1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: Rfunctions.v,v 1.2.2.1 2004/07/16 19:31:34 herbelin Exp $ i*)
(*i Some properties about pow and sum have been made with John Harrison i*)
(*i Some Lemmas (about pow and powerRZ) have been done by Laurent Thery i*)
(********************************************************)
(** Definition of the sum functions *)
(* *)
(********************************************************)
Require Rbase.
Require Export R_Ifp.
Require Export Rbasic_fun.
Require Export R_sqr.
Require Export SplitAbsolu.
Require Export SplitRmult.
Require Export ArithProp.
Require Omega.
Require Zpower.
V7only [ Import nat_scope. Import Z_scope. Import R_scope. ].
Open Local Scope nat_scope.
Open Local Scope R_scope.
(*******************************)
(** Lemmas about factorial *)
(*******************************)
(*********)
Lemma INR_fact_neq_0:(n:nat)~(INR (fact n))==R0.
Proof.
Intro;Red;Intro;Apply (not_O_INR (fact n) (fact_neq_0 n));Assumption.
Qed.
(*********)
Lemma fact_simpl : (n:nat) (fact (S n))=(mult (S n) (fact n)).
Proof.
Intro; Reflexivity.
Qed.
(*********)
Lemma simpl_fact:(n:nat)(Rmult (Rinv (INR (fact (S n))))
(Rinv (Rinv (INR (fact n)))))==
(Rinv (INR (S n))).
Proof.
Intro;Rewrite (Rinv_Rinv (INR (fact n)) (INR_fact_neq_0 n));
Unfold 1 fact;Cbv Beta Iota;Fold fact;
Rewrite (mult_INR (S n) (fact n));
Rewrite (Rinv_Rmult (INR (S n)) (INR (fact n))).
Rewrite (Rmult_assoc (Rinv (INR (S n))) (Rinv (INR (fact n)))
(INR (fact n)));Rewrite (Rinv_l (INR (fact n)) (INR_fact_neq_0 n));
Apply (let (H1,H2)=(Rmult_ne (Rinv (INR (S n)))) in H1).
Apply not_O_INR;Auto.
Apply INR_fact_neq_0.
Qed.
(*******************************)
(* Power *)
(*******************************)
(*********)
Fixpoint pow [r:R;n:nat]:R:=
Cases n of
O => R1
|(S n) => (Rmult r (pow r n))
end.
V8Infix "^" pow : R_scope.
Lemma pow_O: (x : R) (pow x O) == R1.
Proof.
Reflexivity.
Qed.
Lemma pow_1: (x : R) (pow x (1)) == x.
Proof.
Simpl; Auto with real.
Qed.
Lemma pow_add:
(x : R) (n, m : nat) (pow x (plus n m)) == (Rmult (pow x n) (pow x m)).
Proof.
Intros x n; Elim n; Simpl; Auto with real.
Intros n0 H' m; Rewrite H'; Auto with real.
Qed.
Lemma pow_nonzero:
(x:R) (n:nat) ~(x==R0) -> ~((pow x n)==R0).
Proof.
Intro; Induction n; Simpl.
Intro; Red;Intro;Apply R1_neq_R0;Assumption.
Intros;Red; Intro;Elim (without_div_Od x (pow x n0) H1).
Intro; Auto.
Apply H;Assumption.
Qed.
Hints Resolve pow_O pow_1 pow_add pow_nonzero:real.
Lemma pow_RN_plus:
(x : R)
(n, m : nat)
~ x == R0 -> (pow x n) == (Rmult (pow x (plus n m)) (Rinv (pow x m))).
Proof.
Intros x n; Elim n; Simpl; Auto with real.
Intros n0 H' m H'0.
Rewrite Rmult_assoc; Rewrite <- H'; Auto.
Qed.
Lemma pow_lt: (x : R) (n : nat) (Rlt R0 x) -> (Rlt R0 (pow x n)).
Proof.
Intros x n; Elim n; Simpl; Auto with real.
Intros n0 H' H'0; Replace R0 with (Rmult x R0); Auto with real.
Qed.
Hints Resolve pow_lt :real.
Lemma Rlt_pow_R1:
(x : R) (n : nat) (Rlt R1 x) -> (lt O n) -> (Rlt R1 (pow x n)).
Proof.
Intros x n; Elim n; Simpl; Auto with real.
Intros H' H'0; ElimType False; Omega.
Intros n0; Case n0.
Simpl; Rewrite Rmult_1r; Auto.
Intros n1 H' H'0 H'1.
Replace R1 with (Rmult R1 R1); Auto with real.
Apply Rlt_trans with r2 := (Rmult x R1); Auto with real.
Apply Rlt_monotony; Auto with real.
