1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: Rtopology.v,v 1.1.2.1 2004/07/16 19:31:35 herbelin Exp $ i*)
Require Rbase.
Require Rfunctions.
Require Ranalysis1.
Require RList.
Require Classical_Prop.
Require Classical_Pred_Type.
V7only [Import R_scope.]. Open Local Scope R_scope.
Definition included [D1,D2:R->Prop] : Prop := (x:R)(D1 x)->(D2 x).
Definition disc [x:R;delta:posreal] : R->Prop := [y:R]``(Rabsolu (y-x))<delta``.
Definition neighbourhood [V:R->Prop;x:R] : Prop := (EXT delta:posreal | (included (disc x delta) V)).
Definition open_set [D:R->Prop] : Prop := (x:R) (D x)->(neighbourhood D x).
Definition complementary [D:R->Prop] : R->Prop := [c:R]~(D c).
Definition closed_set [D:R->Prop] : Prop := (open_set (complementary D)).
Definition intersection_domain [D1,D2:R->Prop] : R->Prop := [c:R](D1 c)/\(D2 c).
Definition union_domain [D1,D2:R->Prop] : R->Prop := [c:R](D1 c)\/(D2 c).
Definition interior [D:R->Prop] : R->Prop := [x:R](neighbourhood D x).
Lemma interior_P1 : (D:R->Prop) (included (interior D) D).
Intros; Unfold included; Unfold interior; Intros; Unfold neighbourhood in H; Elim H; Intros; Unfold included in H0; Apply H0; Unfold disc; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Apply (cond_pos x0).
Qed.
Lemma interior_P2 : (D:R->Prop) (open_set D) -> (included D (interior D)).
Intros; Unfold open_set in H; Unfold included; Intros; Assert H1 := (H ? H0); Unfold interior; Apply H1.
Qed.
Definition point_adherent [D:R->Prop;x:R] : Prop := (V:R->Prop) (neighbourhood V x) -> (EXT y:R | (intersection_domain V D y)).
Definition adherence [D:R->Prop] : R->Prop := [x:R](point_adherent D x).
Lemma adherence_P1 : (D:R->Prop) (included D (adherence D)).
Intro; Unfold included; Intros; Unfold adherence; Unfold point_adherent; Intros; Exists x; Unfold intersection_domain; Split.
Unfold neighbourhood in H0; Elim H0; Intros; Unfold included in H1; Apply H1; Unfold disc; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Apply (cond_pos x0).
Apply H.
Qed.
Lemma included_trans : (D1,D2,D3:R->Prop) (included D1 D2) -> (included D2 D3) -> (included D1 D3).
Unfold included; Intros; Apply H0; Apply H; Apply H1.
Qed.
Lemma interior_P3 : (D:R->Prop) (open_set (interior D)).
Intro; Unfold open_set interior; Unfold neighbourhood; Intros; Elim H; Intros.
Exists x0; Unfold included; Intros.
Pose del := ``x0-(Rabsolu (x-x1))``.
Cut ``0<del``.
Intro; Exists (mkposreal del H2); Intros.
Cut (included (disc x1 (mkposreal del H2)) (disc x x0)).
Intro; Assert H5 := (included_trans ? ? ? H4 H0).
Apply H5; Apply H3.
Unfold included; Unfold disc; Intros.
Apply Rle_lt_trans with ``(Rabsolu (x3-x1))+(Rabsolu (x1-x))``.
Replace ``x3-x`` with ``(x3-x1)+(x1-x)``; [Apply Rabsolu_triang | Ring].
Replace (pos x0) with ``del+(Rabsolu (x1-x))``.
Do 2 Rewrite <- (Rplus_sym (Rabsolu ``x1-x``)); Apply Rlt_compatibility; Apply H4.
Unfold del; Rewrite <- (Rabsolu_Ropp ``x-x1``); Rewrite Ropp_distr2; Ring.
Unfold del; Apply Rlt_anti_compatibility with ``(Rabsolu (x-x1))``; Rewrite Rplus_Or; Replace ``(Rabsolu (x-x1))+(x0-(Rabsolu (x-x1)))`` with (pos x0); [Idtac | Ring].
Unfold disc in H1; Rewrite <- Rabsolu_Ropp; Rewrite Ropp_distr2; Apply H1.
Qed.
Lemma complementary_P1 : (D:R->Prop) ~(EXT y:R | (intersection_domain D (complementary D) y)).
Intro; Red; Intro; Elim H; Intros; Unfold intersection_domain complementary in H0; Elim H0; Intros; Elim H2; Assumption.
Qed.
Lemma adherence_P2 : (D:R->Prop) (closed_set D) -> (included (adherence D) D).
Unfold closed_set; Unfold open_set complementary; Intros; Unfold included adherence; Intros; Assert H1 := (classic (D x)); Elim H1; Intro.
Assumption.
Assert H3 := (H ? H2); Assert H4 := (H0 ? H3); Elim H4; Intros; Unfold intersection_domain in H5; Elim H5; Intros; Elim H6; Assumption.
Qed.
Lemma adherence_P3 : (D:R->Prop) (closed_set (adherence D)).
Intro; Unfold closed_set adherence; Unfold open_set complementary point_adherent; Intros; Pose P := [V:R->Prop](neighbourhood V x)->(EXT y:R | (intersection_domain V D y)); Assert H0 := (not_all_ex_not ? P H); Elim H0; Intros V0 H1; Unfold P in H1; Assert H2 := (imply_to_and ? ? H1); Unfold neighbourhood; Elim H2; Intros; Unfold neighbourhood in H3; Elim H3; Intros; Exists x0; Unfold included; Intros; Red; Intro.
Assert H8 := (H7 V0); Cut (EXT delta:posreal | (x:R)(disc x1 delta x)->(V0 x)).
Intro; Assert H10 := (H8 H9); Elim H4; Assumption.
Cut ``0<x0-(Rabsolu (x-x1))``.
Intro; Pose del := (mkposreal ? H9); Exists del; Intros; Unfold included in H5; Apply H5; Unfold disc; Apply Rle_lt_trans with ``(Rabsolu (x2-x1))+(Rabsolu (x1-x))``.
Replace ``x2-x`` with ``(x2-x1)+(x1-x)``; [Apply Rabsolu_triang | Ring].
Replace (pos x0) with ``del+(Rabsolu (x1-x))``.
Do 2 Rewrite <- (Rplus_sym ``(Rabsolu (x1-x))``); Apply Rlt_compatibility; Apply H10.
Unfold del; Simpl; Rewrite <- (Rabsolu_Ropp ``x-x1``); Rewrite Ropp_distr2; Ring.
Apply Rlt_anti_compatibility with ``(Rabsolu (x-x1))``; Rewrite Rplus_Or; Replace ``(Rabsolu (x-x1))+(x0-(Rabsolu (x-x1)))`` with (pos x0); [Rewrite <- Rabsolu_Ropp; Rewrite Ropp_distr2; Apply H6 | Ring].
Qed.
Definition eq_Dom [D1,D2:R->Prop] : Prop := (included D1 D2)/\(included D2 D1).
Infix "=_D" eq_Dom (at level 5, no associativity).
Lemma open_set_P1 : (D:R->Prop) (open_set D) <-> D =_D (interior D).
Intro; Split.
Intro; Unfold eq_Dom; Split.
Apply interior_P2; Assumption.
Apply interior_P1.
Intro; Unfold eq_Dom in H; Elim H; Clear H; Intros; Unfold open_set; Intros; Unfold included interior in H; Unfold included in H0; Apply (H ? H1).
Qed.
Lemma closed_set_P1 : (D:R->Prop) (closed_set D) <-> D =_D (adherence D).
Intro; Split.
Intro; Unfold eq_Dom; Split.
Apply adherence_P1.
Apply adherence_P2; Assumption.
Unfold eq_Dom; Unfold included; Intros; Assert H0 := (adherence_P3 D); Unfold closed_set in H0; Unfold closed_set; Unfold open_set; Unfold open_set in H0; Intros; Assert H2 : (complementary (adherence D) x).
Unfold complementary; Unfold complementary in H1; Red; Intro; Elim H; Clear H; Intros _ H; Elim H1; Apply (H ? H2).
Assert H3 := (H0 ? H2); Unfold neighbourhood; Unfold neighbourhood in H3; Elim H3; Intros; Exists x0; Unfold included; Unfold included in H4; Intros; Assert H6 := (H4 ? H5); Unfold complementary in H6; Unfold complementary; Red; Intro; Elim H; Clear H; Intros H _; Elim H6; Apply (H ? H7).
Qed.
Lemma neighbourhood_P1 : (D1,D2:R->Prop;x:R) (included D1 D2) -> (neighbourhood D1 x) -> (neighbourhood D2 x).
Unfold included neighbourhood; Intros; Elim H0; Intros; Exists x0; Intros; Unfold included; Unfold included in H1; Intros; Apply (H ? (H1 ? H2)).
Qed.
Lemma open_set_P2 : (D1,D2:R->Prop) (open_set D1) -> (open_set D2) -> (open_set (union_domain D1 D2)).
Unfold open_set; Intros; Unfold union_domain in H1; Elim H1; Intro.
Apply neighbourhood_P1 with D1.
Unfold included union_domain; Tauto.
Apply H; Assumption.
Apply neighbourhood_P1 with D2.
Unfold included union_domain; Tauto.
Apply H0; Assumption.
Qed.
Lemma open_set_P3 : (D1,D2:R->Prop) (open_set D1) -> (open_set D2) -> (open_set (intersection_domain D1 D2)).
Unfold open_set; Intros; Unfold intersection_domain in H1; Elim H1; Intros.
Assert H4 := (H ? H2); Assert H5 := (H0 ? H3); Unfold intersection_domain; Unfold neighbourhood in H4 H5; Elim H4; Clear H; Intros del1 H; Elim H5; Clear H0; Intros del2 H0; Cut ``0<(Rmin del1 del2)``.
Intro; Pose del := (mkposreal ? H6).
Exists del; Unfold included; Intros; Unfold included in H H0; Unfold disc in H H0 H7.
Split.
Apply H; Apply Rlt_le_trans with (pos del).
Apply H7.
Unfold del; Simpl; Apply Rmin_l.
Apply H0; Apply Rlt_le_trans with (pos del).
Apply H7.
Unfold del; Simpl; Apply Rmin_r.
Unfold Rmin; Case (total_order_Rle del1 del2); Intro.
Apply (cond_pos del1).
Apply (cond_pos del2).
Qed.
Lemma open_set_P4 : (open_set [x:R]False).
Unfold open_set; Intros; Elim H.
Qed.
Lemma open_set_P5 : (open_set [x:R]True).
Unfold open_set; Intros; Unfold neighbourhood.
Exists (mkposreal R1 Rlt_R0_R1); Unfold included; Intros; Trivial.
Qed.
Lemma disc_P1 : (x:R;del:posreal) (open_set (disc x del)).
Intros; Assert H := (open_set_P1 (disc x del)).
Elim H; Intros; Apply H1.
Unfold eq_Dom; Split.
Unfold included interior disc; Intros; Cut ``0<del-(Rabsolu (x-x0))``.
Intro; Pose del2 := (mkposreal ? H3).
Exists del2; Unfold included; Intros.
Apply Rle_lt_trans with ``(Rabsolu (x1-x0))+(Rabsolu (x0 -x))``.
Replace ``x1-x`` with ``(x1-x0)+(x0-x)``; [Apply Rabsolu_triang | Ring].
Replace (pos del) with ``del2 + (Rabsolu (x0-x))``.
Do 2 Rewrite <- (Rplus_sym ``(Rabsolu (x0-x))``); Apply Rlt_compatibility.
Apply H4.
