1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: Permut.v,v 1.1.2.1 2004/07/16 19:31:39 herbelin Exp $ i*)
(* G. Huet 1-9-95 *)
(** We consider a Set [U], given with a commutative-associative operator [op],
and a congruence [cong]; we show permutation lemmas *)
Section Axiomatisation.
Variable U: Set.
Variable op: U -> U -> U.
Variable cong : U -> U -> Prop.
Hypothesis op_comm : (x,y:U)(cong (op x y) (op y x)).
Hypothesis op_ass : (x,y,z:U)(cong (op (op x y) z) (op x (op y z))).
Hypothesis cong_left : (x,y,z:U)(cong x y)->(cong (op x z) (op y z)).
Hypothesis cong_right : (x,y,z:U)(cong x y)->(cong (op z x) (op z y)).
Hypothesis cong_trans : (x,y,z:U)(cong x y)->(cong y z)->(cong x z).
Hypothesis cong_sym : (x,y:U)(cong x y)->(cong y x).
(** Remark. we do not need: [Hypothesis cong_refl : (x:U)(cong x x)]. *)
Lemma cong_congr :
(x,y,z,t:U)(cong x y)->(cong z t)->(cong (op x z) (op y t)).
Proof.
Intros; Apply cong_trans with (op y z).
Apply cong_left; Trivial.
Apply cong_right; Trivial.
Qed.
Lemma comm_right : (x,y,z:U)(cong (op x (op y z)) (op x (op z y))).
Proof.
Intros; Apply cong_right; Apply op_comm.
Qed.
Lemma comm_left : (x,y,z:U)(cong (op (op x y) z) (op (op y x) z)).
Proof.
Intros; Apply cong_left; Apply op_comm.
Qed.
Lemma perm_right : (x,y,z:U)(cong (op (op x y) z) (op (op x z) y)).
Proof.
Intros.
Apply cong_trans with (op x (op y z)).
Apply op_ass.
Apply cong_trans with (op x (op z y)).
Apply cong_right; Apply op_comm.
Apply cong_sym; Apply op_ass.
Qed.
Lemma perm_left : (x,y,z:U)(cong (op x (op y z)) (op y (op x z))).
Proof.
Intros.
Apply cong_trans with (op (op x y) z).
Apply cong_sym; Apply op_ass.
Apply cong_trans with (op (op y x) z).
Apply cong_left; Apply op_comm.
Apply op_ass.
Qed.
Lemma op_rotate : (x,y,z,t:U)(cong (op x (op y z)) (op z (op x y))).
Proof.
Intros; Apply cong_trans with (op (op x y) z).
Apply cong_sym; Apply op_ass.
Apply op_comm.
Qed.
(* Needed for treesort ... *)
Lemma twist : (x,y,z,t:U)
(cong (op x (op (op y z) t)) (op (op y (op x t)) z)).
Proof.
Intros.
Apply cong_trans with (op x (op (op y t) z)).
Apply cong_right; Apply perm_right.
Apply cong_trans with (op (op x (op y t)) z).
Apply cong_sym; Apply op_ass.
Apply cong_left; Apply perm_left.
Qed.
End Axiomatisation.
|