Apply Rlt_trans with r2 := R1; Auto with real.
Apply H'; Auto with arith.
Qed.
Hints Resolve Rlt_pow_R1 :real.
Lemma Rlt_pow:
(x : R) (n, m : nat) (Rlt R1 x) -> (lt n m) -> (Rlt (pow x n) (pow x m)).
Proof.
Intros x n m H' H'0; Replace m with (plus (minus m n) n).
Rewrite pow_add.
Pattern 1 (pow x n); Replace (pow x n) with (Rmult R1 (pow x n));
Auto with real.
Apply Rminus_lt.
Repeat Rewrite [y : R] (Rmult_sym y (pow x n)); Rewrite <- Rminus_distr.
Replace R0 with (Rmult (pow x n) R0); Auto with real.
Apply Rlt_monotony; Auto with real.
Apply pow_lt; Auto with real.
Apply Rlt_trans with r2 := R1; Auto with real.
Apply Rlt_minus; Auto with real.
Apply Rlt_pow_R1; Auto with arith.
Apply simpl_lt_plus_l with p := n; Auto with arith.
Rewrite le_plus_minus_r; Auto with arith; Rewrite <- plus_n_O; Auto.
Rewrite plus_sym; Auto with arith.
Qed.
Hints Resolve Rlt_pow :real.
(*********)
Lemma tech_pow_Rmult:(x:R)(n:nat)(Rmult x (pow x n))==(pow x (S n)).
Proof.
Induction n; Simpl; Trivial.
Qed.
(*********)
Lemma tech_pow_Rplus:(x:R)(a,n:nat)
(Rplus (pow x a) (Rmult (INR n) (pow x a)))==
(Rmult (INR (S n)) (pow x a)).
Proof.
Intros; Pattern 1 (pow x a);
Rewrite <-(let (H1,H2)=(Rmult_ne (pow x a)) in H1);
Rewrite (Rmult_sym (INR n) (pow x a));
Rewrite <- (Rmult_Rplus_distr (pow x a) R1 (INR n));
Rewrite (Rplus_sym R1 (INR n)); Rewrite <-(S_INR n);
Apply Rmult_sym.
Qed.
Lemma poly: (n:nat)(x:R)(Rlt R0 x)->
(Rle (Rplus R1 (Rmult (INR n) x)) (pow (Rplus R1 x) n)).
Proof.
Intros;Elim n.
Simpl;Cut (Rplus R1 (Rmult R0 x))==R1.
Intro;Rewrite H0;Unfold Rle;Right; Reflexivity.
Ring.
Intros;Unfold pow; Fold pow;
Apply (Rle_trans (Rplus R1 (Rmult (INR (S n0)) x))
(Rmult (Rplus R1 x) (Rplus R1 (Rmult (INR n0) x)))
(Rmult (Rplus R1 x) (pow (Rplus R1 x) n0))).
Cut (Rmult (Rplus R1 x) (Rplus R1 (Rmult (INR n0) x)))==
(Rplus (Rplus R1 (Rmult (INR (S n0)) x))
(Rmult (INR n0) (Rmult x x))).
Intro;Rewrite H1;Pattern 1 (Rplus R1 (Rmult (INR (S n0)) x));
Rewrite <-(let (H1,H2)=
(Rplus_ne (Rplus R1 (Rmult (INR (S n0)) x))) in H1);
Apply Rle_compatibility;Elim n0;Intros.
Simpl;Rewrite Rmult_Ol;Unfold Rle;Right;Auto.
Unfold Rle;Left;Generalize Rmult_gt;Unfold Rgt;Intro;
Fold (Rsqr x);Apply (H3 (INR (S n1)) (Rsqr x)
(lt_INR_0 (S n1) (lt_O_Sn n1)));Fold (Rgt x R0) in H;
Apply (pos_Rsqr1 x (imp_not_Req x R0
(or_intror (Rlt x R0) (Rgt x R0) H))).
Rewrite (S_INR n0);Ring.
Unfold Rle in H0;Elim H0;Intro.
Unfold Rle;Left;Apply Rlt_monotony.
Rewrite Rplus_sym;
Apply (Rlt_r_plus_R1 x (Rlt_le R0 x H)).
Assumption.
Rewrite H1;Unfold Rle;Right;Trivial.
Qed.
Lemma Power_monotonic:
(x:R) (m,n:nat) (Rgt (Rabsolu x) R1)
-> (le m n)
-> (Rle (Rabsolu (pow x m)) (Rabsolu (pow x n))).
Proof.
Intros x m n H;Induction n;Intros;Inversion H0.
Unfold Rle; Right; Reflexivity.
Unfold Rle; Right; Reflexivity.