Unfold del2; Simpl; Rewrite <- (Rabsolu_Ropp ``x-x0``); Rewrite Ropp_distr2; Ring.
Apply Rlt_anti_compatibility with ``(Rabsolu (x-x0))``; Rewrite Rplus_Or; Replace ``(Rabsolu (x-x0))+(del-(Rabsolu (x-x0)))`` with (pos del); [Rewrite <- Rabsolu_Ropp; Rewrite Ropp_distr2; Apply H2 | Ring].
Apply interior_P1.
Qed.
Lemma continuity_P1 : (f:R->R;x:R) (continuity_pt f x) <-> (W:R->Prop)(neighbourhood W (f x)) -> (EXT V:R->Prop | (neighbourhood V x) /\ ((y:R)(V y)->(W (f y)))).
Intros; Split.
Intros; Unfold neighbourhood in H0.
Elim H0; Intros del1 H1.
Unfold continuity_pt in H; Unfold continue_in in H; Unfold limit1_in in H; Unfold limit_in in H; Simpl in H; Unfold R_dist in H.
Assert H2 := (H del1 (cond_pos del1)).
Elim H2; Intros del2 H3.
Elim H3; Intros.
Exists (disc x (mkposreal del2 H4)).
Intros; Unfold included in H1; Split.
Unfold neighbourhood disc.
Exists (mkposreal del2 H4).
Unfold included; Intros; Assumption.
Intros; Apply H1; Unfold disc; Case (Req_EM y x); Intro.
Rewrite H7; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Apply (cond_pos del1).
Apply H5; Split.
Unfold D_x no_cond; Split.
Trivial.
Apply not_sym; Apply H7.
Unfold disc in H6; Apply H6.
Intros; Unfold continuity_pt; Unfold continue_in; Unfold limit1_in; Unfold limit_in; Intros.
Assert H1 := (H (disc (f x) (mkposreal eps H0))).
Cut (neighbourhood (disc (f x) (mkposreal eps H0)) (f x)).
Intro; Assert H3 := (H1 H2).
Elim H3; Intros D H4; Elim H4; Intros; Unfold neighbourhood in H5; Elim H5; Intros del1 H7.
Exists (pos del1); Split.
Apply (cond_pos del1).
Intros; Elim H8; Intros; Simpl in H10; Unfold R_dist in H10; Simpl; Unfold R_dist; Apply (H6 ? (H7 ? H10)).
Unfold neighbourhood disc; Exists (mkposreal eps H0); Unfold included; Intros; Assumption.
Qed.
Definition image_rec [f:R->R;D:R->Prop] : R->Prop := [x:R](D (f x)).
(**********)
Lemma continuity_P2 : (f:R->R;D:R->Prop) (continuity f) -> (open_set D) -> (open_set (image_rec f D)).
Intros; Unfold open_set in H0; Unfold open_set; Intros; Assert H2 := (continuity_P1 f x); Elim H2; Intros H3 _; Assert H4 := (H3 (H x)); Unfold neighbourhood image_rec; Unfold image_rec in H1; Assert H5 := (H4 D (H0 (f x) H1)); Elim H5; Intros V0 H6; Elim H6; Intros; Unfold neighbourhood in H7; Elim H7; Intros del H9; Exists del; Unfold included in H9; Unfold included; Intros; Apply (H8 ? (H9 ? H10)).
Qed.
(**********)
Lemma continuity_P3 : (f:R->R) (continuity f) <-> (D:R->Prop) (open_set D)->(open_set (image_rec f D)).
Intros; Split.
Intros; Apply continuity_P2; Assumption.
Intros; Unfold continuity; Unfold continuity_pt; Unfold continue_in; Unfold limit1_in; Unfold limit_in; Simpl; Unfold R_dist; Intros; Cut (open_set (disc (f x) (mkposreal ? H0))).
Intro; Assert H2 := (H ? H1).
Unfold open_set image_rec in H2; Cut (disc (f x) (mkposreal ? H0) (f x)).
Intro; Assert H4 := (H2 ? H3).
Unfold neighbourhood in H4; Elim H4; Intros del H5.
Exists (pos del); Split.
Apply (cond_pos del).
Intros; Unfold included in H5; Apply H5; Elim H6; Intros; Apply H8.
Unfold disc; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Apply H0.
Apply disc_P1.
Qed.
(**********)
Theorem Rsepare : (x,y:R) ``x<>y``->(EXT V:R->Prop | (EXT W:R->Prop | (neighbourhood V x)/\(neighbourhood W y)/\~(EXT y:R | (intersection_domain V W y)))).
Intros x y Hsep; Pose D := ``(Rabsolu (x-y))``.
Cut ``0<D/2``.
Intro; Exists (disc x (mkposreal ? H)).
Exists (disc y (mkposreal ? H)); Split.
Unfold neighbourhood; Exists (mkposreal ? H); Unfold included; Tauto.
Split.
Unfold neighbourhood; Exists (mkposreal ? H); Unfold included; Tauto.
Red; Intro; Elim H0; Intros; Unfold intersection_domain in H1; Elim H1; Intros.
Cut ``D<D``.
Intro; Elim (Rlt_antirefl ? H4).
Change ``(Rabsolu (x-y))<D``; Apply Rle_lt_trans with ``(Rabsolu (x-x0))+(Rabsolu (x0-y))``.
Replace ``x-y`` with ``(x-x0)+(x0-y)``; [Apply Rabsolu_triang | Ring].
Rewrite (double_var D); Apply Rplus_lt.
Rewrite <- Rabsolu_Ropp; Rewrite Ropp_distr2; Apply H2.
Apply H3.
Unfold Rdiv; Apply Rmult_lt_pos.
Unfold D; Apply Rabsolu_pos_lt; Apply (Rminus_eq_contra ? ? Hsep).
Apply Rlt_Rinv; Sup0.
Qed.
Record family : Type := mkfamily {
ind : R->Prop;
f :> R->R->Prop;
cond_fam : (x:R)(EXT y:R|(f x y))->(ind x) }.
Definition family_open_set [f:family] : Prop := (x:R) (open_set (f x)).
Definition domain_finite [D:R->Prop] : Prop := (EXT l:Rlist | (x:R)(D x)<->(In x l)).
Definition family_finite [f:family] : Prop := (domain_finite (ind f)).
Definition covering [D:R->Prop;f:family] : Prop := (x:R) (D x)->(EXT y:R | (f y x)).
Definition covering_open_set [D:R->Prop;f:family] : Prop := (covering D f)/\(family_open_set f).
Definition covering_finite [D:R->Prop;f:family] : Prop := (covering D f)/\(family_finite f).
Lemma restriction_family : (f:family;D:R->Prop) (x:R)(EXT y:R|([z1:R][z2:R](f z1 z2)/\(D z1) x y))->(intersection_domain (ind f) D x).
Intros; Elim H; Intros; Unfold intersection_domain; Elim H0; Intros; Split.
Apply (cond_fam f0); Exists x0; Assumption.
Assumption.
Qed.
Definition subfamily [f:family;D:R->Prop] : family := (mkfamily (intersection_domain (ind f) D) [x:R][y:R](f x y)/\(D x) (restriction_family f D)).
Definition compact [X:R->Prop] : Prop := (f:family) (covering_open_set X f) -> (EXT D:R->Prop | (covering_finite X (subfamily f D))).
(**********)
Lemma family_P1 : (f:family;D:R->Prop) (family_open_set f) -> (family_open_set (subfamily f D)).
Unfold family_open_set; Intros; Unfold subfamily; Simpl; Assert H0 := (classic (D x)).
Elim H0; Intro.
Cut (open_set (f0 x))->(open_set [y:R](f0 x y)/\(D x)).
Intro; Apply H2; Apply H.
Unfold open_set; Unfold neighbourhood; Intros; Elim H3; Intros; Assert H6 := (H2 ? H4); Elim H6; Intros; Exists x1; Unfold included; Intros; Split.
Apply (H7 ? H8).
Assumption.
Cut (open_set [y:R]False) -> (open_set [y:R](f0 x y)/\(D x)).
Intro; Apply H2; Apply open_set_P4.
Unfold open_set; Unfold neighbourhood; Intros; Elim H3; Intros; Elim H1; Assumption.
Qed.
Definition bounded [D:R->Prop] : Prop := (EXT m:R | (EXT M:R | (x:R)(D x)->``m<=x<=M``)).
Lemma open_set_P6 : (D1,D2:R->Prop) (open_set D1) -> D1 =_D D2 -> (open_set D2).
Unfold open_set; Unfold neighbourhood; Intros.
Unfold eq_Dom in H0; Elim H0; Intros.
Assert H4 := (H ? (H3 ? H1)).
Elim H4; Intros.
Exists x0; Apply included_trans with D1; Assumption.
Qed.
(**********)
Lemma compact_P1 : (X:R->Prop) (compact X) -> (bounded X).
Intros; Unfold compact in H; Pose D := [x:R]True; Pose g := [x:R][y:R]``(Rabsolu y)<x``; Cut (x:R)(EXT y|(g x y))->True; [Intro | Intro; Trivial].
Pose f0 := (mkfamily D g H0); Assert H1 := (H f0); Cut (covering_open_set X f0).
Intro; Assert H3 := (H1 H2); Elim H3; Intros D' H4; Unfold covering_finite in H4; Elim H4; Intros; Unfold family_finite in H6; Unfold domain_finite in H6; Elim H6; Intros l H7; Unfold bounded; Pose r := (MaxRlist l).
Exists ``-r``; Exists r; Intros.
Unfold covering in H5; Assert H9 := (H5 ? H8); Elim H9; Intros; Unfold subfamily in H10; Simpl in H10; Elim H10; Intros; Assert H13 := (H7 x0); Simpl in H13; Cut (intersection_domain D D' x0).
Elim H13; Clear H13; Intros.
Assert H16 := (H13 H15); Unfold g in H11; Split.
Cut ``x0<=r``.
Intro; Cut ``(Rabsolu x)<r``.
Intro; Assert H19 := (Rabsolu_def2 x r H18); Elim H19; Intros; Left; Assumption.
Apply Rlt_le_trans with x0; Assumption.
Apply (MaxRlist_P1 l x0 H16).
Cut ``x0<=r``.
Intro; Apply Rle_trans with (Rabsolu x).
Apply Rle_Rabsolu.
Apply Rle_trans with x0.
Left; Apply H11.
Assumption.
Apply (MaxRlist_P1 l x0 H16).
Unfold intersection_domain D; Tauto.
Unfold covering_open_set; Split.
Unfold covering; Intros; Simpl; Exists ``(Rabsolu x)+1``; Unfold g; Pattern 1 (Rabsolu x); Rewrite <- Rplus_Or; Apply Rlt_compatibility; Apply Rlt_R0_R1.
Unfold family_open_set; Intro; Case (total_order R0 x); Intro.
Apply open_set_P6 with (disc R0 (mkposreal ? H2)).
Apply disc_P1.
Unfold eq_Dom; Unfold f0; Simpl; Unfold g disc; Split.
Unfold included; Intros; Unfold Rminus in H3; Rewrite Ropp_O in H3; Rewrite Rplus_Or in H3; Apply H3.
Unfold included; Intros; Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Apply H3.
Apply open_set_P6 with [x:R]False.
Apply open_set_P4.
Unfold eq_Dom; Split.
Unfold included; Intros; Elim H3.
Unfold included f0; Simpl; Unfold g; Intros; Elim H2; Intro; [Rewrite <- H4 in H3; Assert H5 := (Rabsolu_pos x0); Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H5 H3)) | Assert H6 := (Rabsolu_pos x0); Assert H7 := (Rlt_trans ? ? ? H3 H4); Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H6 H7))].
Qed.
