1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(****************************************************************************)
(* *)
(* Naive Set Theory in Coq *)
(* *)
(* INRIA INRIA *)
(* Rocquencourt Sophia-Antipolis *)
(* *)
(* Coq V6.1 *)
(* *)
(* Gilles Kahn *)
(* Gerard Huet *)
(* *)
(* *)
(* *)
(* Acknowledgments: This work was started in July 1993 by F. Prost. Thanks *)
(* to the Newton Institute for providing an exceptional work environment *)
(* in Summer 1995. Several developments by E. Ledinot were an inspiration. *)
(****************************************************************************)
(*i $Id: Infinite_sets.v,v 1.1.2.1 2004/07/16 19:31:39 herbelin Exp $ i*)
Require Export Finite_sets.
Require Export Constructive_sets.
Require Export Classical_Type.
Require Export Classical_sets.
Require Export Powerset.
Require Export Powerset_facts.
Require Export Powerset_Classical_facts.
Require Export Gt.
Require Export Lt.
Require Export Le.
Require Export Finite_sets_facts.
Require Export Image.
Section Approx.
Variable U: Type.
Inductive Approximant [A, X:(Ensemble U)] : Prop :=
Defn_of_Approximant: (Finite U X) -> (Included U X A) -> (Approximant A X).
End Approx.
Hints Resolve Defn_of_Approximant.
Section Infinite_sets.
Variable U: Type.
Lemma make_new_approximant:
(A: (Ensemble U)) (X: (Ensemble U)) ~ (Finite U A) -> (Approximant U A X) ->
(Inhabited U (Setminus U A X)).
Proof.
Intros A X H' H'0.
Elim H'0; Intros H'1 H'2.
Apply Strict_super_set_contains_new_element; Auto with sets.
Red; Intro H'3; Apply H'.
Rewrite <- H'3; Auto with sets.
Qed.
Lemma approximants_grow:
(A: (Ensemble U)) (X: (Ensemble U)) ~ (Finite U A) ->
(n: nat) (cardinal U X n) -> (Included U X A) ->
(EXT Y | (cardinal U Y (S n)) /\ (Included U Y A)).
Proof.
Intros A X H' n H'0; Elim H'0; Auto with sets.
Intro H'1.
Cut (Inhabited U (Setminus U A (Empty_set U))).
Intro H'2; Elim H'2.
Intros x H'3.
Exists (Add U (Empty_set U) x); Auto with sets.
Split.
Apply card_add; Auto with sets.
Cut (In U A x).
Intro H'4; Red; Auto with sets.
Intros x0 H'5; Elim H'5; Auto with sets.
Intros x1 H'6; Elim H'6; Auto with sets.
Elim H'3; Auto with sets.
Apply make_new_approximant; Auto with sets.
Intros A0 n0 H'1 H'2 x H'3 H'5.
LApply H'2; [Intro H'6; Elim H'6; Clear H'2 | Clear H'2]; Auto with sets.
Intros x0 H'2; Try Assumption.
Elim H'2; Intros H'7 H'8; Try Exact H'8; Clear H'2.
Elim (make_new_approximant A x0); Auto with sets.
Intros x1 H'2; Try Assumption.
Exists (Add U x0 x1); Auto with sets.
Split.
Apply card_add; Auto with sets.
Elim H'2; Auto with sets.
Red.
Intros x2 H'9; Elim H'9; Auto with sets.
Intros x3 H'10; Elim H'10; Auto with sets.
Elim H'2; Auto with sets.
Auto with sets.
Apply Defn_of_Approximant; Auto with sets.
Apply cardinal_finite with n := (S n0); Auto with sets.
Qed.
Lemma approximants_grow':
(A: (Ensemble U)) (X: (Ensemble U)) ~ (Finite U A) ->
(n: nat) (cardinal U X n) -> (Approximant U A X) ->
(EXT Y | (cardinal U Y (S n)) /\ (Approximant U A Y)).
Proof.
Intros A X H' n H'0 H'1; Try Assumption.
Elim H'1.
Intros H'2 H'3.
ElimType (EXT Y | (cardinal U Y (S n)) /\ (Included U Y A)).
Intros x H'4; Elim H'4; Intros H'5 H'6; Try Exact H'5; Clear H'4.
Exists x; Auto with sets.
Split; [Auto with sets | Idtac].
Apply Defn_of_Approximant; Auto with sets.
Apply cardinal_finite with n := (S n); Auto with sets.
Apply approximants_grow with X := X; Auto with sets.
Qed.
Lemma approximant_can_be_any_size:
(A: (Ensemble U)) (X: (Ensemble U)) ~ (Finite U A) ->
(n: nat) (EXT Y | (cardinal U Y n) /\ (Approximant U A Y)).
Proof.
Intros A H' H'0 n; Elim n.
Exists (Empty_set U); Auto with sets.
Intros n0 H'1; Elim H'1.
Intros x H'2.
Apply approximants_grow' with X := x; Tauto.
Qed.
Variable V: Type.