Apply (Rle_trans (Rabsolu (pow x m))
(Rabsolu (pow x n))
(Rabsolu (pow x (S n)))).
Apply Hrecn; Assumption.
Simpl;Rewrite Rabsolu_mult.
Pattern 1 (Rabsolu (pow x n)).
Rewrite <-Rmult_1r.
Rewrite (Rmult_sym (Rabsolu x) (Rabsolu (pow x n))).
Apply Rle_monotony.
Apply Rabsolu_pos.
Unfold Rgt in H.
Apply Rlt_le; Assumption.
Qed.
Lemma Pow_Rabsolu: (x:R) (n:nat)
(pow (Rabsolu x) n)==(Rabsolu (pow x n)).
Proof.
Intro;Induction n;Simpl.
Apply sym_eqT;Apply Rabsolu_pos_eq;Apply Rlt_le;Apply Rlt_R0_R1.
Intros; Rewrite H;Apply sym_eqT;Apply Rabsolu_mult.
Qed.
Lemma Pow_x_infinity:
(x:R) (Rgt (Rabsolu x) R1)
-> (b:R) (Ex [N:nat] ((n:nat) (ge n N)
-> (Rge (Rabsolu (pow x n)) b ))).
Proof.
Intros;Elim (archimed (Rmult b (Rinv (Rminus (Rabsolu x) R1))));Intros;
Clear H1;
Cut (Ex[N:nat] (Rge (INR N) (Rmult b (Rinv (Rminus (Rabsolu x) R1))))).
Intro; Elim H1;Clear H1;Intros;Exists x0;Intros;
Apply (Rge_trans (Rabsolu (pow x n)) (Rabsolu (pow x x0)) b).
Apply Rle_sym1;Apply Power_monotonic;Assumption.
Rewrite <- Pow_Rabsolu;Cut (Rabsolu x)==(Rplus R1 (Rminus (Rabsolu x) R1)).
Intro; Rewrite H3;
Apply (Rge_trans (pow (Rplus R1 (Rminus (Rabsolu x) R1)) x0)
(Rplus R1 (Rmult (INR x0)
(Rminus (Rabsolu x) R1)))
b).
Apply Rle_sym1;Apply poly;Fold (Rgt (Rminus (Rabsolu x) R1) R0);
Apply Rgt_minus;Assumption.
Apply (Rge_trans
(Rplus R1 (Rmult (INR x0) (Rminus (Rabsolu x) R1)))
(Rmult (INR x0) (Rminus (Rabsolu x) R1))
b).
Apply Rle_sym1; Apply Rlt_le;Rewrite (Rplus_sym R1
(Rmult (INR x0) (Rminus (Rabsolu x) R1)));
Pattern 1 (Rmult (INR x0) (Rminus (Rabsolu x) R1));
Rewrite <- (let (H1,H2) = (Rplus_ne
(Rmult (INR x0) (Rminus (Rabsolu x) R1))) in
H1);
Apply Rlt_compatibility;
Apply Rlt_R0_R1.
Cut b==(Rmult (Rmult b (Rinv (Rminus (Rabsolu x) R1)))
(Rminus (Rabsolu x) R1)).
Intros; Rewrite H4;Apply Rge_monotony.
Apply Rge_minus;Unfold Rge; Left; Assumption.
Assumption.
Rewrite Rmult_assoc;Rewrite Rinv_l.
Ring.
Apply imp_not_Req; Right;Apply Rgt_minus;Assumption.
Ring.
Cut `0<= (up (Rmult b (Rinv (Rminus (Rabsolu x) R1))))`\/
`(up (Rmult b (Rinv (Rminus (Rabsolu x) R1)))) <= 0`.
Intros;Elim H1;Intro.
Elim (IZN (up (Rmult b (Rinv (Rminus (Rabsolu x) R1)))) H2);Intros;Exists x0;
Apply (Rge_trans
(INR x0)
(IZR (up (Rmult b (Rinv (Rminus (Rabsolu x) R1)))))
(Rmult b (Rinv (Rminus (Rabsolu x) R1)))).
Rewrite INR_IZR_INZ;Apply IZR_ge;Omega.
Unfold Rge; Left; Assumption.
Exists O;Apply (Rge_trans (INR (0))
(IZR (up (Rmult b (Rinv (Rminus (Rabsolu x) R1)))))
(Rmult b (Rinv (Rminus (Rabsolu x) R1)))).
Rewrite INR_IZR_INZ;Apply IZR_ge;Simpl;Omega.
Unfold Rge; Left; Assumption.
Omega.
Qed.
Lemma pow_ne_zero:
(n:nat) ~(n=(0))-> (pow R0 n) == R0.
Proof.
Induction n.
Simpl;Auto.
Intros;Elim H;Reflexivity.
