1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: Ranalysis3.v,v 1.1.2.1 2004/07/16 19:31:33 herbelin Exp $ i*)
Require Rbase.
Require Rfunctions.
Require Ranalysis1.
Require Ranalysis2.
V7only [Import R_scope.]. Open Local Scope R_scope.
(* Division *)
Theorem derivable_pt_lim_div : (f1,f2:R->R;x,l1,l2:R) (derivable_pt_lim f1 x l1) -> (derivable_pt_lim f2 x l2) -> ~``(f2 x)==0``-> (derivable_pt_lim (div_fct f1 f2) x ``(l1*(f2 x)-l2*(f1 x))/(Rsqr (f2 x))``).
Intros.
Cut (derivable_pt f2 x); [Intro | Unfold derivable_pt; Apply Specif.existT with l2; Exact H0].
Assert H2 := ((continuous_neq_0 ? ? (derivable_continuous_pt ? ? X)) H1).
Elim H2; Clear H2; Intros eps_f2 H2.
Unfold div_fct.
Assert H3 := (derivable_continuous_pt ? ? X).
Unfold continuity_pt in H3; Unfold continue_in in H3; Unfold limit1_in in H3; Unfold limit_in in H3; Unfold dist in H3.
Simpl in H3; Unfold R_dist in H3.
Elim (H3 ``(Rabsolu (f2 x))/2``); [Idtac | Unfold Rdiv; Change ``0 < (Rabsolu (f2 x))*/2``; Apply Rmult_lt_pos; [Apply Rabsolu_pos_lt; Assumption | Apply Rlt_Rinv; Sup0]].
Clear H3; Intros alp_f2 H3.
Cut (x0:R) ``(Rabsolu (x0-x)) < alp_f2`` ->``(Rabsolu ((f2 x0)-(f2 x))) < (Rabsolu (f2 x))/2``.
Intro H4.
Cut (a:R) ``(Rabsolu (a-x)) < alp_f2``->``(Rabsolu (f2 x))/2 < (Rabsolu (f2 a))``.
Intro H5.
Cut (a:R) ``(Rabsolu (a)) < (Rmin eps_f2 alp_f2)`` -> ``/(Rabsolu (f2 (x+a))) < 2/(Rabsolu (f2 x))``.
Intro Maj.
Unfold derivable_pt_lim; Intros.
Elim (H ``(Rabsolu ((eps*(f2 x))/8))``); [Idtac | Unfold Rdiv; Change ``0 < (Rabsolu (eps*(f2 x)*/8))``; Apply Rabsolu_pos_lt; Repeat Apply prod_neq_R0; [Red; Intro H7; Rewrite H7 in H6; Elim (Rlt_antirefl ? H6) | Assumption | Apply Rinv_neq_R0; DiscrR]].
Intros alp_f1d H7.
Case (Req_EM (f1 x) R0); Intro.
Case (Req_EM l1 R0); Intro.
(***********************************)
(* Cas n 1 *)
(* (f1 x)=0 l1 =0 *)
(***********************************)
Cut ``0 < (Rmin eps_f2 (Rmin alp_f2 alp_f1d))``; [Intro | Repeat Apply Rmin_pos; [Apply (cond_pos eps_f2) | Elim H3; Intros; Assumption | Apply (cond_pos alp_f1d)]].
Exists (mkposreal (Rmin eps_f2 (Rmin alp_f2 alp_f1d)) H10).
Simpl; Intros.
Assert H13 := (Rlt_le_trans ? ? ? H12 (Rmin_r ? ?)).
Assert H14 := (Rlt_le_trans ? ? ? H12 (Rmin_l ? ?)).
Assert H15 := (Rlt_le_trans ? ? ? H13 (Rmin_r ? ?)).
Assert H16 := (Rlt_le_trans ? ? ? H13 (Rmin_l ? ?)).
Assert H17 := (H7 ? H11 H15).
Rewrite formule; [Idtac | Assumption | Assumption | Apply H2; Apply H14].
Apply Rle_lt_trans with ``(Rabsolu (/(f2 (x+h))*(((f1 (x+h))-(f1 x))/h-l1))) + (Rabsolu (l1/((f2 x)*(f2 (x+h)))*((f2 x)-(f2 (x+h))))) + (Rabsolu ((f1 x)/((f2 x)*(f2 (x+h)))*(((f2 (x+h))-(f2 x))/h-l2))) + (Rabsolu ((l2*(f1 x))/((Rsqr (f2 x))*(f2 (x+h)))*((f2 (x+h))-(f2 x))))``.
Unfold Rminus.
Rewrite <- (Rabsolu_Ropp ``(f1 x)/((f2 x)*(f2 (x+h)))*(((f2 (x+h))+ -(f2 x))/h+ -l2)``).
Apply Rabsolu_4.
Repeat Rewrite Rabsolu_mult.
Apply Rlt_le_trans with ``eps/4+eps/4+eps/4+eps/4``.
Cut ``(Rabsolu (/(f2 (x+h))))*(Rabsolu (((f1 (x+h))-(f1 x))/h-l1)) < eps/4``.
Cut ``(Rabsolu (l1/((f2 x)*(f2 (x+h)))))*(Rabsolu ((f2 x)-(f2 (x+h)))) < eps/4``.
Cut ``(Rabsolu ((f1 x)/((f2 x)*(f2 (x+h)))))*(Rabsolu (((f2 (x+h))-(f2 x))/h-l2)) < eps/4``.
Cut ``(Rabsolu ((l2*(f1 x))/((Rsqr (f2 x))*(f2 (x+h)))))*(Rabsolu ((f2 (x+h))-(f2 x))) < eps/4``.
Intros.
