : (f:R->R;a,x:R;pr:(derivable_pt f x)) ``(derive_pt (mult_real_fct a f) x (derivable_pt_scal ? ? ? pr)) == a * (derive_pt f x pr)``.
Intros.
Assert H := (derivable_derive f x pr).
Assert H0 := (derivable_derive (mult_real_fct a f) x (derivable_pt_scal ? ? ? pr)).
Elim H; Clear H; Intros l1 H.
Elim H0; Clear H0; Intros l2 H0.
Rewrite H; Apply derive_pt_eq_0.
Assert H3 := (projT2 ? ? pr).
Unfold derive_pt in H; Rewrite H in H3.
Apply derivable_pt_lim_scal; Assumption.
Qed.
Lemma derive_pt_id : (x:R) (derive_pt id x (derivable_pt_id ?))==R1.
Intros.
Apply derive_pt_eq_0.
Apply derivable_pt_lim_id.
Qed.
Lemma derive_pt_Rsqr : (x:R) (derive_pt Rsqr x (derivable_pt_Rsqr ?)) == ``2*x``.
Intros.
Apply derive_pt_eq_0.
Apply derivable_pt_lim_Rsqr.
Qed.
Lemma derive_pt_comp : (f1,f2:R->R;x:R;pr1:(derivable_pt f1 x);pr2:(derivable_pt f2 (f1 x))) ``(derive_pt (comp f2 f1) x (derivable_pt_comp ? ? ? pr1 pr2)) == (derive_pt f2 (f1 x) pr2) * (derive_pt f1 x pr1)``.
Intros.
Assert H := (derivable_derive f1 x pr1).
Assert H0 := (derivable_derive f2 (f1 x) pr2).
Assert H1 := (derivable_derive (comp f2 f1) x (derivable_pt_comp ? ? ? pr1 pr2)).
Elim H; Clear H; Intros l1 H.
Elim H0; Clear H0; Intros l2 H0.
Elim H1; Clear H1; Intros l H1.
Rewrite H; Rewrite H0; Apply derive_pt_eq_0.
Assert H3 := (projT2 ? ? pr1).
Unfold derive_pt in H; Rewrite H in H3.
Assert H4 := (projT2 ? ? pr2).
Unfold derive_pt in H0; Rewrite H0 in H4.
Apply derivable_pt_lim_comp; Assumption.
Qed.
(* Pow *)
Definition pow_fct [n:nat] : R->R := [y:R](pow y n).
Lemma derivable_pt_lim_pow_pos : (x:R;n:nat) (lt O n) -> (derivable_pt_lim [y:R](pow y n) x ``(INR n)*(pow x (pred n))``).
Intros.
Induction n.
Elim (lt_n_n ? H).
Cut n=O\/(lt O n).
Intro; Elim H0; Intro.
Rewrite H1; Simpl.
Replace [y:R]``y*1`` with (mult_fct id (fct_cte R1)).
Replace ``1*1`` with ``1*(fct_cte R1 x)+(id x)*0``.
Apply derivable_pt_lim_mult.
Apply derivable_pt_lim_id.
Apply derivable_pt_lim_const.
Unfold fct_cte id; Ring.
Reflexivity.
Replace [y:R](pow y (S n)) with [y:R]``y*(pow y n)``.
Replace (pred (S n)) with n; [Idtac | Reflexivity].
Replace [y:R]``y*(pow y n)`` with (mult_fct id [y:R](pow y n)).
Pose f := [y:R](pow y n).
Replace ``(INR (S n))*(pow x n)`` with (Rplus (Rmult R1 (f x)) (Rmult (id x) (Rmult (INR n) (pow x (pred n))))).
Apply derivable_pt_lim_mult.
Apply derivable_pt_lim_id.
Unfold f; Apply Hrecn; Assumption.
Unfold f.
Pattern 1 5 n; Replace n with (S (pred n)).
Unfold id; Rewrite S_INR; Simpl.
Ring.