Intros; Simpl;Apply Rmult_Ol.
Qed.
Lemma Rinv_pow:
(x:R) (n:nat) ~(x==R0) -> (Rinv (pow x n))==(pow (Rinv x) n).
Proof.
Intros; Elim n; Simpl.
Apply Rinv_R1.
Intro m;Intro;Rewrite Rinv_Rmult.
Rewrite H0; Reflexivity;Assumption.
Assumption.
Apply pow_nonzero;Assumption.
Qed.
Lemma pow_lt_1_zero:
(x:R) (Rlt (Rabsolu x) R1)
-> (y:R) (Rlt R0 y)
-> (Ex[N:nat] (n:nat) (ge n N)
-> (Rlt (Rabsolu (pow x n)) y)).
Proof.
Intros;Elim (Req_EM x R0);Intro.
Exists (1);Rewrite H1;Intros n GE;Rewrite pow_ne_zero.
Rewrite Rabsolu_R0;Assumption.
Inversion GE;Auto.
Cut (Rgt (Rabsolu (Rinv x)) R1).
Intros;Elim (Pow_x_infinity (Rinv x) H2 (Rplus (Rinv y) R1));Intros N.
Exists N;Intros;Rewrite <- (Rinv_Rinv y).
Rewrite <- (Rinv_Rinv (Rabsolu (pow x n))).
Apply Rinv_lt.
Apply Rmult_lt_pos.
Apply Rlt_Rinv.
Assumption.
Apply Rlt_Rinv.
Apply Rabsolu_pos_lt.
Apply pow_nonzero.
Assumption.
Rewrite <- Rabsolu_Rinv.
Rewrite Rinv_pow.
Apply (Rlt_le_trans (Rinv y)
(Rplus (Rinv y) R1)
(Rabsolu (pow (Rinv x) n))).
Pattern 1 (Rinv y).
Rewrite <- (let (H1,H2) =
(Rplus_ne (Rinv y)) in H1).
Apply Rlt_compatibility.
Apply Rlt_R0_R1.
Apply Rle_sym2.
Apply H3.
Assumption.
Assumption.
Apply pow_nonzero.
Assumption.
Apply Rabsolu_no_R0.
Apply pow_nonzero.
Assumption.
Apply imp_not_Req.
Right; Unfold Rgt; Assumption.
Rewrite <- (Rinv_Rinv R1).
Rewrite Rabsolu_Rinv.
Unfold Rgt; Apply Rinv_lt.
Apply Rmult_lt_pos.
Apply Rabsolu_pos_lt.
Assumption.
Rewrite Rinv_R1; Apply Rlt_R0_R1.
Rewrite Rinv_R1; Assumption.
Assumption.
Red;Intro; Apply R1_neq_R0;Assumption.
Qed.
Lemma pow_R1:
(r : R) (n : nat) (pow r n) == R1 -> (Rabsolu r) == R1 \/ n = O.
Proof.
Intros r n H'.
Case (Req_EM (Rabsolu r) R1); Auto; Intros H'1.
Case (not_Req ? ? H'1); Intros H'2.
Generalize H'; Case n; Auto.
Intros n0 H'0.
Cut ~ r == R0; [Intros Eq1 | Idtac].
Cut ~ (Rabsolu r) == R0; [Intros Eq2 | Apply Rabsolu_no_R0]; Auto.
Absurd (Rlt (pow (Rabsolu (Rinv r)) O) (pow (Rabsolu (Rinv r)) (S n0))); Auto.
Replace (pow (Rabsolu (Rinv r)) (S n0)) with R1.
Simpl; Apply Rlt_antirefl; Auto.
Rewrite Rabsolu_Rinv; Auto.
Rewrite <- Rinv_pow; Auto.
Rewrite Pow_Rabsolu; Auto.
Rewrite H'0; Rewrite Rabsolu_right; Auto with real.
Apply Rle_ge; Auto with real.
Apply Rlt_pow; Auto with arith.
Rewrite Rabsolu_Rinv; Auto.
Apply Rlt_monotony_contra with z := (Rabsolu r).
Case (Rabsolu_pos r); Auto.
Intros H'3; Case Eq2; Auto.
Rewrite Rmult_1r; Rewrite Rinv_r; Auto with real.
Red;Intro;Absurd ``(pow r (S n0)) == 1``;Auto.
Simpl; Rewrite H; Rewrite Rmult_Ol; Auto with real.
Generalize H'; Case n; Auto.
Intros n0 H'0.
Cut ~ r == R0; [Intros Eq1 | Auto with real].
Cut ~ (Rabsolu r) == R0; [Intros Eq2 | Apply Rabsolu_no_R0]; Auto.
