1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: Ranalysis4.v,v 1.1.2.1 2004/07/16 19:31:33 herbelin Exp $ i*)
Require Rbase.
Require Rfunctions.
Require SeqSeries.
Require Rtrigo.
Require Ranalysis1.
Require Ranalysis3.
Require Exp_prop.
V7only [Import R_scope.]. Open Local Scope R_scope.
(**********)
Lemma derivable_pt_inv : (f:R->R;x:R) ``(f x)<>0`` -> (derivable_pt f x) -> (derivable_pt (inv_fct f) x).
Intros; Cut (derivable_pt (div_fct (fct_cte R1) f) x) -> (derivable_pt (inv_fct f) x).
Intro; Apply X0.
Apply derivable_pt_div.
Apply derivable_pt_const.
Assumption.
Assumption.
Unfold div_fct inv_fct fct_cte; Intro; Elim X0; Intros; Unfold derivable_pt; Apply Specif.existT with x0; Unfold derivable_pt_abs; Unfold derivable_pt_lim; Unfold derivable_pt_abs in p; Unfold derivable_pt_lim in p; Intros; Elim (p eps H0); Intros; Exists x1; Intros; Unfold Rdiv in H1; Unfold Rdiv; Rewrite <- (Rmult_1l ``/(f x)``); Rewrite <- (Rmult_1l ``/(f (x+h))``).
Apply H1; Assumption.
Qed.
(**********)
Lemma pr_nu_var : (f,g:R->R;x:R;pr1:(derivable_pt f x);pr2:(derivable_pt g x)) f==g -> (derive_pt f x pr1) == (derive_pt g x pr2).
Unfold derivable_pt derive_pt; Intros.
Elim pr1; Intros.
Elim pr2; Intros.
Simpl.
Rewrite H in p.
Apply unicite_limite with g x; Assumption.
Qed.
(**********)
Lemma pr_nu_var2 : (f,g:R->R;x:R;pr1:(derivable_pt f x);pr2:(derivable_pt g x)) ((h:R)(f h)==(g h)) -> (derive_pt f x pr1) == (derive_pt g x pr2).
Unfold derivable_pt derive_pt; Intros.
Elim pr1; Intros.
Elim pr2; Intros.
Simpl.
Assert H0 := (unicite_step2 ? ? ? p).
Assert H1 := (unicite_step2 ? ? ? p0).
Cut (limit1_in [h:R]``((f (x+h))-(f x))/h`` [h:R]``h <> 0`` x1 ``0``).
Intro; Assert H3 := (unicite_step1 ? ? ? ? H0 H2).
Assumption.
Unfold limit1_in; Unfold limit_in; Unfold dist; Simpl; Unfold R_dist; Unfold limit1_in in H1; Unfold limit_in in H1; Unfold dist in H1; Simpl in H1; Unfold R_dist in H1.
Intros; Elim (H1 eps H2); Intros.
Elim H3; Intros.
Exists x2.
Split.
Assumption.
Intros; Do 2 Rewrite H; Apply H5; Assumption.
Qed.
(**********)
Lemma derivable_inv : (f:R->R) ((x:R)``(f x)<>0``)->(derivable f)->(derivable (inv_fct f)).
Intros.
Unfold derivable; Intro.
Apply derivable_pt_inv.
Apply (H x).
Apply (X x).
Qed.
Lemma derive_pt_inv : (f:R->R;x:R;pr:(derivable_pt f x);na:``(f x)<>0``) (derive_pt (inv_fct f) x (derivable_pt_inv f x na pr)) == ``-(derive_pt f x pr)/(Rsqr (f x))``.
Intros; Replace (derive_pt (inv_fct f) x (derivable_pt_inv f x na pr)) with (derive_pt (div_fct (fct_cte R1) f) x (derivable_pt_div (fct_cte R1) f x (derivable_pt_const R1 x) pr na)).
Rewrite derive_pt_div; Rewrite derive_pt_const; Unfold fct_cte; Rewrite Rmult_Ol; Rewrite Rmult_1r; Unfold Rminus; Rewrite Rplus_Ol; Reflexivity.
Apply pr_nu_var2.
Intro; Unfold div_fct fct_cte inv_fct.
Unfold Rdiv; Ring.
Qed.
(* Rabsolu *)
Lemma Rabsolu_derive_1 : (x:R) ``0<x`` -> (derivable_pt_lim Rabsolu x ``1``).