Symmetry; Apply S_pred with O; Assumption.
Unfold mult_fct id; Reflexivity.
Reflexivity.
Inversion H.
Left; Reflexivity.
Right.
Apply lt_le_trans with (1).
Apply lt_O_Sn.
Assumption.
Qed.
Lemma derivable_pt_lim_pow : (x:R; n:nat) (derivable_pt_lim [y:R](pow y n) x ``(INR n)*(pow x (pred n))``).
Intros.
Induction n.
Simpl.
Rewrite Rmult_Ol.
Replace [_:R]``1`` with (fct_cte R1); [Apply derivable_pt_lim_const | Reflexivity].
Apply derivable_pt_lim_pow_pos.
Apply lt_O_Sn.
Qed.
Lemma derivable_pt_pow : (n:nat;x:R) (derivable_pt [y:R](pow y n) x).
Intros; Unfold derivable_pt.
Apply Specif.existT with ``(INR n)*(pow x (pred n))``.
Apply derivable_pt_lim_pow.
Qed.
Lemma derivable_pow : (n:nat) (derivable [y:R](pow y n)).
Intro; Unfold derivable; Intro; Apply derivable_pt_pow.
Qed.
Lemma derive_pt_pow : (n:nat;x:R) (derive_pt [y:R](pow y n) x (derivable_pt_pow n x))==``(INR n)*(pow x (pred n))``.
Intros; Apply derive_pt_eq_0.
Apply derivable_pt_lim_pow.
Qed.
Lemma pr_nu : (f:R->R;x:R;pr1,pr2:(derivable_pt f x)) (derive_pt f x pr1)==(derive_pt f x pr2).
Intros.
Unfold derivable_pt in pr1.
Unfold derivable_pt in pr2.
Elim pr1; Intros.
Elim pr2; Intros.
Unfold derivable_pt_abs in p.
Unfold derivable_pt_abs in p0.
Simpl.
Apply (unicite_limite f x x0 x1 p p0).
Qed.
(************************************************************)
(** Local extremum's condition *)
(************************************************************)
Theorem deriv_maximum : (f:R->R;a,b,c:R;pr:(derivable_pt f c)) ``a<c``->``c<b``->((x:R) ``a<x``->``x<b``->``(f x)<=(f c)``)->``(derive_pt f c pr)==0``.
Intros; Case (total_order R0 (derive_pt f c pr)); Intro.
Assert H3 := (derivable_derive f c pr).
Elim H3; Intros l H4; Rewrite H4 in H2.
Assert H5 := (derive_pt_eq_1 f c l pr H4).
Cut ``0<l/2``; [Intro | Unfold Rdiv; Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup0]].
Elim (H5 ``l/2`` H6); Intros delta H7.
Cut ``0<(b-c)/2``.
Intro; Cut ``(Rmin delta/2 ((b-c)/2))<>0``.
Intro; Cut ``(Rabsolu (Rmin delta/2 ((b-c)/2)))<delta``.
Intro.
Assert H11 := (H7 ``(Rmin delta/2 ((b-c)/2))`` H9 H10).
Cut ``0<(Rmin (delta/2) ((b-c)/2))``.
Intro; Cut ``a<c+(Rmin (delta/2) ((b-c)/2))``.
Intro; Cut ``c+(Rmin (delta/2) ((b-c)/2))<b``.
Intro; Assert H15 := (H1 ``c+(Rmin (delta/2) ((b-c)/2))`` H13 H14).
Cut ``((f (c+(Rmin (delta/2) ((b-c)/2))))-(f c))/(Rmin (delta/2) ((b-c)/2))<=0``.
Intro; Cut ``-l<0``.
Intro; Unfold Rminus in H11.
Cut ``((f (c+(Rmin (delta/2) ((b+ -c)/2))))+ -(f c))/(Rmin (delta/2) ((b+ -c)/2))+ -l<0``.