Apply Rlt_4; Assumption.
Rewrite H8.
Unfold Rdiv; Repeat Rewrite Rmult_Or Orelse Rewrite Rmult_Ol.
Rewrite Rabsolu_R0; Rewrite Rmult_Ol.
Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup].
Rewrite H8.
Unfold Rdiv; Repeat Rewrite Rmult_Or Orelse Rewrite Rmult_Ol.
Rewrite Rabsolu_R0; Rewrite Rmult_Ol.
Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup].
Rewrite H9.
Unfold Rdiv; Repeat Rewrite Rmult_Or Orelse Rewrite Rmult_Ol.
Rewrite Rabsolu_R0; Rewrite Rmult_Ol.
Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup].
Rewrite <- Rabsolu_mult.
Apply (maj_term1 x h eps l1 alp_f2 eps_f2 alp_f1d f1 f2); Try Assumption Orelse Apply H2.
Apply H14.
Apply Rmin_2; Assumption.
Right; Symmetry; Apply quadruple_var.
(***********************************)
(* Cas n 2 *)
(* (f1 x)=0 l1<>0 *)
(***********************************)
Assert H10 := (derivable_continuous_pt ? ? X).
Unfold continuity_pt in H10.
Unfold continue_in in H10.
Unfold limit1_in in H10.
Unfold limit_in in H10.
Unfold dist in H10.
Simpl in H10.
Unfold R_dist in H10.
Elim (H10 ``(Rabsolu (eps*(Rsqr (f2 x)))/(8*l1))``).
Clear H10; Intros alp_f2t2 H10.
Cut (a:R) ``(Rabsolu a) < alp_f2t2`` -> ``(Rabsolu ((f2 (x+a)) - (f2 x))) < (Rabsolu ((eps*(Rsqr (f2 x)))/(8*l1)))``.
Intro H11.
Cut ``0 < (Rmin (Rmin eps_f2 alp_f1d) (Rmin alp_f2 alp_f2t2))``.
Intro.
Exists (mkposreal (Rmin (Rmin eps_f2 alp_f1d) (Rmin alp_f2 alp_f2t2)) H12).
Simpl.
Intros.
Assert H15 := (Rlt_le_trans ? ? ? H14 (Rmin_r ? ?)).
Assert H16 := (Rlt_le_trans ? ? ? H14 (Rmin_l ? ?)).
Assert H17 := (Rlt_le_trans ? ? ? H15 (Rmin_l ? ?)).
Assert H18 := (Rlt_le_trans ? ? ? H15 (Rmin_r ? ?)).
Assert H19 := (Rlt_le_trans ? ? ? H16 (Rmin_l ? ?)).
Assert H20 := (Rlt_le_trans ? ? ? H16 (Rmin_r ? ?)).
Clear H14 H15 H16.
Rewrite formule; Try Assumption.
Apply Rle_lt_trans with ``(Rabsolu (/(f2 (x+h))*(((f1 (x+h))-(f1 x))/h-l1))) + (Rabsolu (l1/((f2 x)*(f2 (x+h)))*((f2 x)-(f2 (x+h))))) + (Rabsolu ((f1 x)/((f2 x)*(f2 (x+h)))*(((f2 (x+h))-(f2 x))/h-l2))) + (Rabsolu ((l2*(f1 x))/((Rsqr (f2 x))*(f2 (x+h)))*((f2 (x+h))-(f2 x))))``.
Unfold Rminus.
Rewrite <- (Rabsolu_Ropp ``(f1 x)/((f2 x)*(f2 (x+h)))*(((f2 (x+h))+ -(f2 x))/h+ -l2)``).
Apply Rabsolu_4.
Repeat Rewrite Rabsolu_mult.
Apply Rlt_le_trans with ``eps/4+eps/4+eps/4+eps/4``.
Cut ``(Rabsolu (/(f2 (x+h))))*(Rabsolu (((f1 (x+h))-(f1 x))/h-l1)) < eps/4``.
Cut ``(Rabsolu (l1/((f2 x)*(f2 (x+h)))))*(Rabsolu ((f2 x)-(f2 (x+h)))) < eps/4``.
Cut ``(Rabsolu ((f1 x)/((f2 x)*(f2 (x+h)))))*(Rabsolu (((f2 (x+h))-(f2 x))/h-l2)) < eps/4``.
Cut ``(Rabsolu ((l2*(f1 x))/((Rsqr (f2 x))*(f2 (x+h)))))*(Rabsolu ((f2 (x+h))-(f2 x))) < eps/4``.
Intros.
Apply Rlt_4; Assumption.
Rewrite H8.
Unfold Rdiv; Repeat Rewrite Rmult_Or Orelse Rewrite Rmult_Ol.
Rewrite Rabsolu_R0; Rewrite Rmult_Ol.
Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup].
Rewrite H8.
Unfold Rdiv; Repeat Rewrite Rmult_Or Orelse Rewrite Rmult_Ol.
Rewrite Rabsolu_R0; Rewrite Rmult_Ol.
Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup].
Rewrite <- Rabsolu_mult.
Apply (maj_term2 x h eps l1 alp_f2 alp_f2t2 eps_f2 f2); Try Assumption.
Apply H2; Assumption.
Apply Rmin_2; Assumption.
Rewrite <- Rabsolu_mult.
Apply (maj_term1 x h eps l1 alp_f2 eps_f2 alp_f1d f1 f2); Try Assumption.
Apply H2; Assumption.
Apply Rmin_2; Assumption.
Right; Symmetry; Apply quadruple_var.
Apply H2; Assumption.
Repeat Apply Rmin_pos.
Apply (cond_pos eps_f2).
Apply (cond_pos alp_f1d).