Absurd (Rlt (pow (Rabsolu r) O) (pow (Rabsolu r) (S n0)));
Auto with real arith.
Repeat Rewrite Pow_Rabsolu; Rewrite H'0; Simpl; Auto with real.
Red;Intro;Absurd ``(pow r (S n0)) == 1``;Auto.
Simpl; Rewrite H; Rewrite Rmult_Ol; Auto with real.
Qed.
Lemma pow_Rsqr : (x:R;n:nat) (pow x (mult (2) n))==(pow (Rsqr x) n).
Proof.
Intros; Induction n.
Reflexivity.
Replace (mult (2) (S n)) with (S (S (mult (2) n))).
Replace (pow x (S (S (mult (2) n)))) with ``x*x*(pow x (mult (S (S O)) n))``.
Rewrite Hrecn; Reflexivity.
Simpl; Ring.
Apply INR_eq; Do 2 Rewrite S_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring.
Qed.
Lemma pow_le : (a:R;n:nat) ``0<=a`` -> ``0<=(pow a n)``.
Proof.
Intros; Induction n.
Simpl; Left; Apply Rlt_R0_R1.
Simpl; Apply Rmult_le_pos; Assumption.
Qed.
(**********)
Lemma pow_1_even : (n:nat) ``(pow (-1) (mult (S (S O)) n))==1``.
Proof.
Intro; Induction n.
Reflexivity.
Replace (mult (2) (S n)) with (plus (2) (mult (2) n)).
Rewrite pow_add; Rewrite Hrecn; Simpl; Ring.
Replace (S n) with (plus n (1)); [Ring | Ring].
Qed.
(**********)
Lemma pow_1_odd : (n:nat) ``(pow (-1) (S (mult (S (S O)) n)))==-1``.
Proof.
Intro; Replace (S (mult (2) n)) with (plus (mult (2) n) (1)); [Idtac | Ring].
Rewrite pow_add; Rewrite pow_1_even; Simpl; Ring.
Qed.
(**********)
Lemma pow_1_abs : (n:nat) ``(Rabsolu (pow (-1) n))==1``.
Proof.
Intro; Induction n.
Simpl; Apply Rabsolu_R1.
Replace (S n) with (plus n (1)); [Rewrite pow_add | Ring].
Rewrite Rabsolu_mult.
Rewrite Hrecn; Rewrite Rmult_1l; Simpl; Rewrite Rmult_1r; Rewrite Rabsolu_Ropp; Apply Rabsolu_R1.
Qed.
Lemma pow_mult : (x:R;n1,n2:nat) (pow x (mult n1 n2))==(pow (pow x n1) n2).
Proof.
Intros; Induction n2.
Simpl; Replace (mult n1 O) with O; [Reflexivity | Ring].
Replace (mult n1 (S n2)) with (plus (mult n1 n2) n1).
Replace (S n2) with (plus n2 (1)); [Idtac | Ring].
Do 2 Rewrite pow_add.
Rewrite Hrecn2.
Simpl.
Ring.
Apply INR_eq; Rewrite plus_INR; Do 2 Rewrite mult_INR; Rewrite S_INR; Ring.
Qed.
Lemma pow_incr : (x,y:R;n:nat) ``0<=x<=y`` -> ``(pow x n)<=(pow y n)``.
Proof.
Intros.
Induction n.
Right; Reflexivity.
Simpl.
Elim H; Intros.
Apply Rle_trans with ``y*(pow x n)``.
Do 2 Rewrite <- (Rmult_sym (pow x n)).
Apply Rle_monotony.
Apply pow_le; Assumption.
Assumption.
Apply Rle_monotony.
Apply Rle_trans with x; Assumption.
Apply Hrecn.
Qed.
Lemma pow_R1_Rle : (x:R;k:nat) ``1<=x`` -> ``1<=(pow x k)``.
Proof.
Intros.
Induction k.
Right; Reflexivity.
Simpl.
Apply Rle_trans with ``x*1``.
Rewrite Rmult_1r; Assumption.
Apply Rle_monotony.
Left; Apply Rlt_le_trans with R1; [Apply Rlt_R0_R1 | Assumption].
Exact Hreck.
Qed.
Lemma Rle_pow : (x:R;m,n:nat) ``1<=x`` -> (le m n) -> ``(pow x m)<=(pow x n)``.
Proof.
Intros.
Replace n with (plus (minus n m) m).
Rewrite pow_add.
Rewrite Rmult_sym.
Pattern 1 (pow x m); Rewrite <- Rmult_1r.
Apply Rle_monotony.
Apply pow_le; Left; Apply Rlt_le_trans with R1; [Apply Rlt_R0_R1 | Assumption].
Apply pow_R1_Rle; Assumption.