Intro; Cut ``(Rabsolu (((f (c+(Rmin (delta/2) ((b+ -c)/2))))+ -(f c))/(Rmin (delta/2) ((b+ -c)/2))+ -l)) < l/2``.
Unfold Rabsolu; Case (case_Rabsolu ``((f (c+(Rmin (delta/2) ((b+ -c)/2))))+ -(f c))/(Rmin (delta/2) ((b+ -c)/2))+ -l``); Intro.
Replace `` -(((f (c+(Rmin (delta/2) ((b+ -c)/2))))+ -(f c))/(Rmin (delta/2) ((b+ -c)/2))+ -l)`` with ``l+ -(((f (c+(Rmin (delta/2) ((b+ -c)/2))))+ -(f c))/(Rmin (delta/2) ((b+ -c)/2)))``.
Intro; Generalize (Rlt_compatibility ``-l`` ``l+ -(((f (c+(Rmin (delta/2) ((b+ -c)/2))))+ -(f c))/(Rmin (delta/2) ((b+ -c)/2)))`` ``l/2`` H19); Repeat Rewrite <- Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Ol; Replace ``-l+l/2`` with ``-(l/2)``.
Intro; Generalize (Rlt_Ropp ``-(((f (c+(Rmin (delta/2) ((b+ -c)/2))))+ -(f c))/(Rmin (delta/2) ((b+ -c)/2)))`` ``-(l/2)`` H20); Repeat Rewrite Ropp_Ropp; Intro; Generalize (Rlt_trans ``0`` ``l/2`` ``((f (c+(Rmin (delta/2) ((b+ -c)/2))))+ -(f c))/(Rmin (delta/2) ((b+ -c)/2))`` H6 H21); Intro; Elim (Rlt_antirefl ``0`` (Rlt_le_trans ``0`` ``((f (c+(Rmin (delta/2) ((b+ -c)/2))))+ -(f c))/(Rmin (delta/2) ((b+ -c)/2))`` ``0`` H22 H16)).
Pattern 2 l; Rewrite double_var.
Ring.
Ring.
Intro.
Assert H20 := (Rle_sym2 ``0`` ``((f (c+(Rmin (delta/2) ((b+ -c)/2))))+ -(f c))/(Rmin (delta/2) ((b+ -c)/2))+ -l`` r).
Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H20 H18)).
Assumption.
Rewrite <- Ropp_O; Replace ``((f (c+(Rmin (delta/2) ((b+ -c)/2))))+ -(f c))/(Rmin (delta/2) ((b+ -c)/2))+ -l`` with ``-(l+ -(((f (c+(Rmin (delta/2) ((b+ -c)/2))))-(f c))/(Rmin (delta/2) ((b+ -c)/2))))``.
Apply Rgt_Ropp; Change ``0<l+ -(((f (c+(Rmin (delta/2) ((b+ -c)/2))))-(f c))/(Rmin (delta/2) ((b+ -c)/2)))``; Apply gt0_plus_ge0_is_gt0; [Assumption | Rewrite <- Ropp_O; Apply Rge_Ropp; Apply Rle_sym1; Assumption].
Ring.
Rewrite <- Ropp_O; Apply Rlt_Ropp; Assumption.
Replace ``((f (c+(Rmin (delta/2) ((b-c)/2))))-(f c))/(Rmin (delta/2) ((b-c)/2))`` with ``- (((f c)-(f (c+(Rmin (delta/2) ((b-c)/2)))))/(Rmin (delta/2) ((b-c)/2)))``.
Rewrite <- Ropp_O; Apply Rge_Ropp; Apply Rle_sym1; Unfold Rdiv; Apply Rmult_le_pos; [Generalize (Rle_compatibility_r ``-(f (c+(Rmin (delta*/2) ((b-c)*/2))))`` ``(f (c+(Rmin (delta*/2) ((b-c)*/2))))`` (f c) H15); Rewrite Rplus_Ropp_r; Intro; Assumption | Left; Apply Rlt_Rinv; Assumption].
Unfold Rdiv.