Elim H3; Intros; Assumption.
Elim H10; Intros; Assumption.
Intros.
Elim H10; Intros.
Case (Req_EM a R0); Intro.
Rewrite H14; Rewrite Rplus_Or.
Unfold Rminus; Rewrite Rplus_Ropp_r.
Rewrite Rabsolu_R0.
Apply Rabsolu_pos_lt.
Unfold Rdiv Rsqr; Repeat Rewrite Rmult_assoc.
Repeat Apply prod_neq_R0; Try Assumption.
Red; Intro; Rewrite H15 in H6; Elim (Rlt_antirefl ? H6).
Apply Rinv_neq_R0; Repeat Apply prod_neq_R0; DiscrR Orelse Assumption.
Apply H13.
Split.
Apply D_x_no_cond; Assumption.
Replace ``x+a-x`` with a; [Assumption | Ring].
Change ``0<(Rabsolu ((eps*(Rsqr (f2 x)))/(8*l1)))``.
Apply Rabsolu_pos_lt; Unfold Rdiv Rsqr; Repeat Rewrite Rmult_assoc; Repeat Apply prod_neq_R0.
Red; Intro; Rewrite H11 in H6; Elim (Rlt_antirefl ? H6).
Assumption.
Assumption.
Apply Rinv_neq_R0; Repeat Apply prod_neq_R0; [DiscrR | DiscrR | DiscrR | Assumption].
(***********************************)
(* Cas n 3 *)
(* (f1 x)<>0 l1=0 l2=0 *)
(***********************************)
Case (Req_EM l1 R0); Intro.
Case (Req_EM l2 R0); Intro.
Elim (H0 ``(Rabsolu ((Rsqr (f2 x))*eps)/(8*(f1 x)))``); [Idtac | Apply Rabsolu_pos_lt; Unfold Rdiv Rsqr; Repeat Rewrite Rmult_assoc; Repeat Apply prod_neq_R0; [Assumption | Assumption | Red; Intro; Rewrite H11 in H6; Elim (Rlt_antirefl ? H6) | Apply Rinv_neq_R0; Repeat Apply prod_neq_R0; DiscrR Orelse Assumption]].
Intros alp_f2d H12.
Cut ``0 < (Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d alp_f2d))``.
Intro.
Exists (mkposreal (Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d alp_f2d)) H11).
Simpl.
Intros.
Assert H15 := (Rlt_le_trans ? ? ? H14 (Rmin_l ? ?)).
Assert H16 := (Rlt_le_trans ? ? ? H14 (Rmin_r ? ?)).
Assert H17 := (Rlt_le_trans ? ? ? H15 (Rmin_l ? ?)).
Assert H18 := (Rlt_le_trans ? ? ? H15 (Rmin_r ? ?)).
Assert H19 := (Rlt_le_trans ? ? ? H16 (Rmin_l ? ?)).
Assert H20 := (Rlt_le_trans ? ? ? H16 (Rmin_r ? ?)).
Clear H15 H16.
Rewrite formule; Try Assumption.
Apply Rle_lt_trans with ``(Rabsolu (/(f2 (x+h))*(((f1 (x+h))-(f1 x))/h-l1))) + (Rabsolu (l1/((f2 x)*(f2 (x+h)))*((f2 x)-(f2 (x+h))))) + (Rabsolu ((f1 x)/((f2 x)*(f2 (x+h)))*(((f2 (x+h))-(f2 x))/h-l2))) + (Rabsolu ((l2*(f1 x))/((Rsqr (f2 x))*(f2 (x+h)))*((f2 (x+h))-(f2 x))))``.
Unfold Rminus.
Rewrite <- (Rabsolu_Ropp ``(f1 x)/((f2 x)*(f2 (x+h)))*(((f2 (x+h))+ -(f2 x))/h+ -l2)``).
Apply Rabsolu_4.
Repeat Rewrite Rabsolu_mult.
Apply Rlt_le_trans with ``eps/4+eps/4+eps/4+eps/4``.
Cut ``(Rabsolu (/(f2 (x+h))))*(Rabsolu (((f1 (x+h))-(f1 x))/h-l1)) < eps/4``.
Cut ``(Rabsolu (l1/((f2 x)*(f2 (x+h)))))*(Rabsolu ((f2 x)-(f2 (x+h)))) < eps/4``.
Cut ``(Rabsolu ((f1 x)/((f2 x)*(f2 (x+h)))))*(Rabsolu (((f2 (x+h))-(f2 x))/h-l2)) < eps/4``.
Cut ``(Rabsolu ((l2*(f1 x))/((Rsqr (f2 x))*(f2 (x+h)))))*(Rabsolu ((f2 (x+h))-(f2 x))) < eps/4``.
Intros.
Apply Rlt_4; Assumption.
Rewrite H10.
Unfold Rdiv; Repeat Rewrite Rmult_Or Orelse Rewrite Rmult_Ol.
Rewrite Rabsolu_R0; Rewrite Rmult_Ol.
Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup].
Rewrite <- Rabsolu_mult.
Apply (maj_term3 x h eps l2 alp_f2 eps_f2 alp_f2d f1 f2); Try Assumption.
Apply H2; Assumption.
Apply Rmin_2; Assumption.
Rewrite H9.
Unfold Rdiv; Repeat Rewrite Rmult_Or Orelse Rewrite Rmult_Ol.
Rewrite Rabsolu_R0; Rewrite Rmult_Ol.
Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup].
Rewrite <- Rabsolu_mult.
Apply (maj_term1 x h eps l1 alp_f2 eps_f2 alp_f1d f1 f2); Assumption Orelse Idtac.
Apply H2; Assumption.
Apply Rmin_2; Assumption.