Theorem Image_set_continuous:
(A: (Ensemble U))
(f: U -> V) (X: (Ensemble V)) (Finite V X) -> (Included V X (Im U V A f)) ->
(EX n |
(EXT Y | ((cardinal U Y n) /\ (Included U Y A)) /\ (Im U V Y f) == X)).
Proof.
Intros A f X H'; Elim H'.
Intro H'0; Exists O.
Exists (Empty_set U); Auto with sets.
Intros A0 H'0 H'1 x H'2 H'3; Try Assumption.
LApply H'1;
[Intro H'4; Elim H'4; Intros n E; Elim E; Clear H'4 H'1 | Clear H'1]; Auto with sets.
Intros x0 H'1; Try Assumption.
Exists (S n); Try Assumption.
Elim H'1; Intros H'4 H'5; Elim H'4; Intros H'6 H'7; Try Exact H'6; Clear H'4 H'1.
Clear E.
Generalize H'2.
Rewrite <- H'5.
Intro H'1; Try Assumption.
Red in H'3.
Generalize (H'3 x).
Intro H'4; LApply H'4; [Intro H'8; Try Exact H'8; Clear H'4 | Clear H'4]; Auto with sets.
Specialize 5 Im_inv with U := U V:=V X := A f := f y := x; Intro H'11;
LApply H'11; [Intro H'13; Elim H'11; Clear H'11 | Clear H'11]; Auto with sets.
Intros x1 H'4; Try Assumption.
Apply exT_intro with x := (Add U x0 x1).
Split; [Split; [Try Assumption | Idtac] | Idtac].
Apply card_add; Auto with sets.
Red; Intro H'9; Try Exact H'9.
Apply H'1.
Elim H'4; Intros H'10 H'11; Rewrite <- H'11; Clear H'4; Auto with sets.
Elim H'4; Intros H'9 H'10; Try Exact H'9; Clear H'4; Auto with sets.
Red; Auto with sets.
Intros x2 H'4; Elim H'4; Auto with sets.
Intros x3 H'11; Elim H'11; Auto with sets.
Elim H'4; Intros H'9 H'10; Rewrite <- H'10; Clear H'4; Auto with sets.
Apply Im_add; Auto with sets.
Qed.
Theorem Image_set_continuous':
(A: (Ensemble U))
(f: U -> V) (X: (Ensemble V)) (Approximant V (Im U V A f) X) ->
(EXT Y | (Approximant U A Y) /\ (Im U V Y f) == X).
Proof.
Intros A f X H'; Try Assumption.
Cut (EX n | (EXT Y |
((cardinal U Y n) /\ (Included U Y A)) /\ (Im U V Y f) == X)).
Intro H'0; Elim H'0; Intros n E; Elim E; Clear H'0.
Intros x H'0; Try Assumption.
Elim H'0; Intros H'1 H'2; Elim H'1; Intros H'3 H'4; Try Exact H'3;
Clear H'1 H'0; Auto with sets.
Exists x.
Split; [Idtac | Try Assumption].
Apply Defn_of_Approximant; Auto with sets.
Apply cardinal_finite with n := n; Auto with sets.
Apply Image_set_continuous; Auto with sets.
Elim H'; Auto with sets.
Elim H'; Auto with sets.
Qed.
Theorem Pigeonhole_bis:
(A: (Ensemble U)) (f: U -> V) ~ (Finite U A) -> (Finite V (Im U V A f)) ->
~ (injective U V f).
Proof.
Intros A f H'0 H'1; Try Assumption.
Elim (Image_set_continuous' A f (Im U V A f)); Auto with sets.
Intros x H'2; Elim H'2; Intros H'3 H'4; Try Exact H'3; Clear H'2.
Elim (make_new_approximant A x); Auto with sets.
Intros x0 H'2; Elim H'2.
Intros H'5 H'6.
Elim (finite_cardinal V (Im U V A f)); Auto with sets.
Intros n E.
Elim (finite_cardinal U x); Auto with sets.
Intros n0 E0.
Apply Pigeonhole with A := (Add U x x0) n := (S n0) n' := n.
Apply card_add; Auto with sets.
Rewrite (Im_add U V x x0 f); Auto with sets.
Cut (In V (Im U V x f) (f x0)).
Intro H'8.
Rewrite (Non_disjoint_union V (Im U V x f) (f x0)); Auto with sets.
Rewrite H'4; Auto with sets.
Elim (Extension V (Im U V x f) (Im U V A f)); Auto with sets.
Apply le_lt_n_Sm.
Apply cardinal_decreases with U := U V := V A := x f := f; Auto with sets.
Rewrite H'4; Auto with sets.
Elim H'3; Auto with sets.
Qed.
Theorem Pigeonhole_ter:
(A: (Ensemble U))
(f: U -> V) (n: nat) (injective U V f) -> (Finite V (Im U V A f)) ->
(Finite U A).
Proof.
Intros A f H' H'0 H'1.
Apply NNPP.
Red; Intro H'2.
Elim (Pigeonhole_bis A f); Auto with sets.
Qed.
End Infinite_sets.
|