Rewrite <- Ropp_mul1.
Repeat Rewrite <- (Rmult_sym ``/(Rmin (delta*/2) ((b-c)*/2))``).
Apply r_Rmult_mult with ``(Rmin (delta*/2) ((b-c)*/2))``.
Repeat Rewrite <- Rmult_assoc.
Rewrite <- Rinv_r_sym.
Repeat Rewrite Rmult_1l.
Ring.
Red; Intro.
Unfold Rdiv in H12; Rewrite H16 in H12; Elim (Rlt_antirefl ``0`` H12).
Red; Intro.
Unfold Rdiv in H12; Rewrite H16 in H12; Elim (Rlt_antirefl ``0`` H12).
Assert H14 := (Rmin_r ``(delta/2)`` ``((b-c)/2)``).
Assert H15 := (Rle_compatibility ``c`` ``(Rmin (delta/2) ((b-c)/2))`` ``(b-c)/2`` H14).
Apply Rle_lt_trans with ``c+(b-c)/2``.
Assumption.
Apply Rlt_monotony_contra with ``2``.
Sup0.
Replace ``2*(c+(b-c)/2)`` with ``c+b``.
Replace ``2*b`` with ``b+b``.
Apply Rlt_compatibility_r; Assumption.
Ring.
Unfold Rdiv; Rewrite Rmult_Rplus_distr.
Repeat Rewrite (Rmult_sym ``2``).
Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym.
Rewrite Rmult_1r.
Ring.
DiscrR.
Apply Rlt_trans with c.
Assumption.
Pattern 1 c; Rewrite <- (Rplus_Or c); Apply Rlt_compatibility; Assumption.
Cut ``0<delta/2``.
Intro; Apply (Rmin_stable_in_posreal (mkposreal ``delta/2`` H12) (mkposreal ``(b-c)/2`` H8)).
Unfold Rdiv; Apply Rmult_lt_pos; [Apply (cond_pos delta) | Apply Rlt_Rinv; Sup0].
Unfold Rabsolu; Case (case_Rabsolu (Rmin ``delta/2`` ``(b-c)/2``)).
Intro.
Cut ``0<delta/2``.
Intro.
Generalize (Rmin_stable_in_posreal (mkposreal ``delta/2`` H10) (mkposreal ``(b-c)/2`` H8)); Simpl; Intro; Elim (Rlt_antirefl ``0`` (Rlt_trans ``0`` ``(Rmin (delta/2) ((b-c)/2))`` ``0`` H11 r)).
Unfold Rdiv; Apply Rmult_lt_pos; [Apply (cond_pos delta) | Apply Rlt_Rinv; Sup0].
Intro; Apply Rle_lt_trans with ``delta/2``.
Apply Rmin_l.
Unfold Rdiv; Apply Rlt_monotony_contra with ``2``.
Sup0.
Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym.
Rewrite Rmult_1l.
Replace ``2*delta`` with ``delta+delta``.
Pattern 2 delta; Rewrite <- (Rplus_Or delta); Apply Rlt_compatibility.
Rewrite Rplus_Or; Apply (cond_pos delta).
Symmetry; Apply double.
DiscrR.
Cut ``0<delta/2``.
Intro; Generalize (Rmin_stable_in_posreal (mkposreal ``delta/2`` H9) (mkposreal ``(b-c)/2`` H8)); Simpl; Intro; Red; Intro; Rewrite H11 in H10; Elim (Rlt_antirefl ``0`` H10).
Unfold Rdiv; Apply Rmult_lt_pos; [Apply (cond_pos delta) | Apply Rlt_Rinv; Sup0].
Unfold Rdiv; Apply Rmult_lt_pos.
Generalize (Rlt_compatibility_r ``-c`` c b H0); Rewrite Rplus_Ropp_r; Intro; Assumption.
Apply Rlt_Rinv; Sup0.
Elim H2; Intro.
Symmetry; Assumption.
Generalize (derivable_derive f c pr); Intro; Elim H4; Intros l H5.