Right; Symmetry; Apply quadruple_var.
Apply H2; Assumption.
Repeat Apply Rmin_pos.
Apply (cond_pos eps_f2).
Elim H3; Intros; Assumption.
Apply (cond_pos alp_f1d).
Apply (cond_pos alp_f2d).
(***********************************)
(* Cas n 4 *)
(* (f1 x)<>0 l1=0 l2<>0 *)
(***********************************)
Elim (H0 ``(Rabsolu ((Rsqr (f2 x))*eps)/(8*(f1 x)))``); [Idtac | Apply Rabsolu_pos_lt; Unfold Rsqr Rdiv; Repeat Rewrite Rinv_Rmult; Repeat Apply prod_neq_R0; Try Assumption Orelse DiscrR].
Intros alp_f2d H11.
Assert H12 := (derivable_continuous_pt ? ? X).
Unfold continuity_pt in H12.
Unfold continue_in in H12.
Unfold limit1_in in H12.
Unfold limit_in in H12.
Unfold dist in H12.
Simpl in H12.
Unfold R_dist in H12.
Elim (H12 ``(Rabsolu (((Rsqr (f2 x))*(f2 x)*eps)/(8*(f1 x)*l2)))``).
Intros alp_f2c H13.
Cut ``0 < (Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d (Rmin alp_f2d alp_f2c)))``.
Intro.
Exists (mkposreal (Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d (Rmin alp_f2d alp_f2c))) H14).
Simpl; Intros.
Assert H17 := (Rlt_le_trans ? ? ? H16 (Rmin_l ? ?)).
Assert H18 := (Rlt_le_trans ? ? ? H16 (Rmin_r ? ?)).
Assert H19 := (Rlt_le_trans ? ? ? H18 (Rmin_r ? ?)).
Assert H20 := (Rlt_le_trans ? ? ? H19 (Rmin_l ? ?)).
Assert H21 := (Rlt_le_trans ? ? ? H19 (Rmin_r ? ?)).
Assert H22 := (Rlt_le_trans ? ? ? H18 (Rmin_l ? ?)).
Assert H23 := (Rlt_le_trans ? ? ? H17 (Rmin_l ? ?)).
Assert H24 := (Rlt_le_trans ? ? ? H17 (Rmin_r ? ?)).
Clear H16 H17 H18 H19.
Cut (a:R) ``(Rabsolu a) < alp_f2c`` -> ``(Rabsolu ((f2 (x+a))-(f2 x))) < (Rabsolu (((Rsqr (f2 x))*(f2 x)*eps)/(8*(f1 x)*l2)))``.
Intro.
Rewrite formule; Try Assumption.
Apply Rle_lt_trans with ``(Rabsolu (/(f2 (x+h))*(((f1 (x+h))-(f1 x))/h-l1))) + (Rabsolu (l1/((f2 x)*(f2 (x+h)))*((f2 x)-(f2 (x+h))))) + (Rabsolu ((f1 x)/((f2 x)*(f2 (x+h)))*(((f2 (x+h))-(f2 x))/h-l2))) + (Rabsolu ((l2*(f1 x))/((Rsqr (f2 x))*(f2 (x+h)))*((f2 (x+h))-(f2 x))))``.
Unfold Rminus.
Rewrite <- (Rabsolu_Ropp ``(f1 x)/((f2 x)*(f2 (x+h)))*(((f2 (x+h))+ -(f2 x))/h+ -l2)``).
Apply Rabsolu_4.
Repeat Rewrite Rabsolu_mult.
Apply Rlt_le_trans with ``eps/4+eps/4+eps/4+eps/4``.
Cut ``(Rabsolu (/(f2 (x+h))))*(Rabsolu (((f1 (x+h))-(f1 x))/h-l1)) < eps/4``.
Cut ``(Rabsolu (l1/((f2 x)*(f2 (x+h)))))*(Rabsolu ((f2 x)-(f2 (x+h)))) < eps/4``.
Cut ``(Rabsolu ((f1 x)/((f2 x)*(f2 (x+h)))))*(Rabsolu (((f2 (x+h))-(f2 x))/h-l2)) < eps/4``.
Cut ``(Rabsolu ((l2*(f1 x))/((Rsqr (f2 x))*(f2 (x+h)))))*(Rabsolu ((f2 (x+h))-(f2 x))) < eps/4``.
Intros.
Apply Rlt_4; Assumption.
Rewrite <- Rabsolu_mult.
Apply (maj_term4 x h eps l2 alp_f2 alp_f2c eps_f2 f1 f2); Try Assumption.
Apply H2; Assumption.
Apply Rmin_2; Assumption.
Rewrite <- Rabsolu_mult.
Apply (maj_term3 x h eps l2 alp_f2 eps_f2 alp_f2d f1 f2); Try Assumption.
Apply H2; Assumption.
Apply Rmin_2; Assumption.
Rewrite H9.
Unfold Rdiv; Repeat Rewrite Rmult_Or Orelse Rewrite Rmult_Ol.
Rewrite Rabsolu_R0; Rewrite Rmult_Ol.
Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup].
Rewrite <- Rabsolu_mult.
Apply (maj_term1 x h eps l1 alp_f2 eps_f2 alp_f1d f1 f2); Try Assumption.
Apply H2; Assumption.
Apply Rmin_2; Assumption.
Right; Symmetry; Apply quadruple_var.
Apply H2; Assumption.
Intros.
Case (Req_EM a R0); Intro.
Rewrite H17; Rewrite Rplus_Or.
Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0.
Apply Rabsolu_pos_lt.
Unfold Rdiv Rsqr.
Repeat Rewrite Rinv_Rmult; Try Assumption.
Repeat Apply prod_neq_R0; Try Assumption.