(**********)
Lemma compact_P2 : (X:R->Prop) (compact X) -> (closed_set X).
Intros; Assert H0 := (closed_set_P1 X); Elim H0; Clear H0; Intros _ H0; Apply H0; Clear H0.
Unfold eq_Dom; Split.
Apply adherence_P1.
Unfold included; Unfold adherence; Unfold point_adherent; Intros; Unfold compact in H; Assert H1 := (classic (X x)); Elim H1; Clear H1; Intro.
Assumption.
Cut (y:R)(X y)->``0<(Rabsolu (y-x))/2``.
Intro; Pose D := X; Pose g := [y:R][z:R]``(Rabsolu (y-z))<(Rabsolu (y-x))/2``/\(D y); Cut (x:R)(EXT y|(g x y))->(D x).
Intro; Pose f0 := (mkfamily D g H3); Assert H4 := (H f0); Cut (covering_open_set X f0).
Intro; Assert H6 := (H4 H5); Elim H6; Clear H6; Intros D' H6.
Unfold covering_finite in H6; Decompose [and] H6; Unfold covering subfamily in H7; Simpl in H7; Unfold family_finite subfamily in H8; Simpl in H8; Unfold domain_finite in H8; Elim H8; Clear H8; Intros l H8; Pose alp := (MinRlist (AbsList l x)); Cut ``0<alp``.
Intro; Assert H10 := (H0 (disc x (mkposreal ? H9))); Cut (neighbourhood (disc x (mkposreal alp H9)) x).
Intro; Assert H12 := (H10 H11); Elim H12; Clear H12; Intros y H12; Unfold intersection_domain in H12; Elim H12; Clear H12; Intros; Assert H14 := (H7 ? H13); Elim H14; Clear H14; Intros y0 H14; Elim H14; Clear H14; Intros; Unfold g in H14; Elim H14; Clear H14; Intros; Unfold disc in H12; Simpl in H12; Cut ``alp<=(Rabsolu (y0-x))/2``.
Intro; Assert H18 := (Rlt_le_trans ? ? ? H12 H17); Cut ``(Rabsolu (y0-x))<(Rabsolu (y0-x))``.
Intro; Elim (Rlt_antirefl ? H19).
Apply Rle_lt_trans with ``(Rabsolu (y0-y))+(Rabsolu (y-x))``.
Replace ``y0-x`` with ``(y0-y)+(y-x)``; [Apply Rabsolu_triang | Ring].
Rewrite (double_var ``(Rabsolu (y0-x))``); Apply Rplus_lt; Assumption.
Apply (MinRlist_P1 (AbsList l x) ``(Rabsolu (y0-x))/2``); Apply AbsList_P1; Elim (H8 y0); Clear H8; Intros; Apply H8; Unfold intersection_domain; Split; Assumption.
Assert H11 := (disc_P1 x (mkposreal alp H9)); Unfold open_set in H11; Apply H11.
Unfold disc; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Apply H9.
Unfold alp; Apply MinRlist_P2; Intros; Assert H10 := (AbsList_P2 ? ? ? H9); Elim H10; Clear H10; Intros z H10; Elim H10; Clear H10; Intros; Rewrite H11; Apply H2; Elim (H8 z); Clear H8; Intros; Assert H13 := (H12 H10); Unfold intersection_domain D in H13; Elim H13; Clear H13; Intros; Assumption.
Unfold covering_open_set; Split.
Unfold covering; Intros; Exists x0; Simpl; Unfold g; Split.
Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Unfold Rminus in H2; Apply (H2 ? H5).
Apply H5.
Unfold family_open_set; Intro; Simpl; Unfold g; Elim (classic (D x0)); Intro.
Apply open_set_P6 with (disc x0 (mkposreal ? (H2 ? H5))).
Apply disc_P1.
Unfold eq_Dom; Split.
Unfold included disc; Simpl; Intros; Split.
Rewrite <- (Rabsolu_Ropp ``x0-x1``); Rewrite Ropp_distr2; Apply H6.
Apply H5.
Unfold included disc; Simpl; Intros; Elim H6; Intros; Rewrite <- (Rabsolu_Ropp ``x1-x0``); Rewrite Ropp_distr2; Apply H7.
Apply open_set_P6 with [z:R]False.
Apply open_set_P4.
Unfold eq_Dom; Split.
Unfold included; Intros; Elim H6.
Unfold included; Intros; Elim H6; Intros; Elim H5; Assumption.
Intros; Elim H3; Intros; Unfold g in H4; Elim H4; Clear H4; Intros _ H4; Apply H4.
Intros; Unfold Rdiv; Apply Rmult_lt_pos.
Apply Rabsolu_pos_lt; Apply Rminus_eq_contra; Red; Intro; Rewrite H3 in H2; Elim H1; Apply H2.
Apply Rlt_Rinv; Sup0.
Qed.
(**********)
Lemma compact_EMP : (compact [_:R]False).
Unfold compact; Intros; Exists [x:R]False; Unfold covering_finite; Split.
Unfold covering; Intros; Elim H0.
Unfold family_finite; Unfold domain_finite; Exists nil; Intro.
Split.
Simpl; Unfold intersection_domain; Intros; Elim H0.
Elim H0; Clear H0; Intros _ H0; Elim H0.
Simpl; Intro; Elim H0.
Qed.
Lemma compact_eqDom : (X1,X2:R->Prop) (compact X1) -> X1 =_D X2 -> (compact X2).
Unfold compact; Intros; Unfold eq_Dom in H0; Elim H0; Clear H0; Unfold included; Intros; Assert H3 : (covering_open_set X1 f0).
Unfold covering_open_set; Unfold covering_open_set in H1; Elim H1; Clear H1; Intros; Split.
Unfold covering in H1; Unfold covering; Intros; Apply (H1 ? (H0 ? H4)).
Apply H3.
Elim (H ? H3); Intros D H4; Exists D; Unfold covering_finite; Unfold covering_finite in H4; Elim H4; Intros; Split.
Unfold covering in H5; Unfold covering; Intros; Apply (H5 ? (H2 ? H7)).
Apply H6.
Qed.
(* Borel-Lebesgue's lemma *)
Lemma compact_P3 : (a,b:R) (compact [c:R]``a<=c<=b``).
Intros; Case (total_order_Rle a b); Intro.
Unfold compact; Intros; Pose A := [x:R]``a<=x<=b``/\(EXT D:R->Prop | (covering_finite [c:R]``a <= c <= x`` (subfamily f0 D))); Cut (A a).
Intro; Cut (bound A).
Intro; Cut (EXT a0:R | (A a0)).
Intro; Assert H3 := (complet A H1 H2); Elim H3; Clear H3; Intros m H3; Unfold is_lub in H3; Cut ``a<=m<=b``.
Intro; Unfold covering_open_set in H; Elim H; Clear H; Intros; Unfold covering in H; Assert H6 := (H m H4); Elim H6; Clear H6; Intros y0 H6; Unfold family_open_set in H5; Assert H7 := (H5 y0); Unfold open_set in H7; Assert H8 := (H7 m H6); Unfold neighbourhood in H8; Elim H8; Clear H8; Intros eps H8; Cut (EXT x:R | (A x)/\``m-eps<x<=m``).
Intro; Elim H9; Clear H9; Intros x H9; Elim H9; Clear H9; Intros; Case (Req_EM m b); Intro.
Rewrite H11 in H10; Rewrite H11 in H8; Unfold A in H9; Elim H9; Clear H9; Intros; Elim H12; Clear H12; Intros Dx H12; Pose Db := [x:R](Dx x)\/x==y0; Exists Db; Unfold covering_finite; Split.
Unfold covering; Unfold covering_finite in H12; Elim H12; Clear H12; Intros; Unfold covering in H12; Case (total_order_Rle x0 x); Intro.
Cut ``a<=x0<=x``.
Intro; Assert H16 := (H12 x0 H15); Elim H16; Clear H16; Intros; Exists x1; Simpl in H16; Simpl; Unfold Db; Elim H16; Clear H16; Intros; Split; [Apply H16 | Left; Apply H17].
Split.
Elim H14; Intros; Assumption.
Assumption.
Exists y0; Simpl; Split.
Apply H8; Unfold disc; Rewrite <- Rabsolu_Ropp; Rewrite Ropp_distr2; Rewrite Rabsolu_right.
Apply Rlt_trans with ``b-x``.
Unfold Rminus; Apply Rlt_compatibility; Apply Rlt_Ropp; Auto with real.
Elim H10; Intros H15 _; Apply Rlt_anti_compatibility with ``x-eps``; Replace ``x-eps+(b-x)`` with ``b-eps``; [Replace ``x-eps+eps`` with x; [Apply H15 | Ring] | Ring].
Apply Rge_minus; Apply Rle_sym1; Elim H14; Intros _ H15; Apply H15.
Unfold Db; Right; Reflexivity.
Unfold family_finite; Unfold domain_finite; Unfold covering_finite in H12; Elim H12; Clear H12; Intros; Unfold family_finite in H13; Unfold domain_finite in H13; Elim H13; Clear H13; Intros l H13; Exists (cons y0 l); Intro; Split.
Intro; Simpl in H14; Unfold intersection_domain in H14; Elim (H13 x0); Clear H13; Intros; Case (Req_EM x0 y0); Intro.
Simpl; Left; Apply H16.
Simpl; Right; Apply H13.
Simpl; Unfold intersection_domain; Unfold Db in H14; Decompose [and or] H14.
Split; Assumption.
Elim H16; Assumption.
Intro; Simpl in H14; Elim H14; Intro; Simpl; Unfold intersection_domain.
Split.
Apply (cond_fam f0); Rewrite H15; Exists m; Apply H6.
Unfold Db; Right; Assumption.
Simpl; Unfold intersection_domain; Elim (H13 x0).
Intros _ H16; Assert H17 := (H16 H15); Simpl in H17; Unfold intersection_domain in H17; Split.
Elim H17; Intros; Assumption.
Unfold Db; Left; Elim H17; Intros; Assumption.
Pose m' := (Rmin ``m+eps/2`` b); Cut (A m').
Intro; Elim H3; Intros; Unfold is_upper_bound in H13; Assert H15 := (H13 m' H12); Cut ``m<m'``.
Intro; Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H15 H16)).
Unfold m'; Unfold Rmin; Case (total_order_Rle ``m+eps/2`` b); Intro.
Pattern 1 m; Rewrite <- Rplus_Or; Apply Rlt_compatibility; Unfold Rdiv; Apply Rmult_lt_pos; [Apply (cond_pos eps) | Apply Rlt_Rinv; Sup0].
Elim H4; Intros.
Elim H17; Intro.
Assumption.
Elim H11; Assumption.
Unfold A; Split.
Split.
Apply Rle_trans with m.
Elim H4; Intros; Assumption.
Unfold m'; Unfold Rmin; Case (total_order_Rle ``m+eps/2`` b); Intro.
Pattern 1 m; Rewrite <- Rplus_Or; Apply Rle_compatibility; Left; Unfold Rdiv; Apply Rmult_lt_pos; [Apply (cond_pos eps) | Apply Rlt_Rinv; Sup0].
Elim H4; Intros.
Elim H13; Intro.
Assumption.
Elim H11; Assumption.
Unfold m'; Apply Rmin_r.
Unfold A in H9; Elim H9; Clear H9; Intros; Elim H12; Clear H12; Intros Dx H12; Pose Db := [x:R](Dx x)\/x==y0; Exists Db; Unfold covering_finite; Split.
Unfold covering; Unfold covering_finite in H12; Elim H12; Clear H12; Intros; Unfold covering in H12; Case (total_order_Rle x0 x); Intro.
Cut ``a<=x0<=x``.