Rewrite H5 in H3; Generalize (derive_pt_eq_1 f c l pr H5); Intro; Cut ``0< -(l/2)``.
Intro; Elim (H6 ``-(l/2)`` H7); Intros delta H9.
Cut ``0<(c-a)/2``.
Intro; Cut ``(Rmax (-(delta/2)) ((a-c)/2))<0``.
Intro; Cut ``(Rmax (-(delta/2)) ((a-c)/2))<>0``.
Intro; Cut ``(Rabsolu (Rmax (-(delta/2)) ((a-c)/2)))<delta``.
Intro; Generalize (H9 ``(Rmax (-(delta/2)) ((a-c)/2))`` H11 H12); Intro; Cut ``a<c+(Rmax (-(delta/2)) ((a-c)/2))``.
Cut ``c+(Rmax (-(delta/2)) ((a-c)/2))<b``.
Intros; Generalize (H1 ``c+(Rmax (-(delta/2)) ((a-c)/2))`` H15 H14); Intro; Cut ``0<=((f (c+(Rmax (-(delta/2)) ((a-c)/2))))-(f c))/(Rmax (-(delta/2)) ((a-c)/2))``.
Intro; Cut ``0< -l``.
Intro; Unfold Rminus in H13; Cut ``0<((f (c+(Rmax (-(delta/2)) ((a+ -c)/2))))+ -(f c))/(Rmax (-(delta/2)) ((a+ -c)/2))+ -l``.
Intro; Cut ``(Rabsolu (((f (c+(Rmax (-(delta/2)) ((a+ -c)/2))))+ -(f c))/(Rmax (-(delta/2)) ((a+ -c)/2))+ -l)) < -(l/2)``.
Unfold Rabsolu; Case (case_Rabsolu ``((f (c+(Rmax (-(delta/2)) ((a+ -c)/2))))+ -(f c))/(Rmax (-(delta/2)) ((a+ -c)/2))+ -l``).
Intro; Elim (Rlt_antirefl ``0`` (Rlt_trans ``0`` ``((f (c+(Rmax ( -(delta/2)) ((a+ -c)/2))))+ -(f c))/(Rmax ( -(delta/2)) ((a+ -c)/2))+ -l`` ``0`` H19 r)).
Intros; Generalize (Rlt_compatibility_r ``l`` ``(((f (c+(Rmax (-(delta/2)) ((a+ -c)/2))))+ -(f c))/(Rmax (-(delta/2)) ((a+ -c)/2)))+ -l`` ``-(l/2)`` H20); Repeat Rewrite Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Or; Replace ``-(l/2)+l`` with ``l/2``.
Cut ``l/2<0``.
Intros; Generalize (Rlt_trans ``((f (c+(Rmax ( -(delta/2)) ((a+ -c)/2))))+ -(f c))/(Rmax ( -(delta/2)) ((a+ -c)/2))`` ``l/2`` ``0`` H22 H21); Intro; Elim (Rlt_antirefl ``0`` (Rle_lt_trans ``0`` ``((f (c+(Rmax ( -(delta/2)) ((a-c)/2))))-(f c))/(Rmax ( -(delta/2)) ((a-c)/2))`` ``0`` H17 H23)).
Rewrite <- (Ropp_Ropp ``l/2``); Rewrite <- Ropp_O; Apply Rlt_Ropp; Assumption.
Pattern 3 l; Rewrite double_var.
Ring.
Assumption.
Apply ge0_plus_gt0_is_gt0; Assumption.
Rewrite <- Ropp_O; Apply Rlt_Ropp; Assumption.
Unfold Rdiv; Replace ``((f (c+(Rmax ( -(delta*/2)) ((a-c)*/2))))-(f c))*/(Rmax ( -(delta*/2)) ((a-c)*/2))`` with ``(-((f (c+(Rmax ( -(delta*/2)) ((a-c)*/2))))-(f c)))*/(-(Rmax ( -(delta*/2)) ((a-c)*/2)))``.