Red; Intro H18; Rewrite H18 in H6; Elim (Rlt_antirefl ? H6).
Apply Rinv_neq_R0; DiscrR.
Apply Rinv_neq_R0; DiscrR.
Apply Rinv_neq_R0; DiscrR.
Apply Rinv_neq_R0; Assumption.
Apply Rinv_neq_R0; Assumption.
DiscrR.
DiscrR.
DiscrR.
DiscrR.
DiscrR.
Apply prod_neq_R0; [DiscrR | Assumption].
Elim H13; Intros.
Apply H19.
Split.
Apply D_x_no_cond; Assumption.
Replace ``x+a-x`` with a; [Assumption | Ring].
Repeat Apply Rmin_pos.
Apply (cond_pos eps_f2).
Elim H3; Intros; Assumption.
Apply (cond_pos alp_f1d).
Apply (cond_pos alp_f2d).
Elim H13; Intros; Assumption.
Change ``0 < (Rabsolu (((Rsqr (f2 x))*(f2 x)*eps)/(8*(f1 x)*l2)))``.
Apply Rabsolu_pos_lt.
Unfold Rsqr Rdiv.
Repeat Rewrite Rinv_Rmult; Try Assumption Orelse DiscrR.
Repeat Apply prod_neq_R0; Try Assumption.
Red; Intro H13; Rewrite H13 in H6; Elim (Rlt_antirefl ? H6).
Apply Rinv_neq_R0; DiscrR.
Apply Rinv_neq_R0; DiscrR.
Apply Rinv_neq_R0; DiscrR.
Apply Rinv_neq_R0; Assumption.
Apply Rinv_neq_R0; Assumption.
Apply prod_neq_R0; [DiscrR | Assumption].
Red; Intro H11; Rewrite H11 in H6; Elim (Rlt_antirefl ? H6).
Apply Rinv_neq_R0; DiscrR.
Apply Rinv_neq_R0; DiscrR.
Apply Rinv_neq_R0; DiscrR.
Apply Rinv_neq_R0; Assumption.
(***********************************)
(* Cas n 5 *)
(* (f1 x)<>0 l1<>0 l2=0 *)
(***********************************)
Case (Req_EM l2 R0); Intro.
Assert H11 := (derivable_continuous_pt ? ? X).
Unfold continuity_pt in H11.
Unfold continue_in in H11.
Unfold limit1_in in H11.
Unfold limit_in in H11.
Unfold dist in H11.
Simpl in H11.
Unfold R_dist in H11.
Elim (H11 ``(Rabsolu (eps*(Rsqr (f2 x)))/(8*l1))``).
Clear H11; Intros alp_f2t2 H11.
Elim (H0 ``(Rabsolu ((Rsqr (f2 x))*eps)/(8*(f1 x)))``).
Intros alp_f2d H12.
Cut ``0 < (Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d (Rmin alp_f2d alp_f2t2)))``.
Intro.
Exists (mkposreal (Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d (Rmin alp_f2d alp_f2t2))) H13).
Simpl.
Intros.
Cut (a:R) ``(Rabsolu a)<alp_f2t2`` -> ``(Rabsolu ((f2 (x+a))-(f2 x)))<(Rabsolu ((eps*(Rsqr (f2 x)))/(8*l1)))``.
Intro.
Assert H17 := (Rlt_le_trans ? ? ? H15 (Rmin_l ? ?)).
Assert H18 := (Rlt_le_trans ? ? ? H15 (Rmin_r ? ?)).
Assert H19 := (Rlt_le_trans ? ? ? H17 (Rmin_r ? ?)).
Assert H20 := (Rlt_le_trans ? ? ? H17 (Rmin_l ? ?)).
Assert H21 := (Rlt_le_trans ? ? ? H18 (Rmin_r ? ?)).
Assert H22 := (Rlt_le_trans ? ? ? H18 (Rmin_l ? ?)).
Assert H23 := (Rlt_le_trans ? ? ? H21 (Rmin_l ? ?)).
Assert H24 := (Rlt_le_trans ? ? ? H21 (Rmin_r ? ?)).
Clear H15 H17 H18 H21.
Rewrite formule; Try Assumption.
Apply Rle_lt_trans with ``(Rabsolu (/(f2 (x+h))*(((f1 (x+h))-(f1 x))/h-l1))) + (Rabsolu (l1/((f2 x)*(f2 (x+h)))*((f2 x)-(f2 (x+h))))) + (Rabsolu ((f1 x)/((f2 x)*(f2 (x+h)))*(((f2 (x+h))-(f2 x))/h-l2))) + (Rabsolu ((l2*(f1 x))/((Rsqr (f2 x))*(f2 (x+h)))*((f2 (x+h))-(f2 x))))``.
Unfold Rminus.
Rewrite <- (Rabsolu_Ropp ``(f1 x)/((f2 x)*(f2 (x+h)))*(((f2 (x+h))+ -(f2 x))/h+ -l2)``).
Apply Rabsolu_4.
Repeat Rewrite Rabsolu_mult.
Apply Rlt_le_trans with ``eps/4+eps/4+eps/4+eps/4``.
Cut ``(Rabsolu (/(f2 (x+h))))*(Rabsolu (((f1 (x+h))-(f1 x))/h-l1)) < eps/4``.
Cut ``(Rabsolu (l1/((f2 x)*(f2 (x+h)))))*(Rabsolu ((f2 x)-(f2 (x+h)))) < eps/4``.
Cut ``(Rabsolu ((f1 x)/((f2 x)*(f2 (x+h)))))*(Rabsolu (((f2 (x+h))-(f2 x))/h-l2)) < eps/4``.