Intro; Assert H16 := (H12 x0 H15); Elim H16; Clear H16; Intros; Exists x1; Simpl in H16; Simpl; Unfold Db.
Elim H16; Clear H16; Intros; Split; [Apply H16 | Left; Apply H17].
Elim H14; Intros; Split; Assumption.
Exists y0; Simpl; Split.
Apply H8; Unfold disc; Unfold Rabsolu; Case (case_Rabsolu ``x0-m``); Intro.
Rewrite Ropp_distr2; Apply Rlt_trans with ``m-x``.
Unfold Rminus; Apply Rlt_compatibility; Apply Rlt_Ropp; Auto with real.
Apply Rlt_anti_compatibility with ``x-eps``; Replace ``x-eps+(m-x)`` with ``m-eps``.
Replace ``x-eps+eps`` with x.
Elim H10; Intros; Assumption.
Ring.
Ring.
Apply Rle_lt_trans with ``m'-m``.
Unfold Rminus; Do 2 Rewrite <- (Rplus_sym ``-m``); Apply Rle_compatibility; Elim H14; Intros; Assumption.
Apply Rlt_anti_compatibility with m; Replace ``m+(m'-m)`` with m'.
Apply Rle_lt_trans with ``m+eps/2``.
Unfold m'; Apply Rmin_l.
Apply Rlt_compatibility; Apply Rlt_monotony_contra with ``2``.
Sup0.
Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym.
Rewrite Rmult_1l; Pattern 1 (pos eps); Rewrite <- Rplus_Or; Rewrite double; Apply Rlt_compatibility; Apply (cond_pos eps).
DiscrR.
Ring.
Unfold Db; Right; Reflexivity.
Unfold family_finite; Unfold domain_finite; Unfold covering_finite in H12; Elim H12; Clear H12; Intros; Unfold family_finite in H13; Unfold domain_finite in H13; Elim H13; Clear H13; Intros l H13; Exists (cons y0 l); Intro; Split.
Intro; Simpl in H14; Unfold intersection_domain in H14; Elim (H13 x0); Clear H13; Intros; Case (Req_EM x0 y0); Intro.
Simpl; Left; Apply H16.
Simpl; Right; Apply H13; Simpl; Unfold intersection_domain; Unfold Db in H14; Decompose [and or] H14.
Split; Assumption.
Elim H16; Assumption.
Intro; Simpl in H14; Elim H14; Intro; Simpl; Unfold intersection_domain.
Split.
Apply (cond_fam f0); Rewrite H15; Exists m; Apply H6.
Unfold Db; Right; Assumption.
Elim (H13 x0); Intros _ H16.
Assert H17 := (H16 H15).
Simpl in H17.
Unfold intersection_domain in H17.
Split.
Elim H17; Intros; Assumption.
Unfold Db; Left; Elim H17; Intros; Assumption.
Elim (classic (EXT x:R | (A x)/\``m-eps < x <= m``)); Intro.
Assumption.
Elim H3; Intros; Cut (is_upper_bound A ``m-eps``).
Intro; Assert H13 := (H11 ? H12); Cut ``m-eps<m``.
Intro; Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H13 H14)).
Pattern 2 m; Rewrite <- Rplus_Or; Unfold Rminus; Apply Rlt_compatibility; Apply Ropp_Rlt; Rewrite Ropp_Ropp; Rewrite Ropp_O; Apply (cond_pos eps).
Pose P := [n:R](A n)/\``m-eps<n<=m``; Assert H12 := (not_ex_all_not ? P H9); Unfold P in H12; Unfold is_upper_bound; Intros; Assert H14 := (not_and_or ? ? (H12 x)); Elim H14; Intro.
Elim H15; Apply H13.
Elim (not_and_or ? ? H15); Intro.
Case (total_order_Rle x ``m-eps``); Intro.
Assumption.
Elim H16; Auto with real.
Unfold is_upper_bound in H10; Assert H17 := (H10 x H13); Elim H16; Apply H17.
Elim H3; Clear H3; Intros.
Unfold is_upper_bound in H3.
Split.
Apply (H3 ? H0).
Apply (H4 b); Unfold is_upper_bound; Intros; Unfold A in H5; Elim H5; Clear H5; Intros H5 _; Elim H5; Clear H5; Intros _ H5; Apply H5.
Exists a; Apply H0.
Unfold bound; Exists b; Unfold is_upper_bound; Intros; Unfold A in H1; Elim H1; Clear H1; Intros H1 _; Elim H1; Clear H1; Intros _ H1; Apply H1.
Unfold A; Split.
Split; [Right; Reflexivity | Apply r].
Unfold covering_open_set in H; Elim H; Clear H; Intros; Unfold covering in H; Cut ``a<=a<=b``.
Intro; Elim (H ? H1); Intros y0 H2; Pose D':=[x:R]x==y0; Exists D'; Unfold covering_finite; Split.
Unfold covering; Simpl; Intros; Cut x==a.
Intro; Exists y0; Split.
Rewrite H4; Apply H2.
Unfold D'; Reflexivity.
Elim H3; Intros; Apply Rle_antisym; Assumption.
Unfold family_finite; Unfold domain_finite; Exists (cons y0 nil); Intro; Split.
Simpl; Unfold intersection_domain; Intro; Elim H3; Clear H3; Intros; Unfold D' in H4; Left; Apply H4.
Simpl; Unfold intersection_domain; Intro; Elim H3; Intro.
Split; [Rewrite H4; Apply (cond_fam f0); Exists a; Apply H2 | Apply H4].
Elim H4.
Split; [Right; Reflexivity | Apply r].
Apply compact_eqDom with [c:R]False.
Apply compact_EMP.
Unfold eq_Dom; Split.
Unfold included; Intros; Elim H.
Unfold included; Intros; Elim H; Clear H; Intros; Assert H1 := (Rle_trans ? ? ? H H0); Elim n; Apply H1.
Qed.
Lemma compact_P4 : (X,F:R->Prop) (compact X) -> (closed_set F) -> (included F X) -> (compact F).
Unfold compact; Intros; Elim (classic (EXT z:R | (F z))); Intro Hyp_F_NE.
Pose D := (ind f0); Pose g := (f f0); Unfold closed_set in H0.
Pose g' := [x:R][y:R](f0 x y)\/((complementary F y)/\(D x)).
Pose D' := D.
Cut (x:R)(EXT y:R | (g' x y))->(D' x).
Intro; Pose f' := (mkfamily D' g' H3); Cut (covering_open_set X f').
Intro; Elim (H ? H4); Intros DX H5; Exists DX.
Unfold covering_finite; Unfold covering_finite in H5; Elim H5; Clear H5; Intros.
Split.
Unfold covering; Unfold covering in H5; Intros.
Elim (H5 ? (H1 ? H7)); Intros y0 H8; Exists y0; Simpl in H8; Simpl; Elim H8; Clear H8; Intros.
Split.
Unfold g' in H8; Elim H8; Intro.
Apply H10.
Elim H10; Intros H11 _; Unfold complementary in H11; Elim H11; Apply H7.
Apply H9.
Unfold family_finite; Unfold domain_finite; Unfold family_finite in H6; Unfold domain_finite in H6; Elim H6; Clear H6; Intros l H6; Exists l; Intro; Assert H7 := (H6 x); Elim H7; Clear H7; Intros.
Split.
Intro; Apply H7; Simpl; Unfold intersection_domain; Simpl in H9; Unfold intersection_domain in H9; Unfold D'; Apply H9.
Intro; Assert H10 := (H8 H9); Simpl in H10; Unfold intersection_domain in H10; Simpl; Unfold intersection_domain; Unfold D' in H10; Apply H10.
Unfold covering_open_set; Unfold covering_open_set in H2; Elim H2; Clear H2; Intros.
Split.
Unfold covering; Unfold covering in H2; Intros.
Elim (classic (F x)); Intro.
Elim (H2 ? H6); Intros y0 H7; Exists y0; Simpl; Unfold g'; Left; Assumption.
Cut (EXT z:R | (D z)).
Intro; Elim H7; Clear H7; Intros x0 H7; Exists x0; Simpl; Unfold g'; Right.
Split.
Unfold complementary; Apply H6.
Apply H7.
Elim Hyp_F_NE; Intros z0 H7.
Assert H8 := (H2 ? H7).
Elim H8; Clear H8; Intros t H8; Exists t; Apply (cond_fam f0); Exists z0; Apply H8.
Unfold family_open_set; Intro; Simpl; Unfold g'; Elim (classic (D x)); Intro.
Apply open_set_P6 with (union_domain (f0 x) (complementary F)).
Apply open_set_P2.
Unfold family_open_set in H4; Apply H4.
Apply H0.
Unfold eq_Dom; Split.
Unfold included union_domain complementary; Intros.
Elim H6; Intro; [Left; Apply H7 | Right; Split; Assumption].
Unfold included union_domain complementary; Intros.
Elim H6; Intro; [Left; Apply H7 | Right; Elim H7; Intros; Apply H8].
Apply open_set_P6 with (f0 x).
Unfold family_open_set in H4; Apply H4.
Unfold eq_Dom; Split.
Unfold included complementary; Intros; Left; Apply H6.
Unfold included complementary; Intros.
Elim H6; Intro.
Apply H7.
Elim H7; Intros _ H8; Elim H5; Apply H8.
Intros; Elim H3; Intros y0 H4; Unfold g' in H4; Elim H4; Intro.
Apply (cond_fam f0); Exists y0; Apply H5.
Elim H5; Clear H5; Intros _ H5; Apply H5.
(* Cas ou F est l'ensemble vide *)
Cut (compact F).
Intro; Apply (H3 f0 H2).
Apply compact_eqDom with [_:R]False.
Apply compact_EMP.
Unfold eq_Dom; Split.
Unfold included; Intros; Elim H3.
Assert H3 := (not_ex_all_not ? ? Hyp_F_NE); Unfold included; Intros; Elim (H3 x); Apply H4.
Qed.
(**********)
Lemma compact_P5 : (X:R->Prop) (closed_set X)->(bounded X)->(compact X).
Intros; Unfold bounded in H0.
Elim H0; Clear H0; Intros m H0.
Elim H0; Clear H0; Intros M H0.
Assert H1 := (compact_P3 m M).
Apply (compact_P4 [c:R]``m<=c<=M`` X H1 H H0).
Qed.
(**********)
Lemma compact_carac : (X:R->Prop) (compact X)<->(closed_set X)/\(bounded X).
Intro; Split.
Intro; Split; [Apply (compact_P2 ? H) | Apply (compact_P1 ? H)].
Intro; Elim H; Clear H; Intros; Apply (compact_P5 ? H H0).
Qed.
Definition image_dir [f:R->R;D:R->Prop] : R->Prop := [x:R](EXT y:R | x==(f y)/\(D y)).
(**********)
Lemma continuity_compact : (f:R->R;X:R->Prop) ((x:R)(continuity_pt f x)) -> (compact X) -> (compact (image_dir f X)).
Unfold compact; Intros; Unfold covering_open_set in H1.
Elim H1; Clear H1; Intros.
Pose D := (ind f1).
Pose g := [x:R][y:R](image_rec f0 (f1 x) y).
Cut (x:R)(EXT y:R | (g x y))->(D x).
Intro; Pose f' := (mkfamily D g H3).
Cut (covering_open_set X f').
Intro; Elim (H0 f' H4); Intros D' H5; Exists D'.
Unfold covering_finite in H5; Elim H5; Clear H5; Intros; Unfold covering_finite; Split.
Unfold covering image_dir; Simpl; Unfold covering in H5; Intros; Elim H7; Intros y H8; Elim H8; Intros; Assert H11 := (H5 ? H10); Simpl in H11; Elim H11; Intros z H12; Exists z; Unfold g in H12; Unfold image_rec in H12; Rewrite H9; Apply H12.