Rewrite plus_sym.
Symmetry; Apply le_plus_minus; Assumption.
Qed.
Lemma pow1 : (n:nat) (pow R1 n)==R1.
Proof.
Intro; Induction n.
Reflexivity.
Simpl; Rewrite Hrecn; Rewrite Rmult_1r; Reflexivity.
Qed.
Lemma pow_Rabs : (x:R;n:nat) ``(pow x n)<=(pow (Rabsolu x) n)``.
Proof.
Intros; Induction n.
Right; Reflexivity.
Simpl; Case (case_Rabsolu x); Intro.
Apply Rle_trans with (Rabsolu ``x*(pow x n)``).
Apply Rle_Rabsolu.
Rewrite Rabsolu_mult.
Apply Rle_monotony.
Apply Rabsolu_pos.
Right; Symmetry; Apply Pow_Rabsolu.
Pattern 1 (Rabsolu x); Rewrite (Rabsolu_right x r); Apply Rle_monotony.
Apply Rle_sym2; Exact r.
Apply Hrecn.
Qed.
Lemma pow_maj_Rabs : (x,y:R;n:nat) ``(Rabsolu y)<=x`` -> ``(pow y n)<=(pow x n)``.
Proof.
Intros; Cut ``0<=x``.
Intro; Apply Rle_trans with (pow (Rabsolu y) n).
Apply pow_Rabs.
Induction n.
Right; Reflexivity.
Simpl; Apply Rle_trans with ``x*(pow (Rabsolu y) n)``.
Do 2 Rewrite <- (Rmult_sym (pow (Rabsolu y) n)).
Apply Rle_monotony.
Apply pow_le; Apply Rabsolu_pos.
Assumption.
Apply Rle_monotony.
Apply H0.
Apply Hrecn.
Apply Rle_trans with (Rabsolu y); [Apply Rabsolu_pos | Exact H].
Qed.
(*******************************)
(** PowerRZ *)
(*******************************)
(*i Due to L.Thery i*)
Tactic Definition CaseEqk name :=
Generalize (refl_equal ? name); Pattern -1 name; Case name.
Definition powerRZ :=
[x : R] [n : Z] Cases n of
ZERO => R1
| (POS p) => (pow x (convert p))
| (NEG p) => (Rinv (pow x (convert p)))
end.
Infix Local "^Z" powerRZ (at level 2, left associativity) : R_scope.
Lemma Zpower_NR0:
(x : Z) (n : nat) (Zle ZERO x) -> (Zle ZERO (Zpower_nat x n)).
Proof.
NewInduction n; Unfold Zpower_nat; Simpl; Auto with zarith.
Qed.
Lemma powerRZ_O: (x : R) (powerRZ x ZERO) == R1.
Proof.
Reflexivity.
Qed.
Lemma powerRZ_1: (x : R) (powerRZ x (Zs ZERO)) == x.
Proof.
Simpl; Auto with real.
Qed.
Lemma powerRZ_NOR: (x : R) (z : Z) ~ x == R0 -> ~ (powerRZ x z) == R0.
Proof.
NewDestruct z; Simpl; Auto with real.
Qed.
Lemma powerRZ_add:
(x : R)
(n, m : Z)
~ x == R0 -> (powerRZ x (Zplus n m)) == (Rmult (powerRZ x n) (powerRZ x m)).
Proof.
Intro x; NewDestruct n as [|n1|n1]; NewDestruct m as [|m1|m1]; Simpl;
Auto with real.
(* POS/POS *)
Rewrite convert_add; Auto with real.
(* POS/NEG *)
(CaseEqk '(compare n1 m1 EGAL)); Simpl; Auto with real.
Intros H' H'0; Rewrite compare_convert_EGAL with 1 := H'; Auto with real.
Intros H' H'0; Rewrite (true_sub_convert m1 n1); Auto with real.
Rewrite (pow_RN_plus x (minus (convert m1) (convert n1)) (convert n1));
Auto with real.
Rewrite plus_sym; Rewrite le_plus_minus_r; Auto with real.
Rewrite Rinv_Rmult; Auto with real.
Rewrite Rinv_Rinv; Auto with real.
Apply lt_le_weak.
Apply compare_convert_INFERIEUR; Auto.
Apply ZC2; Auto.
Intros H' H'0; Rewrite (true_sub_convert n1 m1); Auto with real.
Rewrite (pow_RN_plus x (minus (convert n1) (convert m1)) (convert m1));
Auto with real.
Rewrite plus_sym; Rewrite le_plus_minus_r; Auto with real.
Apply lt_le_weak.
Change (gt (convert n1) (convert m1)).
Apply compare_convert_SUPERIEUR; Auto.