Apply Rmult_le_pos.
Generalize (Rle_compatibility ``-(f (c+(Rmax (-(delta*/2)) ((a-c)*/2))))`` ``(f (c+(Rmax (-(delta*/2)) ((a-c)*/2))))`` (f c) H16); Rewrite Rplus_Ropp_l; Replace ``-((f (c+(Rmax ( -(delta*/2)) ((a-c)*/2))))-(f c))`` with ``-((f (c+(Rmax ( -(delta*/2)) ((a-c)*/2)))))+(f c)``.
Intro; Assumption.
Ring.
Left; Apply Rlt_Rinv; Rewrite <- Ropp_O; Apply Rlt_Ropp; Assumption.
Unfold Rdiv.
Rewrite <- Ropp_Rinv.
Rewrite Ropp_mul2.
Reflexivity.
Unfold Rdiv in H11; Assumption.
Generalize (Rlt_compatibility c ``(Rmax ( -(delta/2)) ((a-c)/2))`` ``0`` H10); Rewrite Rplus_Or; Intro; Apply Rlt_trans with ``c``; Assumption.
Generalize (RmaxLess2 ``(-(delta/2))`` ``((a-c)/2)``); Intro; Generalize (Rle_compatibility c ``(a-c)/2`` ``(Rmax ( -(delta/2)) ((a-c)/2))`` H14); Intro; Apply Rlt_le_trans with ``c+(a-c)/2``.
Apply Rlt_monotony_contra with ``2``.
Sup0.
Replace ``2*(c+(a-c)/2)`` with ``a+c``.
Rewrite double.
Apply Rlt_compatibility; Assumption.
Ring.
Rewrite <- Rplus_assoc.
Rewrite <- double_var.
Ring.
Assumption.
Unfold Rabsolu; Case (case_Rabsolu (Rmax ``-(delta/2)`` ``(a-c)/2``)).
Intro; Generalize (RmaxLess1 ``-(delta/2)`` ``(a-c)/2``); Intro; Generalize (Rle_Ropp ``-(delta/2)`` ``(Rmax ( -(delta/2)) ((a-c)/2))`` H12); Rewrite Ropp_Ropp; Intro; Generalize (Rle_sym2 ``-(Rmax ( -(delta/2)) ((a-c)/2))`` ``delta/2`` H13); Intro; Apply Rle_lt_trans with ``delta/2``.
Assumption.
Apply Rlt_monotony_contra with ``2``.
Sup0.
Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym.
Rewrite Rmult_1l; Rewrite double.
Pattern 2 delta; Rewrite <- (Rplus_Or delta); Apply Rlt_compatibility; Rewrite Rplus_Or; Apply (cond_pos delta).
DiscrR.
Cut ``-(delta/2) < 0``.
Cut ``(a-c)/2<0``.
Intros; Generalize (Rmax_stable_in_negreal (mknegreal ``-(delta/2)`` H13) (mknegreal ``(a-c)/2`` H12)); Simpl; Intro; Generalize (Rle_sym2 ``0`` ``(Rmax ( -(delta/2)) ((a-c)/2))`` r); Intro; Elim (Rlt_antirefl ``0`` (Rle_lt_trans ``0`` ``(Rmax ( -(delta/2)) ((a-c)/2))`` ``0`` H15 H14)).
Rewrite <- Ropp_O; Rewrite <- (Ropp_Ropp ``(a-c)/2``); Apply Rlt_Ropp; Replace ``-((a-c)/2)`` with ``(c-a)/2``.
Assumption.
Unfold Rdiv.
Rewrite <- Ropp_mul1.
Rewrite (Ropp_distr2 a c).
Reflexivity.
Rewrite <- Ropp_O; Apply Rlt_Ropp; Unfold Rdiv; Apply Rmult_lt_pos; [Apply (cond_pos delta) | Assert Hyp : ``0<2``; [Sup0 | Apply (Rlt_Rinv ``2`` Hyp)]].