Unfold family_finite in H6; Unfold domain_finite in H6; Unfold family_finite; Unfold domain_finite; Elim H6; Intros l H7; Exists l; Intro; Elim (H7 x); Intros; Split; Intro.
Apply H8; Simpl in H10; Simpl; Apply H10.
Apply (H9 H10).
Unfold covering_open_set; Split.
Unfold covering; Intros; Simpl; Unfold covering in H1; Unfold image_dir in H1; Unfold g; Unfold image_rec; Apply H1.
Exists x; Split; [Reflexivity | Apply H4].
Unfold family_open_set; Unfold family_open_set in H2; Intro; Simpl; Unfold g; Cut ([y:R](image_rec f0 (f1 x) y))==(image_rec f0 (f1 x)).
Intro; Rewrite H4.
Apply (continuity_P2 f0 (f1 x) H (H2 x)).
Reflexivity.
Intros; Apply (cond_fam f1); Unfold g in H3; Unfold image_rec in H3; Elim H3; Intros; Exists (f0 x0); Apply H4.
Qed.
Lemma Rlt_Rminus : (a,b:R) ``a<b`` -> ``0<b-a``.
Intros; Apply Rlt_anti_compatibility with a; Rewrite Rplus_Or; Replace ``a+(b-a)`` with b; [Assumption | Ring].
Qed.
Lemma prolongement_C0 : (f:R->R;a,b:R) ``a<=b`` -> ((c:R)``a<=c<=b``->(continuity_pt f c)) -> (EXT g:R->R | (continuity g)/\((c:R)``a<=c<=b``->(g c)==(f c))).
Intros; Elim H; Intro.
Pose h := [x:R](Cases (total_order_Rle x a) of
(leftT _) => (f0 a)
| (rightT _) => (Cases (total_order_Rle x b) of
(leftT _) => (f0 x)
| (rightT _) => (f0 b) end) end).
Assert H2 : ``0<b-a``.
Apply Rlt_Rminus; Assumption.
Exists h; Split.
Unfold continuity; Intro; Case (total_order x a); Intro.
Unfold continuity_pt; Unfold continue_in; Unfold limit1_in; Unfold limit_in; Simpl; Unfold R_dist; Intros; Exists ``a-x``; Split.
Change ``0<a-x``; Apply Rlt_Rminus; Assumption.
Intros; Elim H5; Clear H5; Intros _ H5; Unfold h.
Case (total_order_Rle x a); Intro.
Case (total_order_Rle x0 a); Intro.
Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Assumption.
Elim n; Left; Apply Rlt_anti_compatibility with ``-x``; Do 2 Rewrite (Rplus_sym ``-x``); Apply Rle_lt_trans with ``(Rabsolu (x0-x))``.
Apply Rle_Rabsolu.
Assumption.
Elim n; Left; Assumption.
Elim H3; Intro.
Assert H5 : ``a<=a<=b``.
Split; [Right; Reflexivity | Left; Assumption].
Assert H6 := (H0 ? H5); Unfold continuity_pt in H6; Unfold continue_in in H6; Unfold limit1_in in H6; Unfold limit_in in H6; Simpl in H6; Unfold R_dist in H6; Unfold continuity_pt; Unfold continue_in; Unfold limit1_in; Unfold limit_in; Simpl; Unfold R_dist; Intros; Elim (H6 ? H7); Intros; Exists (Rmin x0 ``b-a``); Split.
Unfold Rmin; Case (total_order_Rle x0 ``b-a``); Intro.
Elim H8; Intros; Assumption.
Change ``0<b-a``; Apply Rlt_Rminus; Assumption.
Intros; Elim H9; Clear H9; Intros _ H9; Cut ``x1<b``.
Intro; Unfold h; Case (total_order_Rle x a); Intro.
Case (total_order_Rle x1 a); Intro.
Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Assumption.
Case (total_order_Rle x1 b); Intro.
Elim H8; Intros; Apply H12; Split.
Unfold D_x no_cond; Split.
Trivial.
Red; Intro; Elim n; Right; Symmetry; Assumption.
Apply Rlt_le_trans with (Rmin x0 ``b-a``).
Rewrite H4 in H9; Apply H9.
Apply Rmin_l.
Elim n0; Left; Assumption.
Elim n; Right; Assumption.
Apply Rlt_anti_compatibility with ``-a``; Do 2 Rewrite (Rplus_sym ``-a``); Rewrite H4 in H9; Apply Rle_lt_trans with ``(Rabsolu (x1-a))``.
Apply Rle_Rabsolu.
Apply Rlt_le_trans with ``(Rmin x0 (b-a))``.
Assumption.
Apply Rmin_r.
Case (total_order x b); Intro.
Assert H6 : ``a<=x<=b``.
Split; Left; Assumption.
Assert H7 := (H0 ? H6); Unfold continuity_pt in H7; Unfold continue_in in H7; Unfold limit1_in in H7; Unfold limit_in in H7; Simpl in H7; Unfold R_dist in H7; Unfold continuity_pt; Unfold continue_in; Unfold limit1_in; Unfold limit_in; Simpl; Unfold R_dist; Intros; Elim (H7 ? H8); Intros; Elim H9; Clear H9; Intros.
Assert H11 : ``0<x-a``.
Apply Rlt_Rminus; Assumption.
Assert H12 : ``0<b-x``.
Apply Rlt_Rminus; Assumption.
Exists (Rmin x0 (Rmin ``x-a`` ``b-x``)); Split.
Unfold Rmin; Case (total_order_Rle ``x-a`` ``b-x``); Intro.
Case (total_order_Rle x0 ``x-a``); Intro.
Assumption.
Assumption.
Case (total_order_Rle x0 ``b-x``); Intro.
Assumption.
Assumption.
Intros; Elim H13; Clear H13; Intros; Cut ``a<x1<b``.
Intro; Elim H15; Clear H15; Intros; Unfold h; Case (total_order_Rle x a); Intro.
Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? r H4)).
Case (total_order_Rle x b); Intro.
Case (total_order_Rle x1 a); Intro.
Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? r0 H15)).
Case (total_order_Rle x1 b); Intro.
Apply H10; Split.
Assumption.
Apply Rlt_le_trans with ``(Rmin x0 (Rmin (x-a) (b-x)))``.
Assumption.
Apply Rmin_l.
Elim n1; Left; Assumption.
Elim n0; Left; Assumption.
Split.
Apply Ropp_Rlt; Apply Rlt_anti_compatibility with x; Apply Rle_lt_trans with ``(Rabsolu (x1-x))``.
Rewrite <- Rabsolu_Ropp; Rewrite Ropp_distr2; Apply Rle_Rabsolu.
Apply Rlt_le_trans with ``(Rmin x0 (Rmin (x-a) (b-x)))``.
Assumption.
Apply Rle_trans with ``(Rmin (x-a) (b-x))``.
Apply Rmin_r.
Apply Rmin_l.
Apply Rlt_anti_compatibility with ``-x``; Do 2 Rewrite (Rplus_sym ``-x``); Apply Rle_lt_trans with ``(Rabsolu (x1-x))``.
Apply Rle_Rabsolu.
Apply Rlt_le_trans with ``(Rmin x0 (Rmin (x-a) (b-x)))``.
Assumption.
Apply Rle_trans with ``(Rmin (x-a) (b-x))``; Apply Rmin_r.
Elim H5; Intro.
Assert H7 : ``a<=b<=b``.
Split; [Left; Assumption | Right; Reflexivity].
Assert H8 := (H0 ? H7); Unfold continuity_pt in H8; Unfold continue_in in H8; Unfold limit1_in in H8; Unfold limit_in in H8; Simpl in H8; Unfold R_dist in H8; Unfold continuity_pt; Unfold continue_in; Unfold limit1_in; Unfold limit_in; Simpl; Unfold R_dist; Intros; Elim (H8 ? H9); Intros; Exists (Rmin x0 ``b-a``); Split.
Unfold Rmin; Case (total_order_Rle x0 ``b-a``); Intro.
Elim H10; Intros; Assumption.
Change ``0<b-a``; Apply Rlt_Rminus; Assumption.
Intros; Elim H11; Clear H11; Intros _ H11; Cut ``a<x1``.
Intro; Unfold h; Case (total_order_Rle x a); Intro.
Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? r H4)).
Case (total_order_Rle x1 a); Intro.
Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? r H12)).
Case (total_order_Rle x b); Intro.
Case (total_order_Rle x1 b); Intro.
Rewrite H6; Elim H10; Intros; Elim r0; Intro.
Apply H14; Split.
Unfold D_x no_cond; Split.
Trivial.
Red; Intro; Rewrite <- H16 in H15; Elim (Rlt_antirefl ? H15).
Rewrite H6 in H11; Apply Rlt_le_trans with ``(Rmin x0 (b-a))``.
Apply H11.
Apply Rmin_l.
Rewrite H15; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Assumption.
Rewrite H6; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Assumption.
Elim n1; Right; Assumption.
Rewrite H6 in H11; Apply Ropp_Rlt; Apply Rlt_anti_compatibility with b; Apply Rle_lt_trans with ``(Rabsolu (x1-b))``.
Rewrite <- Rabsolu_Ropp; Rewrite Ropp_distr2; Apply Rle_Rabsolu.
Apply Rlt_le_trans with ``(Rmin x0 (b-a))``.
Assumption.
Apply Rmin_r.
Unfold continuity_pt; Unfold continue_in; Unfold limit1_in; Unfold limit_in; Simpl; Unfold R_dist; Intros; Exists ``x-b``; Split.
Change ``0<x-b``; Apply Rlt_Rminus; Assumption.
Intros; Elim H8; Clear H8; Intros.
Assert H10 : ``b<x0``.
Apply Ropp_Rlt; Apply Rlt_anti_compatibility with x; Apply Rle_lt_trans with ``(Rabsolu (x0-x))``.
Rewrite <- Rabsolu_Ropp; Rewrite Ropp_distr2; Apply Rle_Rabsolu.
Assumption.
Unfold h; Case (total_order_Rle x a); Intro.
Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? r H4)).
Case (total_order_Rle x b); Intro.
Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? r H6)).
Case (total_order_Rle x0 a); Intro.
Elim (Rlt_antirefl ? (Rlt_trans ? ? ? H1 (Rlt_le_trans ? ? ? H10 r))).
Case (total_order_Rle x0 b); Intro.
Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? r H10)).
Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Assumption.
Intros; Elim H3; Intros; Unfold h; Case (total_order_Rle c a); Intro.
Elim r; Intro.
Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H4 H6)).
Rewrite H6; Reflexivity.
Case (total_order_Rle c b); Intro.
Reflexivity.
Elim n0; Assumption.
Exists [_:R](f0 a); Split.
Apply derivable_continuous; Apply (derivable_const (f0 a)).
Intros; Elim H2; Intros; Rewrite H1 in H3; Cut b==c.
Intro; Rewrite <- H5; Rewrite H1; Reflexivity.
Apply Rle_antisym; Assumption.
Qed.
(**********)
Lemma continuity_ab_maj : (f:R->R;a,b:R) ``a<=b`` -> ((c:R)``a<=c<=b``->(continuity_pt f c)) -> (EXT Mx : R | ((c:R)``a<=c<=b``->``(f c)<=(f Mx)``)/\``a<=Mx<=b``).
Intros; Cut (EXT g:R->R | (continuity g)/\((c:R)``a<=c<=b``->(g c)==(f0 c))).
Intro HypProl.
Elim HypProl; Intros g Hcont_eq.
Elim Hcont_eq; Clear Hcont_eq; Intros Hcont Heq.
Assert H1 := (compact_P3 a b).