(* NEG/POS *)
(CaseEqk '(compare n1 m1 EGAL)); Simpl; Auto with real.
Intros H' H'0; Rewrite compare_convert_EGAL with 1 := H'; Auto with real.
Intros H' H'0; Rewrite (true_sub_convert m1 n1); Auto with real.
Rewrite (pow_RN_plus x (minus (convert m1) (convert n1)) (convert n1));
Auto with real.
Rewrite plus_sym; Rewrite le_plus_minus_r; Auto with real.
Apply lt_le_weak.
Apply compare_convert_INFERIEUR; Auto.
Apply ZC2; Auto.
Intros H' H'0; Rewrite (true_sub_convert n1 m1); Auto with real.
Rewrite (pow_RN_plus x (minus (convert n1) (convert m1)) (convert m1));
Auto with real.
Rewrite plus_sym; Rewrite le_plus_minus_r; Auto with real.
Rewrite Rinv_Rmult; Auto with real.
Apply lt_le_weak.
Change (gt (convert n1) (convert m1)).
Apply compare_convert_SUPERIEUR; Auto.
(* NEG/NEG *)
Rewrite convert_add; Auto with real.
Intros H'; Rewrite pow_add; Auto with real.
Apply Rinv_Rmult; Auto.
Apply pow_nonzero; Auto.
Apply pow_nonzero; Auto.
Qed.
Hints Resolve powerRZ_O powerRZ_1 powerRZ_NOR powerRZ_add :real.
Lemma Zpower_nat_powerRZ:
(n, m : nat)
(IZR (Zpower_nat (inject_nat n) m)) == (powerRZ (INR n) (inject_nat m)).
Proof.
Intros n m; Elim m; Simpl; Auto with real.
Intros m1 H'; Rewrite bij1; Simpl.
Replace (Zpower_nat (inject_nat n) (S m1))
with (Zmult (inject_nat n) (Zpower_nat (inject_nat n) m1)).
Rewrite mult_IZR; Auto with real.
Repeat Rewrite <- INR_IZR_INZ; Simpl.
Rewrite H'; Simpl.
Case m1; Simpl; Auto with real.
Intros m2; Rewrite bij1; Auto.
Unfold Zpower_nat; Auto.
Qed.
Lemma powerRZ_lt: (x : R) (z : Z) (Rlt R0 x) -> (Rlt R0 (powerRZ x z)).
Proof.
Intros x z; Case z; Simpl; Auto with real.
Qed.
Hints Resolve powerRZ_lt :real.
Lemma powerRZ_le: (x : R) (z : Z) (Rlt R0 x) -> (Rle R0 (powerRZ x z)).
Proof.
Intros x z H'; Apply Rlt_le; Auto with real.
Qed.
Hints Resolve powerRZ_le :real.
Lemma Zpower_nat_powerRZ_absolu:
(n, m : Z)
(Zle ZERO m) -> (IZR (Zpower_nat n (absolu m))) == (powerRZ (IZR n) m).
Proof.
Intros n m; Case m; Simpl; Auto with zarith.
Intros p H'; Elim (convert p); Simpl; Auto with zarith.
Intros n0 H'0; Rewrite <- H'0; Simpl; Auto with zarith.
Rewrite <- mult_IZR; Auto.
Intros p H'; Absurd `0 <= (NEG p)`;Auto with zarith.
Qed.
Lemma powerRZ_R1: (n : Z) (powerRZ R1 n) == R1.
Proof.
Intros n; Case n; Simpl; Auto.
Intros p; Elim (convert p); Simpl; Auto; Intros n0 H'; Rewrite H'; Ring.
Intros p; Elim (convert p); Simpl.
Exact Rinv_R1.
Intros n1 H'; Rewrite Rinv_Rmult; Try Rewrite Rinv_R1; Try Rewrite H';
Auto with real.
Qed.
(*******************************)
(** Sum of n first naturals *)
(*******************************)
(*********)
Fixpoint sum_nat_f_O [f:nat->nat;n:nat]:nat:=
Cases n of
O => (f O)
|(S n') => (plus (sum_nat_f_O f n') (f (S n')))
end.
(*********)
Definition sum_nat_f [s,n:nat;f:nat->nat]:nat:=
(sum_nat_f_O [x:nat](f (plus x s)) (minus n s)).
(*********)
Definition sum_nat_O [n:nat]:nat:=
(sum_nat_f_O [x:nat]x n).
(*********)
Definition sum_nat [s,n:nat]:nat:=
(sum_nat_f s n [x:nat]x).
(*******************************)
(** Sum *)
(*******************************)
(*********)
Fixpoint sum_f_R0 [f:nat->R;N:nat]:R:=
Cases N of
O => (f O)
|(S i) => (Rplus (sum_f_R0 f i) (f (S i)))
end.