Intros.
Unfold derivable_pt_lim; Intros.
Exists (mkposreal x H); Intros.
Rewrite (Rabsolu_right x).
Rewrite (Rabsolu_right ``x+h``).
Rewrite Rplus_sym.
Unfold Rminus; Rewrite Rplus_assoc; Rewrite Rplus_Ropp_r.
Rewrite Rplus_Or; Unfold Rdiv; Rewrite <- Rinv_r_sym.
Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Apply H0.
Apply H1.
Apply Rle_sym1.
Case (case_Rabsolu h); Intro.
Rewrite (Rabsolu_left h r) in H2.
Left; Rewrite Rplus_sym; Apply Rlt_anti_compatibility with ``-h``; Rewrite Rplus_Or; Rewrite <- Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Ol; Apply H2.
Apply ge0_plus_ge0_is_ge0.
Left; Apply H.
Apply Rle_sym2; Apply r.
Left; Apply H.
Qed.
Lemma Rabsolu_derive_2 : (x:R) ``x<0`` -> (derivable_pt_lim Rabsolu x ``-1``).
Intros.
Unfold derivable_pt_lim; Intros.
Cut ``0< -x``.
Intro; Exists (mkposreal ``-x`` H1); Intros.
Rewrite (Rabsolu_left x).
Rewrite (Rabsolu_left ``x+h``).
Rewrite Rplus_sym.
Rewrite Ropp_distr1.
Unfold Rminus; Rewrite Ropp_Ropp; Rewrite Rplus_assoc; Rewrite Rplus_Ropp_l.
Rewrite Rplus_Or; Unfold Rdiv.
Rewrite Ropp_mul1.
Rewrite <- Rinv_r_sym.
Rewrite Ropp_Ropp; Rewrite Rplus_Ropp_l; Rewrite Rabsolu_R0; Apply H0.
Apply H2.
Case (case_Rabsolu h); Intro.
Apply Ropp_Rlt.
Rewrite Ropp_O; Rewrite Ropp_distr1; Apply gt0_plus_gt0_is_gt0.
Apply H1.
Apply Rgt_RO_Ropp; Apply r.
Rewrite (Rabsolu_right h r) in H3.
Apply Rlt_anti_compatibility with ``-x``; Rewrite Rplus_Or; Rewrite <- Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Ol; Apply H3.
Apply H.
Apply Rgt_RO_Ropp; Apply H.
Qed.
(* Rabsolu is derivable for all x <> 0 *)
Lemma derivable_pt_Rabsolu : (x:R) ``x<>0`` -> (derivable_pt Rabsolu x).
Intros.
Case (total_order_T x R0); Intro.
Elim s; Intro.
Unfold derivable_pt; Apply Specif.existT with ``-1``.
Apply (Rabsolu_derive_2 x a).
Elim H; Exact b.
Unfold derivable_pt; Apply Specif.existT with ``1``.
Apply (Rabsolu_derive_1 x r).
Qed.
(* Rabsolu is continuous for all x *)
Lemma continuity_Rabsolu : (continuity Rabsolu).
Unfold continuity; Intro.
Case (Req_EM x R0); Intro.
Unfold continuity_pt; Unfold continue_in; Unfold limit1_in; Unfold limit_in; Simpl; Unfold R_dist; Intros; Exists eps; Split.
Apply H0.
Intros; Rewrite H; Rewrite Rabsolu_R0; Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Rewrite Rabsolu_Rabsolu; Elim H1; Intros; Rewrite H in H3; Unfold Rminus in H3; Rewrite Ropp_O in H3; Rewrite Rplus_Or in H3; Apply H3.
Apply derivable_continuous_pt; Apply (derivable_pt_Rabsolu x H).
Qed.
(* Finite sums : Sum a_k x^k *)
Lemma continuity_finite_sum : (An:nat->R;N:nat) (continuity [y:R](sum_f_R0 [k:nat]``(An k)*(pow y k)`` N)).
Intros; Unfold continuity; Intro.
Induction N.
Simpl.
Apply continuity_pt_const.
Unfold constant; Intros; Reflexivity.
Replace [y:R](sum_f_R0 [k:nat]``(An k)*(pow y k)`` (S N)) with (plus_fct [y:R](sum_f_R0 [k:nat]``(An k)*(pow y k)`` N) [y:R]``(An (S N))*(pow y (S N))``).