Assert H2 := (continuity_compact g [c:R]``a<=c<=b`` Hcont H1).
Assert H3 := (compact_P2 ? H2).
Assert H4 := (compact_P1 ? H2).
Cut (bound (image_dir g [c:R]``a <= c <= b``)).
Cut (ExT [x:R] ((image_dir g [c:R]``a <= c <= b``) x)).
Intros; Assert H7 := (complet ? H6 H5).
Elim H7; Clear H7; Intros M H7; Cut (image_dir g [c:R]``a <= c <= b`` M).
Intro; Unfold image_dir in H8; Elim H8; Clear H8; Intros Mxx H8; Elim H8; Clear H8; Intros; Exists Mxx; Split.
Intros; Rewrite <- (Heq c H10); Rewrite <- (Heq Mxx H9); Intros; Rewrite <- H8; Unfold is_lub in H7; Elim H7; Clear H7; Intros H7 _; Unfold is_upper_bound in H7; Apply H7; Unfold image_dir; Exists c; Split; [Reflexivity | Apply H10].
Apply H9.
Elim (classic (image_dir g [c:R]``a <= c <= b`` M)); Intro.
Assumption.
Cut (EXT eps:posreal | (y:R)~(intersection_domain (disc M eps) (image_dir g [c:R]``a <= c <= b``) y)).
Intro; Elim H9; Clear H9; Intros eps H9; Unfold is_lub in H7; Elim H7; Clear H7; Intros; Cut (is_upper_bound (image_dir g [c:R]``a <= c <= b``) ``M-eps``).
Intro; Assert H12 := (H10 ? H11); Cut ``M-eps<M``.
Intro; Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H12 H13)).
Pattern 2 M; Rewrite <- Rplus_Or; Unfold Rminus; Apply Rlt_compatibility; Apply Ropp_Rlt; Rewrite Ropp_O; Rewrite Ropp_Ropp; Apply (cond_pos eps).
Unfold is_upper_bound image_dir; Intros; Cut ``x<=M``.
Intro; Case (total_order_Rle x ``M-eps``); Intro.
Apply r.
Elim (H9 x); Unfold intersection_domain disc image_dir; Split.
Rewrite <- Rabsolu_Ropp; Rewrite Ropp_distr2; Rewrite Rabsolu_right.
Apply Rlt_anti_compatibility with ``x-eps``; Replace ``x-eps+(M-x)`` with ``M-eps``.
Replace ``x-eps+eps`` with x.
Auto with real.
Ring.
Ring.
Apply Rge_minus; Apply Rle_sym1; Apply H12.
Apply H11.
Apply H7; Apply H11.
Cut (EXT V:R->Prop | (neighbourhood V M)/\((y:R)~(intersection_domain V (image_dir g [c:R]``a <= c <= b``) y))).
Intro; Elim H9; Intros V H10; Elim H10; Clear H10; Intros.
Unfold neighbourhood in H10; Elim H10; Intros del H12; Exists del; Intros; Red; Intro; Elim (H11 y).
Unfold intersection_domain; Unfold intersection_domain in H13; Elim H13; Clear H13; Intros; Split.
Apply (H12 ? H13).
Apply H14.
Cut ~(point_adherent (image_dir g [c:R]``a <= c <= b``) M).
Intro; Unfold point_adherent in H9.
Assert H10 := (not_all_ex_not ? [V:R->Prop](neighbourhood V M)
->(EXT y:R |
(intersection_domain V
(image_dir g [c:R]``a <= c <= b``) y)) H9).
Elim H10; Intros V0 H11; Exists V0; Assert H12 := (imply_to_and ? ? H11); Elim H12; Clear H12; Intros.
Split.
Apply H12.
Apply (not_ex_all_not ? ? H13).
Red; Intro; Cut (adherence (image_dir g [c:R]``a <= c <= b``) M).
Intro; Elim (closed_set_P1 (image_dir g [c:R]``a <= c <= b``)); Intros H11 _; Assert H12 := (H11 H3).
Elim H8.
Unfold eq_Dom in H12; Elim H12; Clear H12; Intros.
Apply (H13 ? H10).
Apply H9.
Exists (g a); Unfold image_dir; Exists a; Split.
Reflexivity.
Split; [Right; Reflexivity | Apply H].
Unfold bound; Unfold bounded in H4; Elim H4; Clear H4; Intros m H4; Elim H4; Clear H4; Intros M H4; Exists M; Unfold is_upper_bound; Intros; Elim (H4 ? H5); Intros _ H6; Apply H6.
Apply prolongement_C0; Assumption.
Qed.
(**********)
Lemma continuity_ab_min : (f:(R->R); a,b:R) ``a <= b``->((c:R)``a<=c<=b``->(continuity_pt f c))->(EXT mx:R | ((c:R)``a <= c <= b``->``(f mx) <= (f c)``)/\``a <= mx <= b``).
Intros.
Cut ((c:R)``a<=c<=b``->(continuity_pt (opp_fct f0) c)).
Intro; Assert H2 := (continuity_ab_maj (opp_fct f0) a b H H1); Elim H2; Intros x0 H3; Exists x0; Intros; Split.
Intros; Rewrite <- (Ropp_Ropp (f0 x0)); Rewrite <- (Ropp_Ropp (f0 c)); Apply Rle_Ropp1; Elim H3; Intros; Unfold opp_fct in H5; Apply H5; Apply H4.
Elim H3; Intros; Assumption.
Intros.
Assert H2 := (H0 ? H1).
Apply (continuity_pt_opp ? ? H2).
Qed.
(********************************************************)
(* Proof of Bolzano-Weierstrass theorem *)
(********************************************************)
Definition ValAdh [un:nat->R;x:R] : Prop := (V:R->Prop;N:nat) (neighbourhood V x) -> (EX p:nat | (le N p)/\(V (un p))).
Definition intersection_family [f:family] : R->Prop := [x:R](y:R)(ind f y)->(f y x).
Lemma ValAdh_un_exists : (un:nat->R) let D=[x:R](EX n:nat | x==(INR n)) in let f=[x:R](adherence [y:R](EX p:nat | y==(un p)/\``x<=(INR p)``)/\(D x)) in ((x:R)(EXT y:R | (f x y))->(D x)).
Intros; Elim H; Intros; Unfold f in H0; Unfold adherence in H0; Unfold point_adherent in H0; Assert H1 : (neighbourhood (disc x0 (mkposreal ? Rlt_R0_R1)) x0).
Unfold neighbourhood disc; Exists (mkposreal ? Rlt_R0_R1); Unfold included; Trivial.
Elim (H0 ? H1); Intros; Unfold intersection_domain in H2; Elim H2; Intros; Elim H4; Intros; Apply H6.
Qed.
Definition ValAdh_un [un:nat->R] : R->Prop := let D=[x:R](EX n:nat | x==(INR n)) in let f=[x:R](adherence [y:R](EX p:nat | y==(un p)/\``x<=(INR p)``)/\(D x)) in (intersection_family (mkfamily D f (ValAdh_un_exists un))).
Lemma ValAdh_un_prop : (un:nat->R;x:R) (ValAdh un x) <-> (ValAdh_un un x).
Intros; Split; Intro.
Unfold ValAdh in H; Unfold ValAdh_un; Unfold intersection_family; Simpl; Intros; Elim H0; Intros N H1; Unfold adherence; Unfold point_adherent; Intros; Elim (H V N H2); Intros; Exists (un x0); Unfold intersection_domain; Elim H3; Clear H3; Intros; Split.
Assumption.
Split.
Exists x0; Split; [Reflexivity | Rewrite H1; Apply (le_INR ? ? H3)].
Exists N; Assumption.
Unfold ValAdh; Intros; Unfold ValAdh_un in H; Unfold intersection_family in H; Simpl in H; Assert H1 : (adherence [y0:R](EX p:nat | ``y0 == (un p)``/\``(INR N) <= (INR p)``)/\(EX n:nat | ``(INR N) == (INR n)``) x).
Apply H; Exists N; Reflexivity.
Unfold adherence in H1; Unfold point_adherent in H1; Assert H2 := (H1 ? H0); Elim H2; Intros; Unfold intersection_domain in H3; Elim H3; Clear H3; Intros; Elim H4; Clear H4; Intros; Elim H4; Clear H4; Intros; Elim H4; Clear H4; Intros; Exists x1; Split.
Apply (INR_le ? ? H6).
Rewrite H4 in H3; Apply H3.
Qed.
Lemma adherence_P4 : (F,G:R->Prop) (included F G) -> (included (adherence F) (adherence G)).
Unfold adherence included; Unfold point_adherent; Intros; Elim (H0 ? H1); Unfold intersection_domain; Intros; Elim H2; Clear H2; Intros; Exists x0; Split; [Assumption | Apply (H ? H3)].
Qed.
Definition family_closed_set [f:family] : Prop := (x:R) (closed_set (f x)).
Definition intersection_vide_in [D:R->Prop;f:family] : Prop := ((x:R)((ind f x)->(included (f x) D))/\~(EXT y:R | (intersection_family f y))).
Definition intersection_vide_finite_in [D:R->Prop;f:family] : Prop := (intersection_vide_in D f)/\(family_finite f).
(**********)
Lemma compact_P6 : (X:R->Prop) (compact X) -> (EXT z:R | (X z)) -> ((g:family) (family_closed_set g) -> (intersection_vide_in X g) -> (EXT D:R->Prop | (intersection_vide_finite_in X (subfamily g D)))).
Intros X H Hyp g H0 H1.
Pose D' := (ind g).
Pose f' := [x:R][y:R](complementary (g x) y)/\(D' x).
Assert H2 : (x:R)(EXT y:R|(f' x y))->(D' x).
Intros; Elim H2; Intros; Unfold f' in H3; Elim H3; Intros; Assumption.
Pose f0 := (mkfamily D' f' H2).
Unfold compact in H; Assert H3 : (covering_open_set X f0).
Unfold covering_open_set; Split.
Unfold covering; Intros; Unfold intersection_vide_in in H1; Elim (H1 x); Intros; Unfold intersection_family in H5; Assert H6 := (not_ex_all_not ? [y:R](y0:R)(ind g y0)->(g y0 y) H5 x); Assert H7 := (not_all_ex_not ? [y0:R](ind g y0)->(g y0 x) H6); Elim H7; Intros; Exists x0; Elim (imply_to_and ? ? H8); Intros; Unfold f0; Simpl; Unfold f'; Split; [Apply H10 | Apply H9].
Unfold family_open_set; Intro; Elim (classic (D' x)); Intro.
Apply open_set_P6 with (complementary (g x)).
Unfold family_closed_set in H0; Unfold closed_set in H0; Apply H0.
Unfold f0; Simpl; Unfold f'; Unfold eq_Dom; Split.
Unfold included; Intros; Split; [Apply H4 | Apply H3].
Unfold included; Intros; Elim H4; Intros; Assumption.
Apply open_set_P6 with [_:R]False.
Apply open_set_P4.
Unfold eq_Dom; Unfold included; Split; Intros; [Elim H4 | Simpl in H4; Unfold f' in H4; Elim H4; Intros; Elim H3; Assumption].
Elim (H ? H3); Intros SF H4; Exists SF; Unfold intersection_vide_finite_in; Split.
Unfold intersection_vide_in; Simpl; Intros; Split.
Intros; Unfold included; Intros; Unfold intersection_vide_in in H1; Elim (H1 x); Intros; Elim H6; Intros; Apply H7.
Unfold intersection_domain in H5; Elim H5; Intros; Assumption.
Assumption.
Elim (classic (EXT y:R | (intersection_domain (ind g) SF y))); Intro Hyp'.
Red; Intro; Elim H5; Intros; Unfold intersection_family in H6; Simpl in H6.
Cut (X x0).