Red; Intro; Rewrite H11 in H10; Elim (Rlt_antirefl ``0`` H10).
Cut ``(a-c)/2<0``.
Intro; Cut ``-(delta/2)<0``.
Intro; Apply (Rmax_stable_in_negreal (mknegreal ``-(delta/2)`` H11) (mknegreal ``(a-c)/2`` H10)).
Rewrite <- Ropp_O; Apply Rlt_Ropp; Unfold Rdiv; Apply Rmult_lt_pos; [Apply (cond_pos delta) | Assert Hyp : ``0<2``; [Sup0 | Apply (Rlt_Rinv ``2`` Hyp)]].
Rewrite <- Ropp_O; Rewrite <- (Ropp_Ropp ``(a-c)/2``); Apply Rlt_Ropp; Replace ``-((a-c)/2)`` with ``(c-a)/2``.
Assumption.
Unfold Rdiv.
Rewrite <- Ropp_mul1.
Rewrite (Ropp_distr2 a c).
Reflexivity.
Unfold Rdiv; Apply Rmult_lt_pos; [Generalize (Rlt_compatibility_r ``-a`` a c H); Rewrite Rplus_Ropp_r; Intro; Assumption | Assert Hyp : ``0<2``; [Sup0 | Apply (Rlt_Rinv ``2`` Hyp)]].
Replace ``-(l/2)`` with ``(-l)/2``.
Unfold Rdiv; Apply Rmult_lt_pos.
Rewrite <- Ropp_O; Apply Rlt_Ropp; Assumption.
Assert Hyp : ``0<2``; [Sup0 | Apply (Rlt_Rinv ``2`` Hyp)].
Unfold Rdiv; Apply Ropp_mul1.
Qed.
Theorem deriv_minimum : (f:R->R;a,b,c:R;pr:(derivable_pt f c)) ``a<c``->``c<b``->((x:R) ``a<x``->``x<b``->``(f c)<=(f x)``)->``(derive_pt f c pr)==0``.
Intros.
Rewrite <- (Ropp_Ropp (derive_pt f c pr)).
Apply eq_RoppO.
Rewrite <- (derive_pt_opp f c pr).
Cut (x:R)(``a<x``->``x<b``->``((opp_fct f) x)<=((opp_fct f) c)``).
Intro.
Apply (deriv_maximum (opp_fct f) a b c (derivable_pt_opp ? ? pr) H H0 H2).
Intros; Unfold opp_fct; Apply Rge_Ropp; Apply Rle_sym1.
Apply (H1 x H2 H3).
Qed.
Theorem deriv_constant2 : (f:R->R;a,b,c:R;pr:(derivable_pt f c)) ``a<c``->``c<b``->((x:R) ``a<x``->``x<b``->``(f x)==(f c)``)->``(derive_pt f c pr)==0``.
Intros.
EApply deriv_maximum with a b; Try Assumption.
Intros; Right; Apply (H1 x H2 H3).
Qed.
(**********)
Lemma nonneg_derivative_0 : (f:R->R;pr:(derivable f)) (increasing f) -> ((x:R) ``0<=(derive_pt f x (pr x))``).
Intros; Unfold increasing in H.
Assert H0 := (derivable_derive f x (pr x)).
Elim H0; Intros l H1.
Rewrite H1; Case (total_order R0 l); Intro.
Left; Assumption.
Elim H2; Intro.
Right; Assumption.
Assert H4 := (derive_pt_eq_1 f x l (pr x) H1).
Cut ``0< -(l/2)``.
Intro; Elim (H4 ``-(l/2)`` H5); Intros delta H6.
Cut ``delta/2<>0``/\``0<delta/2``/\``(Rabsolu delta/2)<delta``.
Intro; Decompose [and] H7; Intros; Generalize (H6 ``delta/2`` H8 H11); Cut ``0<=((f (x+delta/2))-(f x))/(delta/2)``.
