1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: Multiset.v,v 1.1.2.1 2004/07/16 19:31:39 herbelin Exp $ i*)
(* G. Huet 1-9-95 *)
Require Permut.
Set Implicit Arguments.
Section multiset_defs.
Variable A : Set.
Variable eqA : A -> A -> Prop.
Hypothesis Aeq_dec : (x,y:A){(eqA x y)}+{~(eqA x y)}.
Inductive multiset : Set :=
Bag : (A->nat) -> multiset.
Definition EmptyBag := (Bag [a:A]O).
Definition SingletonBag := [a:A]
(Bag [a':A]Cases (Aeq_dec a a') of
(left _) => (S O)
| (right _) => O
end
).
Definition multiplicity : multiset -> A -> nat :=
[m:multiset][a:A]let (f) = m in (f a).
(** multiset equality *)
Definition meq := [m1,m2:multiset]
(a:A)(multiplicity m1 a)=(multiplicity m2 a).
Hints Unfold meq multiplicity.
Lemma meq_refl : (x:multiset)(meq x x).
Proof.
NewDestruct x; Auto.
Qed.
Hints Resolve meq_refl.
Lemma meq_trans : (x,y,z:multiset)(meq x y)->(meq y z)->(meq x z).
Proof.
Unfold meq.
NewDestruct x; NewDestruct y; NewDestruct z.
Intros; Rewrite H; Auto.
Qed.
Lemma meq_sym : (x,y:multiset)(meq x y)->(meq y x).
Proof.
Unfold meq.
NewDestruct x; NewDestruct y; Auto.
Qed.
Hints Immediate meq_sym.
(** multiset union *)
Definition munion := [m1,m2:multiset]
(Bag [a:A](plus (multiplicity m1 a)(multiplicity m2 a))).
Lemma munion_empty_left :
(x:multiset)(meq x (munion EmptyBag x)).
Proof.
Unfold meq; Unfold munion; Simpl; Auto.
Qed.
Hints Resolve munion_empty_left.
Lemma munion_empty_right :
(x:multiset)(meq x (munion x EmptyBag)).
Proof.
Unfold meq; Unfold munion; Simpl; Auto.
Qed.
Require Plus. (* comm. and ass. of plus *)
Lemma munion_comm : (x,y:multiset)(meq (munion x y) (munion y x)).
Proof.
Unfold meq; Unfold multiplicity; Unfold munion.
NewDestruct x; NewDestruct y; Auto with arith.
Qed.
Hints Resolve munion_comm.
Lemma munion_ass :
(x,y,z:multiset)(meq (munion (munion x y) z) (munion x (munion y z))).
Proof.
Unfold meq; Unfold munion; Unfold multiplicity.
NewDestruct x; NewDestruct y; NewDestruct z; Auto with arith.
Qed.
Hints Resolve munion_ass.
Lemma meq_left : (x,y,z:multiset)(meq x y)->(meq (munion x z) (munion y z)).
Proof.
Unfold meq; Unfold munion; Unfold multiplicity.
NewDestruct x; NewDestruct y; NewDestruct z.
Intros; Elim H; Auto with arith.
Qed.
Hints Resolve meq_left.
Lemma meq_right : (x,y,z:multiset)(meq x y)->(meq (munion z x) (munion z y)).
Proof.
Unfold meq; Unfold munion; Unfold multiplicity.
NewDestruct x; NewDestruct y; NewDestruct z.
Intros; Elim H; Auto.
Qed.
Hints Resolve meq_right.
(** Here we should make multiset an abstract datatype, by hiding [Bag],
[munion], [multiplicity]; all further properties are proved abstractly *)
Lemma munion_rotate :
(x,y,z:multiset)(meq (munion x (munion y z)) (munion z (munion x y))).
Proof.
Intros; Apply (op_rotate multiset munion meq); Auto.
Exact meq_trans.
Qed.
Lemma meq_congr : (x,y,z,t:multiset)(meq x y)->(meq z t)->
(meq (munion x z) (munion y t)).
Proof.
Intros; Apply (cong_congr multiset munion meq); Auto.
Exact meq_trans.
Qed.
Lemma munion_perm_left :
(x,y,z:multiset)(meq (munion x (munion y z)) (munion y (munion x z))).
Proof.
Intros; Apply (perm_left multiset munion meq); Auto.
Exact meq_trans.
Qed.
Lemma multiset_twist1 : (x,y,z,t:multiset)
(meq (munion x (munion (munion y z) t)) (munion (munion y (munion x t)) z)).
Proof.
Intros; Apply (twist multiset munion meq); Auto.
Exact meq_trans.
Qed.
Lemma multiset_twist2 : (x,y,z,t:multiset)
(meq (munion x (munion (munion y z) t)) (munion (munion y (munion x z)) t)).
Proof.
Intros; Apply meq_trans with (munion (munion x (munion y z)) t).
Apply meq_sym; Apply munion_ass.
Apply meq_left; Apply munion_perm_left.
Qed.
(** specific for treesort *)
Lemma treesort_twist1 : (x,y,z,t,u:multiset) (meq u (munion y z)) ->
(meq (munion x (munion u t)) (munion (munion y (munion x t)) z)).
Proof.
Intros; Apply meq_trans with (munion x (munion (munion y z) t)).
Apply meq_right; Apply meq_left; Trivial.
Apply multiset_twist1.
Qed.
Lemma treesort_twist2 : (x,y,z,t,u:multiset) (meq u (munion y z)) ->
(meq (munion x (munion u t)) (munion (munion y (munion x z)) t)).
Proof.
Intros; Apply meq_trans with (munion x (munion (munion y z) t)).
Apply meq_right; Apply meq_left; Trivial.
Apply multiset_twist2.
Qed.
(*i theory of minter to do similarly
Require Min.
(* multiset intersection *)
Definition minter := [m1,m2:multiset]
(Bag [a:A](min (multiplicity m1 a)(multiplicity m2 a))).
i*)
End multiset_defs.
Unset Implicit Arguments.
Hints Unfold meq multiplicity : v62 datatypes.
Hints Resolve munion_empty_right munion_comm munion_ass meq_left meq_right munion_empty_left : v62 datatypes.
Hints Immediate meq_sym : v62 datatypes.
|