Cut ``(Rabsolu ((l2*(f1 x))/((Rsqr (f2 x))*(f2 (x+h)))))*(Rabsolu ((f2 (x+h))-(f2 x))) < eps/4``.
Intros.
Apply Rlt_4; Assumption.
Rewrite H10.
Unfold Rdiv; Repeat Rewrite Rmult_Or Orelse Rewrite Rmult_Ol.
Rewrite Rabsolu_R0; Rewrite Rmult_Ol.
Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup].
Rewrite <- Rabsolu_mult.
Apply (maj_term3 x h eps l2 alp_f2 eps_f2 alp_f2d f1 f2); Try Assumption.
Apply H2; Assumption.
Apply Rmin_2; Assumption.
Rewrite <- Rabsolu_mult.
Apply (maj_term2 x h eps l1 alp_f2 alp_f2t2 eps_f2 f2); Try Assumption.
Apply H2; Assumption.
Apply Rmin_2; Assumption.
Rewrite <- Rabsolu_mult.
Apply (maj_term1 x h eps l1 alp_f2 eps_f2 alp_f1d f1 f2); Try Assumption.
Apply H2; Assumption.
Apply Rmin_2; Assumption.
Right; Symmetry; Apply quadruple_var.
Apply H2; Assumption.
Intros.
Case (Req_EM a R0); Intro.
Rewrite H17; Rewrite Rplus_Or; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0.
Apply Rabsolu_pos_lt.
Unfold Rdiv; Rewrite Rinv_Rmult; Try DiscrR Orelse Assumption.
Unfold Rsqr.
Repeat Apply prod_neq_R0; Assumption Orelse (Apply Rinv_neq_R0; Assumption) Orelse (Apply Rinv_neq_R0; DiscrR) Orelse (Red; Intro H18; Rewrite H18 in H6; Elim (Rlt_antirefl ? H6)).
Elim H11; Intros.
Apply H19.
Split.
Apply D_x_no_cond; Assumption.
Replace ``x+a-x`` with a; [Assumption | Ring].
Repeat Apply Rmin_pos.
Apply (cond_pos eps_f2).
Elim H3; Intros; Assumption.
Apply (cond_pos alp_f1d).
Apply (cond_pos alp_f2d).
Elim H11; Intros; Assumption.
Apply Rabsolu_pos_lt.
Unfold Rdiv Rsqr; Rewrite Rinv_Rmult; Try DiscrR Orelse Assumption.
Repeat Apply prod_neq_R0; Assumption Orelse (Apply Rinv_neq_R0; Assumption) Orelse (Apply Rinv_neq_R0; DiscrR) Orelse (Red; Intro H12; Rewrite H12 in H6; Elim (Rlt_antirefl ? H6)).
Change ``0 < (Rabsolu ((eps*(Rsqr (f2 x)))/(8*l1)))``.
Apply Rabsolu_pos_lt.
Unfold Rdiv Rsqr; Rewrite Rinv_Rmult; Try DiscrR Orelse Assumption.
Repeat Apply prod_neq_R0; Assumption Orelse (Apply Rinv_neq_R0; Assumption) Orelse (Apply Rinv_neq_R0; DiscrR) Orelse (Red; Intro H12; Rewrite H12 in H6; Elim (Rlt_antirefl ? H6)).
(***********************************)
(* Cas n 6 *)
(* (f1 x)<>0 l1<>0 l2<>0 *)
(***********************************)
Elim (H0 ``(Rabsolu ((Rsqr (f2 x))*eps)/(8*(f1 x)))``).
Intros alp_f2d H11.
Assert H12 := (derivable_continuous_pt ? ? X).
Unfold continuity_pt in H12.
Unfold continue_in in H12.
Unfold limit1_in in H12.
Unfold limit_in in H12.
Unfold dist in H12.
Simpl in H12.
Unfold R_dist in H12.
Elim (H12 ``(Rabsolu (((Rsqr (f2 x))*(f2 x)*eps)/(8*(f1 x)*l2)))``).
Intros alp_f2c H13.
Elim (H12 ``(Rabsolu (eps*(Rsqr (f2 x)))/(8*l1))``).
Intros alp_f2t2 H14.
Cut ``0 < (Rmin (Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d alp_f2d)) (Rmin alp_f2c alp_f2t2))``.
Intro.
Exists (mkposreal (Rmin (Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d alp_f2d)) (Rmin alp_f2c alp_f2t2)) H15).
Simpl.
Intros.
Assert H18 := (Rlt_le_trans ? ? ? H17 (Rmin_l ? ?)).
Assert H19 := (Rlt_le_trans ? ? ? H17 (Rmin_r ? ?)).
Assert H20 := (Rlt_le_trans ? ? ? H18 (Rmin_l ? ?)).
Assert H21 := (Rlt_le_trans ? ? ? H18 (Rmin_r ? ?)).
Assert H22 := (Rlt_le_trans ? ? ? H19 (Rmin_l ? ?)).
Assert H23 := (Rlt_le_trans ? ? ? H19 (Rmin_r ? ?)).
Assert H24 := (Rlt_le_trans ? ? ? H20 (Rmin_l ? ?)).
Assert H25 := (Rlt_le_trans ? ? ? H20 (Rmin_r ? ?)).
Assert H26 := (Rlt_le_trans ? ? ? H21 (Rmin_l ? ?)).
Assert H27 := (Rlt_le_trans ? ? ? H21 (Rmin_r ? ?)).
Clear H17 H18 H19 H20 H21.
Cut (a:R) ``(Rabsolu a) < alp_f2t2`` -> ``(Rabsolu ((f2 (x+a))-(f2 x))) < (Rabsolu ((eps*(Rsqr (f2 x)))/(8*l1)))``.