Intro; Cut ``0<=((f (x+delta/2))-(f x))/(delta/2)-l``.
Intro; Unfold Rabsolu; Case (case_Rabsolu ``((f (x+delta/2))-(f x))/(delta/2)-l``).
Intro; Elim (Rlt_antirefl ``0`` (Rle_lt_trans ``0`` ``((f (x+delta/2))-(f x))/(delta/2)-l`` ``0`` H12 r)).
Intros; Generalize (Rlt_compatibility_r l ``((f (x+delta/2))-(f x))/(delta/2)-l`` ``-(l/2)`` H13); Unfold Rminus; Replace ``-(l/2)+l`` with ``l/2``.
Rewrite Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Or; Intro; Generalize (Rle_lt_trans ``0`` ``((f (x+delta/2))-(f x))/(delta/2)`` ``l/2`` H9 H14); Intro; Cut ``l/2<0``.
Intro; Elim (Rlt_antirefl ``0`` (Rlt_trans ``0`` ``l/2`` ``0`` H15 H16)).
Rewrite <- Ropp_O in H5; Generalize (Rlt_Ropp ``-0`` ``-(l/2)`` H5); Repeat Rewrite Ropp_Ropp; Intro; Assumption.
Pattern 3 l ; Rewrite double_var.
Ring.
Unfold Rminus; Apply ge0_plus_ge0_is_ge0.
Unfold Rdiv; Apply Rmult_le_pos.
Cut ``x<=(x+(delta*/2))``.
Intro; Generalize (H x ``x+(delta*/2)`` H12); Intro; Generalize (Rle_compatibility ``-(f x)`` ``(f x)`` ``(f (x+delta*/2))`` H13); Rewrite Rplus_Ropp_l; Rewrite Rplus_sym; Intro; Assumption.
Pattern 1 x; Rewrite <- (Rplus_Or x); Apply Rle_compatibility; Left; Assumption.
Left; Apply Rlt_Rinv; Assumption.
Left; Rewrite <- Ropp_O; Apply Rlt_Ropp; Assumption.
Unfold Rdiv; Apply Rmult_le_pos.
Cut ``x<=(x+(delta*/2))``.
Intro; Generalize (H x ``x+(delta*/2)`` H9); Intro; Generalize (Rle_compatibility ``-(f x)`` ``(f x)`` ``(f (x+delta*/2))`` H12); Rewrite Rplus_Ropp_l; Rewrite Rplus_sym; Intro; Assumption.
Pattern 1 x; Rewrite <- (Rplus_Or x); Apply Rle_compatibility; Left; Assumption.
Left; Apply Rlt_Rinv; Assumption.
Split.
Unfold Rdiv; Apply prod_neq_R0.
Generalize (cond_pos delta); Intro; Red; Intro H9; Rewrite H9 in H7; Elim (Rlt_antirefl ``0`` H7).
Apply Rinv_neq_R0; DiscrR.
Split.
Unfold Rdiv; Apply Rmult_lt_pos; [Apply (cond_pos delta) | Apply Rlt_Rinv; Sup0].
Replace ``(Rabsolu delta/2)`` with ``delta/2``.
Unfold Rdiv; Apply Rlt_monotony_contra with ``2``.
Sup0.
Rewrite (Rmult_sym ``2``).
Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym; [Idtac | DiscrR].
Rewrite Rmult_1r.
Rewrite double.
Pattern 1 (pos delta); Rewrite <- Rplus_Or.
Apply Rlt_compatibility; Apply (cond_pos delta).
Symmetry; Apply Rabsolu_right.
Left; Change ``0<delta/2``; Unfold Rdiv; Apply Rmult_lt_pos; [Apply (cond_pos delta) | Apply Rlt_Rinv; Sup0].
Unfold Rdiv; Rewrite <- Ropp_mul1; Apply Rmult_lt_pos.
Apply Rlt_anti_compatibility with l.
Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rplus_Or; Assumption.
Apply Rlt_Rinv; Sup0.
Qed.
|