(*********)
Definition sum_f [s,n:nat;f:nat->R]:R:=
(sum_f_R0 [x:nat](f (plus x s)) (minus n s)).
Lemma GP_finite:
(x:R) (n:nat) (Rmult (sum_f_R0 [n:nat] (pow x n) n)
(Rminus x R1)) ==
(Rminus (pow x (plus n (1))) R1).
Proof.
Intros; Induction n; Simpl.
Ring.
Rewrite Rmult_Rplus_distrl;Rewrite Hrecn;Cut (plus n (1))=(S n).
Intro H;Rewrite H;Simpl;Ring.
Omega.
Qed.
Lemma sum_f_R0_triangle:
(x:nat->R)(n:nat) (Rle (Rabsolu (sum_f_R0 x n))
(sum_f_R0 [i:nat] (Rabsolu (x i)) n)).
Proof.
Intro; Induction n; Simpl.
Unfold Rle; Right; Reflexivity.
Intro m; Intro;Apply (Rle_trans
(Rabsolu (Rplus (sum_f_R0 x m) (x (S m))))
(Rplus (Rabsolu (sum_f_R0 x m))
(Rabsolu (x (S m))))
(Rplus (sum_f_R0 [i:nat](Rabsolu (x i)) m)
(Rabsolu (x (S m))))).
Apply Rabsolu_triang.
Rewrite Rplus_sym;Rewrite (Rplus_sym
(sum_f_R0 [i:nat](Rabsolu (x i)) m) (Rabsolu (x (S m))));
Apply Rle_compatibility;Assumption.
Qed.
(*******************************)
(* Distance in R *)
(*******************************)
(*********)
Definition R_dist:R->R->R:=[x,y:R](Rabsolu (Rminus x y)).
(*********)
Lemma R_dist_pos:(x,y:R)(Rge (R_dist x y) R0).
Proof.
Intros;Unfold R_dist;Unfold Rabsolu;Case (case_Rabsolu (Rminus x y));Intro l.
Unfold Rge;Left;Apply (Rlt_RoppO (Rminus x y) l).
Trivial.
Qed.
(*********)
Lemma R_dist_sym:(x,y:R)(R_dist x y)==(R_dist y x).
Proof.
Unfold R_dist;Intros;SplitAbsolu;Ring.
Generalize (Rlt_RoppO (Rminus y x) r); Intro;
Rewrite (Ropp_distr2 y x) in H;
Generalize (Rlt_antisym (Rminus x y) R0 r0); Intro;Unfold Rgt in H;
ElimType False; Auto.
Generalize (minus_Rge y x r); Intro;
Generalize (minus_Rge x y r0); Intro;
Generalize (Rge_ge_eq x y H0 H); Intro;Rewrite H1;Ring.
Qed.
(*********)
Lemma R_dist_refl:(x,y:R)((R_dist x y)==R0<->x==y).
Proof.
Unfold R_dist;Intros;SplitAbsolu;Split;Intros.
Rewrite (Ropp_distr2 x y) in H;Apply sym_eqT;
Apply (Rminus_eq y x H).
Rewrite (Ropp_distr2 x y);Generalize (sym_eqT R x y H);Intro;
Apply (eq_Rminus y x H0).
Apply (Rminus_eq x y H).
Apply (eq_Rminus x y H).
Qed.
Lemma R_dist_eq:(x:R)(R_dist x x)==R0.
Proof.
Unfold R_dist;Intros;SplitAbsolu;Intros;Ring.
Qed.
(***********)
Lemma R_dist_tri:(x,y,z:R)(Rle (R_dist x y)
(Rplus (R_dist x z) (R_dist z y))).
Proof.
Intros;Unfold R_dist; Replace ``x-y`` with ``(x-z)+(z-y)``;
[Apply (Rabsolu_triang ``x-z`` ``z-y``)|Ring].
Qed.
(*********)
Lemma R_dist_plus: (a,b,c,d:R)(Rle (R_dist (Rplus a c) (Rplus b d))
(Rplus (R_dist a b) (R_dist c d))).
Proof.
Intros;Unfold R_dist;
Replace (Rminus (Rplus a c) (Rplus b d))
with (Rplus (Rminus a b) (Rminus c d)).
Exact (Rabsolu_triang (Rminus a b) (Rminus c d)).
Ring.
Qed.
(*******************************)
(** Infinit Sum *)
(*******************************)
(*********)
Definition infinit_sum:(nat->R)->R->Prop:=[s:nat->R;l:R]
(eps:R)(Rgt eps R0)->
(Ex[N:nat](n:nat)(ge n N)->(Rlt (R_dist (sum_f_R0 s n) l) eps)).
|