Intro; Unfold covering_finite in H4; Elim H4; Clear H4; Intros H4 _; Unfold covering in H4; Elim (H4 x0 H7); Intros; Simpl in H8; Unfold intersection_domain in H6; Cut (ind g x1)/\(SF x1).
Intro; Assert H10 := (H6 x1 H9); Elim H10; Clear H10; Intros H10 _; Elim H8; Clear H8; Intros H8 _; Unfold f' in H8; Unfold complementary in H8; Elim H8; Clear H8; Intros H8 _; Elim H8; Assumption.
Split.
Apply (cond_fam f0).
Exists x0; Elim H8; Intros; Assumption.
Elim H8; Intros; Assumption.
Unfold intersection_vide_in in H1; Elim Hyp'; Intros; Assert H8 := (H6 ? H7); Elim H8; Intros; Cut (ind g x1).
Intro; Elim (H1 x1); Intros; Apply H12.
Apply H11.
Apply H9.
Apply (cond_fam g); Exists x0; Assumption.
Unfold covering_finite in H4; Elim H4; Clear H4; Intros H4 _; Cut (EXT z:R | (X z)).
Intro; Elim H5; Clear H5; Intros; Unfold covering in H4; Elim (H4 x0 H5); Intros; Simpl in H6; Elim Hyp'; Exists x1; Elim H6; Intros; Unfold intersection_domain; Split.
Apply (cond_fam f0); Exists x0; Apply H7.
Apply H8.
Apply Hyp.
Unfold covering_finite in H4; Elim H4; Clear H4; Intros; Unfold family_finite in H5; Unfold domain_finite in H5; Unfold family_finite; Unfold domain_finite; Elim H5; Clear H5; Intros l H5; Exists l; Intro; Elim (H5 x); Intros; Split; Intro; [Apply H6; Simpl; Simpl in H8; Apply H8 | Apply (H7 H8)].
Qed.
Theorem Bolzano_Weierstrass : (un:nat->R;X:R->Prop) (compact X) -> ((n:nat)(X (un n))) -> (EXT l:R | (ValAdh un l)).
Intros; Cut (EXT l:R | (ValAdh_un un l)).
Intro; Elim H1; Intros; Exists x; Elim (ValAdh_un_prop un x); Intros; Apply (H4 H2).
Assert H1 : (EXT z:R | (X z)).
Exists (un O); Apply H0.
Pose D:=[x:R](EX n:nat | x==(INR n)).
Pose g:=[x:R](adherence [y:R](EX p:nat | y==(un p)/\``x<=(INR p)``)/\(D x)).
Assert H2 : (x:R)(EXT y:R | (g x y))->(D x).
Intros; Elim H2; Intros; Unfold g in H3; Unfold adherence in H3; Unfold point_adherent in H3.
Assert H4 : (neighbourhood (disc x0 (mkposreal ? Rlt_R0_R1)) x0).
Unfold neighbourhood; Exists (mkposreal ? Rlt_R0_R1); Unfold included; Trivial.
Elim (H3 ? H4); Intros; Unfold intersection_domain in H5; Decompose [and] H5; Assumption.
Pose f0 := (mkfamily D g H2).
Assert H3 := (compact_P6 X H H1 f0).
Elim (classic (EXT l:R | (ValAdh_un un l))); Intro.
Assumption.
Cut (family_closed_set f0).
Intro; Cut (intersection_vide_in X f0).
Intro; Assert H7 := (H3 H5 H6).
Elim H7; Intros SF H8; Unfold intersection_vide_finite_in in H8; Elim H8; Clear H8; Intros; Unfold intersection_vide_in in H8; Elim (H8 R0); Intros _ H10; Elim H10; Unfold family_finite in H9; Unfold domain_finite in H9; Elim H9; Clear H9; Intros l H9; Pose r := (MaxRlist l); Cut (D r).
Intro; Unfold D in H11; Elim H11; Intros; Exists (un x); Unfold intersection_family; Simpl; Unfold intersection_domain; Intros; Split.
Unfold g; Apply adherence_P1; Split.
Exists x; Split; [Reflexivity | Rewrite <- H12; Unfold r; Apply MaxRlist_P1; Elim (H9 y); Intros; Apply H14; Simpl; Apply H13].
Elim H13; Intros; Assumption.
Elim H13; Intros; Assumption.
Elim (H9 r); Intros.
Simpl in H12; Unfold intersection_domain in H12; Cut (In r l).
Intro; Elim (H12 H13); Intros; Assumption.
Unfold r; Apply MaxRlist_P2; Cut (EXT z:R | (intersection_domain (ind f0) SF z)).
Intro; Elim H13; Intros; Elim (H9 x); Intros; Simpl in H15; Assert H17 := (H15 H14); Exists x; Apply H17.
Elim (classic (EXT z:R | (intersection_domain (ind f0) SF z))); Intro.
Assumption.
Elim (H8 R0); Intros _ H14; Elim H1; Intros; Assert H16 := (not_ex_all_not ? [y:R](intersection_family (subfamily f0 SF) y) H14); Assert H17 := (not_ex_all_not ? [z:R](intersection_domain (ind f0) SF z) H13); Assert H18 := (H16 x); Unfold intersection_family in H18; Simpl in H18; Assert H19 := (not_all_ex_not ? [y:R](intersection_domain D SF y)->(g y x)/\(SF y) H18); Elim H19; Intros; Assert H21 := (imply_to_and ? ? H20); Elim (H17 x0); Elim H21; Intros; Assumption.
Unfold intersection_vide_in; Intros; Split.
Intro; Simpl in H6; Unfold f0; Simpl; Unfold g; Apply included_trans with (adherence X).
Apply adherence_P4.
Unfold included; Intros; Elim H7; Intros; Elim H8; Intros; Elim H10; Intros; Rewrite H11; Apply H0.
Apply adherence_P2; Apply compact_P2; Assumption.
Apply H4.
Unfold family_closed_set; Unfold f0; Simpl; Unfold g; Intro; Apply adherence_P3.
Qed.
(********************************************************)
(* Proof of Heine's theorem *)
(********************************************************)
Definition uniform_continuity [f:R->R;X:R->Prop] : Prop := (eps:posreal)(EXT delta:posreal | (x,y:R) (X x)->(X y)->``(Rabsolu (x-y))<delta`` ->``(Rabsolu ((f x)-(f y)))<eps``).
Lemma is_lub_u : (E:R->Prop;x,y:R) (is_lub E x) -> (is_lub E y) -> x==y.
Unfold is_lub; Intros; Elim H; Elim H0; Intros; Apply Rle_antisym; [Apply (H4 ? H1) | Apply (H2 ? H3)].
Qed.
Lemma domain_P1 : (X:R->Prop) ~(EXT y:R | (X y))\/(EXT y:R | (X y)/\((x:R)(X x)->x==y))\/(EXT x:R | (EXT y:R | (X x)/\(X y)/\``x<>y``)).
Intro; Elim (classic (EXT y:R | (X y))); Intro.
Right; Elim H; Intros; Elim (classic (EXT y:R | (X y)/\``y<>x``)); Intro.
Right; Elim H1; Intros; Elim H2; Intros; Exists x; Exists x0; Intros.
Split; [Assumption | Split; [Assumption | Apply not_sym; Assumption]].
Left; Exists x; Split.
Assumption.
Intros; Case (Req_EM x0 x); Intro.
Assumption.
Elim H1; Exists x0; Split; Assumption.
Left; Assumption.
Qed.
Theorem Heine : (f:R->R;X:R->Prop) (compact X) -> ((x:R)(X x)->(continuity_pt f x)) -> (uniform_continuity f X).
Intros f0 X H0 H; Elim (domain_P1 X); Intro Hyp.
(* X est vide *)
Unfold uniform_continuity; Intros; Exists (mkposreal ? Rlt_R0_R1); Intros; Elim Hyp; Exists x; Assumption.
Elim Hyp; Clear Hyp; Intro Hyp.
(* X possde un seul lment *)
Unfold uniform_continuity; Intros; Exists (mkposreal ? Rlt_R0_R1); Intros; Elim Hyp; Clear Hyp; Intros; Elim H4; Clear H4; Intros; Assert H6 := (H5 ? H1); Assert H7 := (H5 ? H2); Rewrite H6; Rewrite H7; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Apply (cond_pos eps).
(* X possde au moins deux lments distincts *)
Assert X_enc : (EXT m:R | (EXT M:R | ((x:R)(X x)->``m<=x<=M``)/\``m<M``)).
Assert H1 := (compact_P1 X H0); Unfold bounded in H1; Elim H1; Intros; Elim H2; Intros; Exists x; Exists x0; Split.
Apply H3.
Elim Hyp; Intros; Elim H4; Intros; Decompose [and] H5; Assert H10 := (H3 ? H6); Assert H11 := (H3 ? H8); Elim H10; Intros; Elim H11; Intros; Case (total_order_T x x0); Intro.
Elim s; Intro.
Assumption.
Rewrite b in H13; Rewrite b in H7; Elim H9; Apply Rle_antisym; Apply Rle_trans with x0; Assumption.
Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? (Rle_trans ? ? ? H13 H14) r)).
Elim X_enc; Clear X_enc; Intros m X_enc; Elim X_enc; Clear X_enc; Intros M X_enc; Elim X_enc; Clear X_enc Hyp; Intros X_enc Hyp; Unfold uniform_continuity; Intro; Assert H1 : (t:posreal)``0<t/2``.
Intro; Unfold Rdiv; Apply Rmult_lt_pos; [Apply (cond_pos t) | Apply Rlt_Rinv; Sup0].
Pose g := [x:R][y:R](X x)/\(EXT del:posreal | ((z:R) ``(Rabsolu (z-x))<del``->``(Rabsolu ((f0 z)-(f0 x)))<eps/2``)/\(is_lub [zeta:R]``0<zeta<=M-m``/\((z:R) ``(Rabsolu (z-x))<zeta``->``(Rabsolu ((f0 z)-(f0 x)))<eps/2``) del)/\(disc x (mkposreal ``del/2`` (H1 del)) y)).
Assert H2 : (x:R)(EXT y:R | (g x y))->(X x).
Intros; Elim H2; Intros; Unfold g in H3; Elim H3; Clear H3; Intros H3 _; Apply H3.
Pose f' := (mkfamily X g H2); Unfold compact in H0; Assert H3 : (covering_open_set X f').
Unfold covering_open_set; Split.
Unfold covering; Intros; Exists x; Simpl; Unfold g; Split.
Assumption.
Assert H4 := (H ? H3); Unfold continuity_pt in H4; Unfold continue_in in H4; Unfold limit1_in in H4; Unfold limit_in in H4; Simpl in H4; Unfold R_dist in H4; Elim (H4 ``eps/2`` (H1 eps)); Intros; Pose E:=[zeta:R]``0<zeta <= M-m``/\((z:R)``(Rabsolu (z-x)) < zeta``->``(Rabsolu ((f0 z)-(f0 x))) < eps/2``); Assert H6 : (bound E).
Unfold bound; Exists ``M-m``; Unfold is_upper_bound; Unfold E; Intros; Elim H6; Clear H6; Intros H6 _; Elim H6; Clear H6; Intros _ H6; Apply H6.
Assert H7 : (EXT x:R | (E x)).
Elim H5; Clear H5; Intros; Exists (Rmin x0 ``M-m``); Unfold E; Intros; Split.
Split.
Unfold Rmin; Case (total_order_Rle x0 ``M-m``); Intro.
Apply H5.
Apply Rlt_Rminus; Apply Hyp.
Apply Rmin_r.
Intros; Case (Req_EM x z); Intro.
Rewrite H9; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Apply (H1 eps).
Apply H7; Split.