Cut (a:R) ``(Rabsolu a) < alp_f2c`` -> ``(Rabsolu ((f2 (x+a))-(f2 x))) < (Rabsolu (((Rsqr (f2 x))*(f2 x)*eps)/(8*(f1 x)*l2)))``.
Intros.
Rewrite formule; Try Assumption.
Apply Rle_lt_trans with ``(Rabsolu (/(f2 (x+h))*(((f1 (x+h))-(f1 x))/h-l1))) + (Rabsolu (l1/((f2 x)*(f2 (x+h)))*((f2 x)-(f2 (x+h))))) + (Rabsolu ((f1 x)/((f2 x)*(f2 (x+h)))*(((f2 (x+h))-(f2 x))/h-l2))) + (Rabsolu ((l2*(f1 x))/((Rsqr (f2 x))*(f2 (x+h)))*((f2 (x+h))-(f2 x))))``.
Unfold Rminus.
Rewrite <- (Rabsolu_Ropp ``(f1 x)/((f2 x)*(f2 (x+h)))*(((f2 (x+h))+ -(f2 x))/h+ -l2)``).
Apply Rabsolu_4.
Repeat Rewrite Rabsolu_mult.
Apply Rlt_le_trans with ``eps/4+eps/4+eps/4+eps/4``.
Cut ``(Rabsolu (/(f2 (x+h))))*(Rabsolu (((f1 (x+h))-(f1 x))/h-l1)) < eps/4``.
Cut ``(Rabsolu (l1/((f2 x)*(f2 (x+h)))))*(Rabsolu ((f2 x)-(f2 (x+h)))) < eps/4``.
Cut ``(Rabsolu ((f1 x)/((f2 x)*(f2 (x+h)))))*(Rabsolu (((f2 (x+h))-(f2 x))/h-l2)) < eps/4``.
Cut ``(Rabsolu ((l2*(f1 x))/((Rsqr (f2 x))*(f2 (x+h)))))*(Rabsolu ((f2 (x+h))-(f2 x))) < eps/4``.
Intros.
Apply Rlt_4; Assumption.
Rewrite <- Rabsolu_mult.
Apply (maj_term4 x h eps l2 alp_f2 alp_f2c eps_f2 f1 f2); Try Assumption.
Apply H2; Assumption.
Apply Rmin_2; Assumption.
Rewrite <- Rabsolu_mult.
Apply (maj_term3 x h eps l2 alp_f2 eps_f2 alp_f2d f1 f2); Try Assumption.
Apply H2; Assumption.
Apply Rmin_2; Assumption.
Rewrite <- Rabsolu_mult.
Apply (maj_term2 x h eps l1 alp_f2 alp_f2t2 eps_f2 f2); Try Assumption.
Apply H2; Assumption.
Apply Rmin_2; Assumption.
Rewrite <- Rabsolu_mult.
Apply (maj_term1 x h eps l1 alp_f2 eps_f2 alp_f1d f1 f2); Try Assumption.
Apply H2; Assumption.
Apply Rmin_2; Assumption.
Right; Symmetry; Apply quadruple_var.
Apply H2; Assumption.
Intros.
Case (Req_EM a R0); Intro.
Rewrite H18; Rewrite Rplus_Or; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Apply Rabsolu_pos_lt.
Unfold Rdiv Rsqr; Rewrite Rinv_Rmult.
Repeat Apply prod_neq_R0; Assumption Orelse (Apply Rinv_neq_R0; Assumption) Orelse (Apply Rinv_neq_R0; DiscrR) Orelse (Red; Intro H28; Rewrite H28 in H6; Elim (Rlt_antirefl ? H6)).
Apply prod_neq_R0; [DiscrR | Assumption].
Apply prod_neq_R0; [DiscrR | Assumption].
Assumption.
Elim H13; Intros.
Apply H20.
Split.
Apply D_x_no_cond; Assumption.
Replace ``x+a-x`` with a; [Assumption | Ring].
Intros.
Case (Req_EM a R0); Intro.
Rewrite H18; Rewrite Rplus_Or; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Apply Rabsolu_pos_lt.
Unfold Rdiv Rsqr; Rewrite Rinv_Rmult.
Repeat Apply prod_neq_R0; Assumption Orelse (Apply Rinv_neq_R0; Assumption) Orelse (Apply Rinv_neq_R0; DiscrR) Orelse (Red; Intro H28; Rewrite H28 in H6; Elim (Rlt_antirefl ? H6)).
DiscrR.
Assumption.
Elim H14; Intros.
Apply H20.
Split.
Unfold D_x no_cond; Split.
Trivial.
Apply Rminus_not_eq_right.
Replace ``x+a-x`` with a; [Assumption | Ring].
Replace ``x+a-x`` with a; [Assumption | Ring].
Repeat Apply Rmin_pos.
Apply (cond_pos eps_f2).
Elim H3; Intros; Assumption.
Apply (cond_pos alp_f1d).
Apply (cond_pos alp_f2d).
Elim H13; Intros; Assumption.
Elim H14; Intros; Assumption.
Change ``0 < (Rabsolu ((eps*(Rsqr (f2 x)))/(8*l1)))``; Apply Rabsolu_pos_lt.
Unfold Rdiv Rsqr; Rewrite Rinv_Rmult; Try DiscrR Orelse Assumption.
Repeat Apply prod_neq_R0; Assumption Orelse (Apply Rinv_neq_R0; Assumption) Orelse (Apply Rinv_neq_R0; DiscrR) Orelse (Red; Intro H14; Rewrite H14 in H6; Elim (Rlt_antirefl ? H6)).