Apply continuity_pt_plus.
Apply HrecN.
Replace [y:R]``(An (S N))*(pow y (S N))`` with (mult_real_fct (An (S N)) [y:R](pow y (S N))).
Apply continuity_pt_scal.
Apply derivable_continuous_pt.
Apply derivable_pt_pow.
Reflexivity.
Reflexivity.
Qed.
Lemma derivable_pt_lim_fs : (An:nat->R;x:R;N:nat) (lt O N) -> (derivable_pt_lim [y:R](sum_f_R0 [k:nat]``(An k)*(pow y k)`` N) x (sum_f_R0 [k:nat]``(INR (S k))*(An (S k))*(pow x k)`` (pred N))).
Intros; Induction N.
Elim (lt_n_n ? H).
Cut N=O\/(lt O N).
Intro; Elim H0; Intro.
Rewrite H1.
Simpl.
Replace [y:R]``(An O)*1+(An (S O))*(y*1)`` with (plus_fct (fct_cte ``(An O)*1``) (mult_real_fct ``(An (S O))`` (mult_fct id (fct_cte R1)))).
Replace ``1*(An (S O))*1`` with ``0+(An (S O))*(1*(fct_cte R1 x)+(id x)*0)``.
Apply derivable_pt_lim_plus.
Apply derivable_pt_lim_const.
Apply derivable_pt_lim_scal.
Apply derivable_pt_lim_mult.
Apply derivable_pt_lim_id.
Apply derivable_pt_lim_const.
Unfold fct_cte id; Ring.
Reflexivity.
Replace [y:R](sum_f_R0 [k:nat]``(An k)*(pow y k)`` (S N)) with (plus_fct [y:R](sum_f_R0 [k:nat]``(An k)*(pow y k)`` N) [y:R]``(An (S N))*(pow y (S N))``).
Replace (sum_f_R0 [k:nat]``(INR (S k))*(An (S k))*(pow x k)`` (pred (S N))) with (Rplus (sum_f_R0 [k:nat]``(INR (S k))*(An (S k))*(pow x k)`` (pred N)) ``(An (S N))*((INR (S (pred (S N))))*(pow x (pred (S N))))``).
Apply derivable_pt_lim_plus.
Apply HrecN.
Assumption.
Replace [y:R]``(An (S N))*(pow y (S N))`` with (mult_real_fct (An (S N)) [y:R](pow y (S N))).
Apply derivable_pt_lim_scal.
Replace (pred (S N)) with N; [Idtac | Reflexivity].
Pattern 3 N; Replace N with (pred (S N)).
Apply derivable_pt_lim_pow.
Reflexivity.
Reflexivity.
Cut (pred (S N)) = (S (pred N)).
Intro; Rewrite H2.
Rewrite tech5.
Apply Rplus_plus_r.
Rewrite <- H2.
Replace (pred (S N)) with N; [Idtac | Reflexivity].
Ring.
Simpl.
Apply S_pred with O; Assumption.
Unfold plus_fct.
Simpl; Reflexivity.
Inversion H.
Left; Reflexivity.
Right; Apply lt_le_trans with (1); [Apply lt_O_Sn | Assumption].
Qed.
Lemma derivable_pt_lim_finite_sum : (An:(nat->R); x:R; N:nat) (derivable_pt_lim [y:R](sum_f_R0 [k:nat]``(An k)*(pow y k)`` N) x (Cases N of O => R0 | _ => (sum_f_R0 [k:nat]``(INR (S k))*(An (S k))*(pow x k)`` (pred N)) end)).
Intros.
Induction N.
Simpl.
Rewrite Rmult_1r.
Replace [_:R]``(An O)`` with (fct_cte (An O)); [Apply derivable_pt_lim_const | Reflexivity].
Apply derivable_pt_lim_fs; Apply lt_O_Sn.
Qed.
Lemma derivable_pt_finite_sum : (An:nat->R;N:nat;x:R) (derivable_pt [y:R](sum_f_R0 [k:nat]``(An k)*(pow y k)`` N) x).
Intros.
Unfold derivable_pt.
Assert H := (derivable_pt_lim_finite_sum An x N).
Induction N.
Apply Specif.existT with R0; Apply H.