Unfold D_x no_cond; Split; [Trivial | Assumption].
Apply Rlt_le_trans with (Rmin x0 ``M-m``); [Apply H8 | Apply Rmin_l].
Assert H8 := (complet ? H6 H7); Elim H8; Clear H8; Intros; Cut ``0<x1<=(M-m)``.
Intro; Elim H8; Clear H8; Intros; Exists (mkposreal ? H8); Split.
Intros; Cut (EXT alp:R | ``(Rabsolu (z-x))<alp<=x1``/\(E alp)).
Intros; Elim H11; Intros; Elim H12; Clear H12; Intros; Unfold E in H13; Elim H13; Intros; Apply H15.
Elim H12; Intros; Assumption.
Elim (classic (EXT alp:R | ``(Rabsolu (z-x)) < alp <= x1``/\(E alp))); Intro.
Assumption.
Assert H12 := (not_ex_all_not ? [alp:R]``(Rabsolu (z-x)) < alp <= x1``/\(E alp) H11); Unfold is_lub in p; Elim p; Intros; Cut (is_upper_bound E ``(Rabsolu (z-x))``).
Intro; Assert H16 := (H14 ? H15); Elim (Rlt_antirefl ? (Rlt_le_trans ? ? ? H10 H16)).
Unfold is_upper_bound; Intros; Unfold is_upper_bound in H13; Assert H16 := (H13 ? H15); Case (total_order_Rle x2 ``(Rabsolu (z-x))``); Intro.
Assumption.
Elim (H12 x2); Split; [Split; [Auto with real | Assumption] | Assumption].
Split.
Apply p.
Unfold disc; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Simpl; Unfold Rdiv; Apply Rmult_lt_pos; [Apply H8 | Apply Rlt_Rinv; Sup0].
Elim H7; Intros; Unfold E in H8; Elim H8; Intros H9 _; Elim H9; Intros H10 _; Unfold is_lub in p; Elim p; Intros; Unfold is_upper_bound in H12; Unfold is_upper_bound in H11; Split.
Apply Rlt_le_trans with x2; [Assumption | Apply (H11 ? H8)].
Apply H12; Intros; Unfold E in H13; Elim H13; Intros; Elim H14; Intros; Assumption.
Unfold family_open_set; Intro; Simpl; Elim (classic (X x)); Intro.
Unfold g; Unfold open_set; Intros; Elim H4; Clear H4; Intros _ H4; Elim H4; Clear H4; Intros; Elim H4; Clear H4; Intros; Unfold neighbourhood; Case (Req_EM x x0); Intro.
Exists (mkposreal ? (H1 x1)); Rewrite <- H6; Unfold included; Intros; Split.
Assumption.
Exists x1; Split.
Apply H4.
Split.
Elim H5; Intros; Apply H8.
Apply H7.
Pose d := ``x1/2-(Rabsolu (x0-x))``; Assert H7 : ``0<d``.
Unfold d; Apply Rlt_Rminus; Elim H5; Clear H5; Intros; Unfold disc in H7; Apply H7.
Exists (mkposreal ? H7); Unfold included; Intros; Split.
Assumption.
Exists x1; Split.
Apply H4.
Elim H5; Intros; Split.
Assumption.
Unfold disc in H8; Simpl in H8; Unfold disc; Simpl; Unfold disc in H10; Simpl in H10; Apply Rle_lt_trans with ``(Rabsolu (x2-x0))+(Rabsolu (x0-x))``.
Replace ``x2-x`` with ``(x2-x0)+(x0-x)``; [Apply Rabsolu_triang | Ring].
Replace ``x1/2`` with ``d+(Rabsolu (x0-x))``; [Idtac | Unfold d; Ring].
Do 2 Rewrite <- (Rplus_sym ``(Rabsolu (x0-x))``); Apply Rlt_compatibility; Apply H8.
Apply open_set_P6 with [_:R]False.
Apply open_set_P4.
Unfold eq_Dom; Unfold included; Intros; Split.
Intros; Elim H4.
Intros; Unfold g in H4; Elim H4; Clear H4; Intros H4 _; Elim H3; Apply H4.
Elim (H0 ? H3); Intros DF H4; Unfold covering_finite in H4; Elim H4; Clear H4; Intros; Unfold family_finite in H5; Unfold domain_finite in H5; Unfold covering in H4; Simpl in H4; Simpl in H5; Elim H5; Clear H5; Intros l H5; Unfold intersection_domain in H5; Cut (x:R)(In x l)->(EXT del:R | ``0<del``/\((z:R)``(Rabsolu (z-x)) < del``->``(Rabsolu ((f0 z)-(f0 x))) < eps/2``)/\(included (g x) [z:R]``(Rabsolu (z-x))<del/2``)).
Intros; Assert H7 := (Rlist_P1 l [x:R][del:R]``0<del``/\((z:R)``(Rabsolu (z-x)) < del``->``(Rabsolu ((f0 z)-(f0 x))) < eps/2``)/\(included (g x) [z:R]``(Rabsolu (z-x))<del/2``) H6); Elim H7; Clear H7; Intros l' H7; Elim H7; Clear H7; Intros; Pose D := (MinRlist l'); Cut ``0<D/2``.
Intro; Exists (mkposreal ? H9); Intros; Assert H13 := (H4 ? H10); Elim H13; Clear H13; Intros xi H13; Assert H14 : (In xi l).
Unfold g in H13; Decompose [and] H13; Elim (H5 xi); Intros; Apply H14; Split; Assumption.
Elim (pos_Rl_P2 l xi); Intros H15 _; Elim (H15 H14); Intros i H16; Elim H16; Intros; Apply Rle_lt_trans with ``(Rabsolu ((f0 x)-(f0 xi)))+(Rabsolu ((f0 xi)-(f0 y)))``.
Replace ``(f0 x)-(f0 y)`` with ``((f0 x)-(f0 xi))+((f0 xi)-(f0 y))``; [Apply Rabsolu_triang | Ring].
Rewrite (double_var eps); Apply Rplus_lt.
Assert H19 := (H8 i H17); Elim H19; Clear H19; Intros; Rewrite <- H18 in H20; Elim H20; Clear H20; Intros; Apply H20; Unfold included in H21; Apply Rlt_trans with ``(pos_Rl l' i)/2``.
Apply H21.
Elim H13; Clear H13; Intros; Assumption.
Unfold Rdiv; Apply Rlt_monotony_contra with ``2``.
Sup0.
Rewrite Rmult_sym; Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym.
Rewrite Rmult_1r; Pattern 1 (pos_Rl l' i); Rewrite <- Rplus_Or; Rewrite double; Apply Rlt_compatibility; Apply H19.
DiscrR.
Assert H19 := (H8 i H17); Elim H19; Clear H19; Intros; Rewrite <- H18 in H20; Elim H20; Clear H20; Intros; Rewrite <- Rabsolu_Ropp; Rewrite Ropp_distr2; Apply H20; Unfold included in H21; Elim H13; Intros; Assert H24 := (H21 x H22); Apply Rle_lt_trans with ``(Rabsolu (y-x))+(Rabsolu (x-xi))``.
Replace ``y-xi`` with ``(y-x)+(x-xi)``; [Apply Rabsolu_triang | Ring].
Rewrite (double_var (pos_Rl l' i)); Apply Rplus_lt.
Apply Rlt_le_trans with ``D/2``.
Rewrite <- Rabsolu_Ropp; Rewrite Ropp_distr2; Apply H12.
Unfold Rdiv; Do 2 Rewrite <- (Rmult_sym ``/2``); Apply Rle_monotony.
Left; Apply Rlt_Rinv; Sup0.
Unfold D; Apply MinRlist_P1; Elim (pos_Rl_P2 l' (pos_Rl l' i)); Intros; Apply H26; Exists i; Split; [Rewrite <- H7; Assumption | Reflexivity].
Assumption.
Unfold Rdiv; Apply Rmult_lt_pos; [Unfold D; Apply MinRlist_P2; Intros; Elim (pos_Rl_P2 l' y); Intros; Elim (H10 H9); Intros; Elim H12; Intros; Rewrite H14; Rewrite <- H7 in H13; Elim (H8 x H13); Intros; Apply H15 | Apply Rlt_Rinv; Sup0].
Intros; Elim (H5 x); Intros; Elim (H8 H6); Intros; Pose E:=[zeta:R]``0<zeta <= M-m``/\((z:R)``(Rabsolu (z-x)) < zeta``->``(Rabsolu ((f0 z)-(f0 x))) < eps/2``); Assert H11 : (bound E).
Unfold bound; Exists ``M-m``; Unfold is_upper_bound; Unfold E; Intros; Elim H11; Clear H11; Intros H11 _; Elim H11; Clear H11; Intros _ H11; Apply H11.
Assert H12 : (EXT x:R | (E x)).
Assert H13 := (H ? H9); Unfold continuity_pt in H13; Unfold continue_in in H13; Unfold limit1_in in H13; Unfold limit_in in H13; Simpl in H13; Unfold R_dist in H13; Elim (H13 ? (H1 eps)); Intros; Elim H12; Clear H12; Intros; Exists (Rmin x0 ``M-m``); Unfold E; Intros; Split.
Split; [Unfold Rmin; Case (total_order_Rle x0 ``M-m``); Intro; [Apply H12 | Apply Rlt_Rminus; Apply Hyp] | Apply Rmin_r].
Intros; Case (Req_EM x z); Intro.
Rewrite H16; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Apply (H1 eps).
Apply H14; Split; [Unfold D_x no_cond; Split; [Trivial | Assumption] | Apply Rlt_le_trans with (Rmin x0 ``M-m``); [Apply H15 | Apply Rmin_l]].
Assert H13 := (complet ? H11 H12); Elim H13; Clear H13; Intros; Cut ``0<x0<=M-m``.
Intro; Elim H13; Clear H13; Intros; Exists x0; Split.
Assumption.
Split.
Intros; Cut (EXT alp:R | ``(Rabsolu (z-x))<alp<=x0``/\(E alp)).
Intros; Elim H16; Intros; Elim H17; Clear H17; Intros; Unfold E in H18; Elim H18; Intros; Apply H20; Elim H17; Intros; Assumption.
Elim (classic (EXT alp:R | ``(Rabsolu (z-x)) < alp <= x0``/\(E alp))); Intro.
Assumption.
Assert H17 := (not_ex_all_not ? [alp:R]``(Rabsolu (z-x)) < alp <= x0``/\(E alp) H16); Unfold is_lub in p; Elim p; Intros; Cut (is_upper_bound E ``(Rabsolu (z-x))``).
Intro; Assert H21 := (H19 ? H20); Elim (Rlt_antirefl ? (Rlt_le_trans ? ? ? H15 H21)).
Unfold is_upper_bound; Intros; Unfold is_upper_bound in H18; Assert H21 := (H18 ? H20); Case (total_order_Rle x1 ``(Rabsolu (z-x))``); Intro.
Assumption.
Elim (H17 x1); Split.
Split; [Auto with real | Assumption].
Assumption.
Unfold included g; Intros; Elim H15; Intros; Elim H17; Intros; Decompose [and] H18; Cut x0==x2.
Intro; Rewrite H20; Apply H22.
Unfold E in p; EApply is_lub_u.
Apply p.
Apply H21.
Elim H12; Intros; Unfold E in H13; Elim H13; Intros H14 _; Elim H14; Intros H15 _; Unfold is_lub in p; Elim p; Intros; Unfold is_upper_bound in H16; Unfold is_upper_bound in H17; Split.
Apply Rlt_le_trans with x1; [Assumption | Apply (H16 ? H13)].
Apply H17; Intros; Unfold E in H18; Elim H18; Intros; Elim H19; Intros; Assumption.
Qed.
|