Change ``0 < (Rabsolu (((Rsqr (f2 x))*(f2 x)*eps)/(8*(f1 x)*l2)))``; Apply Rabsolu_pos_lt.
Unfold Rdiv Rsqr; Rewrite Rinv_Rmult.
Repeat Apply prod_neq_R0; Assumption Orelse (Apply Rinv_neq_R0; Assumption) Orelse (Apply Rinv_neq_R0; DiscrR) Orelse (Red; Intro H13; Rewrite H13 in H6; Elim (Rlt_antirefl ? H6)).
Apply prod_neq_R0; [DiscrR | Assumption].
Apply prod_neq_R0; [DiscrR | Assumption].
Assumption.
Apply Rabsolu_pos_lt.
Unfold Rdiv Rsqr; Rewrite Rinv_Rmult; [Idtac | DiscrR | Assumption].
Repeat Apply prod_neq_R0; Assumption Orelse (Apply Rinv_neq_R0; Assumption) Orelse (Apply Rinv_neq_R0; DiscrR) Orelse (Red; Intro H11; Rewrite H11 in H6; Elim (Rlt_antirefl ? H6)).
Intros.
Unfold Rdiv.
Apply Rlt_monotony_contra with ``(Rabsolu (f2 (x+a)))``.
Apply Rabsolu_pos_lt; Apply H2.
Apply Rlt_le_trans with (Rmin eps_f2 alp_f2).
Assumption.
Apply Rmin_l.
Rewrite <- Rinv_r_sym.
Apply Rlt_monotony_contra with (Rabsolu (f2 x)).
Apply Rabsolu_pos_lt; Assumption.
Rewrite Rmult_1r.
Rewrite (Rmult_sym (Rabsolu (f2 x))).
Repeat Rewrite Rmult_assoc.
Rewrite <- Rinv_l_sym.
Rewrite Rmult_1r.
Apply Rlt_monotony_contra with ``/2``.
Apply Rlt_Rinv; Sup0.
Repeat Rewrite (Rmult_sym ``/2``).
Repeat Rewrite Rmult_assoc.
Rewrite <- Rinv_r_sym.
Rewrite Rmult_1r.
Unfold Rdiv in H5; Apply H5.
Replace ``x+a-x`` with a.
Assert H7 := (Rlt_le_trans ? ? ? H6 (Rmin_r ? ?)); Assumption.
Ring.
DiscrR.
Apply Rabsolu_no_R0; Assumption.
Apply Rabsolu_no_R0; Apply H2.
Assert H7 := (Rlt_le_trans ? ? ? H6 (Rmin_l ? ?)); Assumption.
Intros.
Assert H6 := (H4 a H5).
Rewrite <- (Rabsolu_Ropp ``(f2 a)-(f2 x)``) in H6.
Rewrite Ropp_distr2 in H6.
Assert H7 := (Rle_lt_trans ? ? ? (Rabsolu_triang_inv ? ?) H6).
Apply Rlt_anti_compatibility with ``-(Rabsolu (f2 a)) + (Rabsolu (f2 x))/2``.
Rewrite Rplus_assoc.
Rewrite <- double_var.
Do 2 Rewrite (Rplus_sym ``-(Rabsolu (f2 a))``).
Rewrite Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Or.
Unfold Rminus in H7; Assumption.
Intros.
Case (Req_EM x x0); Intro.
Rewrite <- H5; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Unfold Rdiv; Apply Rmult_lt_pos; [Apply Rabsolu_pos_lt; Assumption | Apply Rlt_Rinv; Sup0].
Elim H3; Intros.
Apply H7.
Split.
Unfold D_x no_cond; Split.
Trivial.
Assumption.
Assumption.
Qed.
Lemma derivable_pt_div : (f1,f2:R->R;x:R) (derivable_pt f1 x) -> (derivable_pt f2 x) -> ``(f2 x)<>0`` -> (derivable_pt (div_fct f1 f2) x).
Unfold derivable_pt.
Intros.
Elim X; Intros.
Elim X0; Intros.
Apply Specif.existT with ``(x0*(f2 x)-x1*(f1 x))/(Rsqr (f2 x))``.
Apply derivable_pt_lim_div; Assumption.
Qed.
Lemma derivable_div : (f1,f2:R->R) (derivable f1) -> (derivable f2) -> ((x:R)``(f2 x)<>0``) -> (derivable (div_fct f1 f2)).
Unfold derivable; Intros.
Apply (derivable_pt_div ? ? ? (X x) (X0 x) (H x)).
Qed.
Lemma derive_pt_div : (f1,f2:R->R;x:R;pr1:(derivable_pt f1 x);pr2:(derivable_pt f2 x);na:``(f2 x)<>0``) ``(derive_pt (div_fct f1 f2) x (derivable_pt_div ? ? ? pr1 pr2 na)) == ((derive_pt f1 x pr1)*(f2 x)-(derive_pt f2 x pr2)*(f1 x))/(Rsqr (f2 x))``.
Intros.
Assert H := (derivable_derive f1 x pr1).
Assert H0 := (derivable_derive f2 x pr2).
Assert H1 := (derivable_derive (div_fct f1 f2) x (derivable_pt_div ? ? ? pr1 pr2 na)).
Elim H; Clear H; Intros l1 H.
Elim H0; Clear H0; Intros l2 H0.
Elim H1; Clear H1; Intros l H1.
Rewrite H; Rewrite H0; Apply derive_pt_eq_0.
Assert H3 := (projT2 ? ? pr1).
Unfold derive_pt in H; Rewrite H in H3.
Assert H4 := (projT2 ? ? pr2).
Unfold derive_pt in H0; Rewrite H0 in H4.
Apply derivable_pt_lim_div; Assumption.
Qed.
|