Apply Specif.existT with (sum_f_R0 [k:nat]``(INR (S k))*(An (S k))*(pow x k)`` (pred (S N))); Apply H.
Qed.
Lemma derivable_finite_sum : (An:nat->R;N:nat) (derivable [y:R](sum_f_R0 [k:nat]``(An k)*(pow y k)`` N)).
Intros; Unfold derivable; Intro; Apply derivable_pt_finite_sum.
Qed.
(* Regularity of hyperbolic functions *)
Lemma derivable_pt_lim_cosh : (x:R) (derivable_pt_lim cosh x ``(sinh x)``).
Intro.
Unfold cosh sinh; Unfold Rdiv.
Replace [x0:R]``((exp x0)+(exp ( -x0)))*/2`` with (mult_fct (plus_fct exp (comp exp (opp_fct id))) (fct_cte ``/2``)); [Idtac | Reflexivity].
Replace ``((exp x)-(exp ( -x)))*/2`` with ``((exp x)+((exp (-x))*-1))*((fct_cte (Rinv 2)) x)+((plus_fct exp (comp exp (opp_fct id))) x)*0``.
Apply derivable_pt_lim_mult.
Apply derivable_pt_lim_plus.
Apply derivable_pt_lim_exp.
Apply derivable_pt_lim_comp.
Apply derivable_pt_lim_opp.
Apply derivable_pt_lim_id.
Apply derivable_pt_lim_exp.
Apply derivable_pt_lim_const.
Unfold plus_fct mult_real_fct comp opp_fct id fct_cte; Ring.
Qed.
Lemma derivable_pt_lim_sinh : (x:R) (derivable_pt_lim sinh x ``(cosh x)``).
Intro.
Unfold cosh sinh; Unfold Rdiv.
Replace [x0:R]``((exp x0)-(exp ( -x0)))*/2`` with (mult_fct (minus_fct exp (comp exp (opp_fct id))) (fct_cte ``/2``)); [Idtac | Reflexivity].
Replace ``((exp x)+(exp ( -x)))*/2`` with ``((exp x)-((exp (-x))*-1))*((fct_cte (Rinv 2)) x)+((minus_fct exp (comp exp (opp_fct id))) x)*0``.
Apply derivable_pt_lim_mult.
Apply derivable_pt_lim_minus.
Apply derivable_pt_lim_exp.
Apply derivable_pt_lim_comp.
Apply derivable_pt_lim_opp.
Apply derivable_pt_lim_id.
Apply derivable_pt_lim_exp.
Apply derivable_pt_lim_const.
Unfold plus_fct mult_real_fct comp opp_fct id fct_cte; Ring.
Qed.
Lemma derivable_pt_exp : (x:R) (derivable_pt exp x).
Intro.
Unfold derivable_pt.
Apply Specif.existT with (exp x).
Apply derivable_pt_lim_exp.
Qed.
Lemma derivable_pt_cosh : (x:R) (derivable_pt cosh x).
Intro.
Unfold derivable_pt.
Apply Specif.existT with (sinh x).
Apply derivable_pt_lim_cosh.
Qed.
Lemma derivable_pt_sinh : (x:R) (derivable_pt sinh x).
Intro.
Unfold derivable_pt.
Apply Specif.existT with (cosh x).
Apply derivable_pt_lim_sinh.
Qed.
Lemma derivable_exp : (derivable exp).
Unfold derivable; Apply derivable_pt_exp.
Qed.
Lemma derivable_cosh : (derivable cosh).
Unfold derivable; Apply derivable_pt_cosh.
Qed.
Lemma derivable_sinh : (derivable sinh).
Unfold derivable; Apply derivable_pt_sinh.
Qed.
Lemma derive_pt_exp : (x:R) (derive_pt exp x (derivable_pt_exp x))==(exp x).
Intro; Apply derive_pt_eq_0.
Apply derivable_pt_lim_exp.
Qed.
Lemma derive_pt_cosh : (x:R) (derive_pt cosh x (derivable_pt_cosh x))==(sinh x).
Intro; Apply derive_pt_eq_0.
Apply derivable_pt_lim_cosh.
Qed.
Lemma derive_pt_sinh : (x:R) (derive_pt sinh x (derivable_pt_sinh x))==(cosh x).
Intro; Apply derive_pt_eq_0.
Apply derivable_pt_lim_sinh.
Qed.
|