1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id: bigint.ml 7305 2005-08-19 19:51:02Z letouzey $ *)
(*i*)
open Pp
(*i*)
(***************************************************)
(* Basic operations on (unbounded) integer numbers *)
(***************************************************)
(* An integer is canonically represented as an array of k-digits blocs.
0 is represented by the empty array and -1 by the singleton [|-1|].
The first bloc is in the range ]0;10^k[ for positive numbers.
The first bloc is in the range ]-10^k;-1[ for negative ones.
All other blocs are numbers in the range [0;10^k[.
Negative numbers are represented using 2's complementation. For instance,
with 4-digits blocs, [-9655;6789] denotes -96543211
*)
(* The base is a power of 10 in order to facilitate the parsing and printing
of numbers in digital notation.
All functions, to the exception of to_string and of_string should work
with an arbitrary base, even if not a power of 10.
In practice, we set k=4 so that no overflow in ocaml machine words
(i.e. the interval [-2^30;2^30-1]) occur when multiplying two
numbers less than (10^k)
*)
(* The main parameters *)
let size =
let rec log10 n = if n < 10 then 0 else 1 + log10 (n / 10) in
(log10 max_int) / 2
let format_size =
(* How to parametrize a printf format *)
if size = 4 then Printf.sprintf "%04d"
else fun n ->
let rec aux j l n =
if j=size then l else aux (j+1) (string_of_int (n mod 10) :: l) (n/10)
in String.concat "" (aux 0 [] n)
(* The base is 10^size *)
let base =
let rec exp10 = function 0 -> 1 | n -> 10 * exp10 (n-1) in exp10 size
(* Basic numbers *)
let zero = [||]
let neg_one = [|-1|]
(* Sign of an integer *)
let is_strictly_neg n = n<>[||] && n.(0) < 0
let is_strictly_pos n = n<>[||] && n.(0) > 0
let is_neg_or_zero n = n=[||] or n.(0) < 0
let is_pos_or_zero n = n=[||] or n.(0) > 0
let normalize_pos n =
let k = ref 0 in
while !k < Array.length n & n.(!k) = 0 do incr k done;
Array.sub n !k (Array.length n - !k)
let normalize_neg n =
let k = ref 1 in
while !k < Array.length n & n.(!k) = base - 1 do incr k done;
let n' = Array.sub n !k (Array.length n - !k) in
if Array.length n' = 0 then [|-1|] else (n'.(0) <- n'.(0) - base; n')
let rec normalize n =
if Array.length n = 0 then n else
if n.(0) = -1 then normalize_neg n else normalize_pos n
let neg m =
if m = zero then zero else
let n = Array.copy m in
let i = ref (Array.length m - 1) in
while !i > 0 & n.(!i) = 0 do decr i done;
if !i > 0 then begin
n.(!i) <- base - n.(!i); decr i;
while !i > 0 do n.(!i) <- base - 1 - n.(!i); decr i done;
n.(0) <- - n.(0) - 1;
if n.(0) < -1 then (n.(0) <- n.(0) + base; Array.append [| -1 |] n) else
if n.(0) = - base then (n.(0) <- 0; Array.append [| -1 |] n)
else normalize n
end else (n.(0) <- - n.(0); n)
let push_carry r j =
let j = ref j in
while !j > 0 & r.(!j) < 0 do
r.(!j) <- r.(!j) + base; decr j; r.(!j) <- r.(!j) - 1
done;
while !j > 0 & r.(!j) >= base do
r.(!j) <- r.(!j) - base; decr j; r.(!j) <- r.(!j) + 1
done;
if r.(0) >= base then (r.(0) <- r.(0) - base; Array.append [| 1 |] r)
else if r.(0) < -base then (r.(0) <- r.(0) + 2*base; Array.append [| -2 |] r)
else if r.(0) = -base then (r.(0) <- 0; Array.append [| -1 |] r)
else normalize r
let add_to r a j =
if a = zero then r else begin
for i = Array.length r - 1 downto j+1 do
r.(i) <- r.(i) + a.(i-j);
if r.(i) >= base then (r.(i) <- r.(i) - base; r.(i-1) <- r.(i-1) + 1)
done;
r.(j) <- r.(j) + a.(0);
push_carry r j
end
let add n m =
let d = Array.length n - Array.length m in
if d > 0 then add_to (Array.copy n) m d else add_to (Array.copy m) n (-d)
let sub_to r a j =
if a = zero then r else begin
for i = Array.length r - 1 downto j+1 do
r.(i) <- r.(i) - a.(i-j);
if r.(i) < 0 then (r.(i) <- r.(i) + base; r.(i-1) <- r.(i-1) - 1)
done;
r.(j) <- r.(j) - a.(0);
push_carry r j
end
let sub n m =
let d = Array.length n - Array.length m in
if d >= 0 then sub_to (Array.copy n) m d
else let r = neg m in add_to r n (Array.length r - Array.length n)
let rec mult m n =
if m = zero or n = zero then zero else
let l = Array.length m + Array.length n in
let r = Array.create l 0 in
for i = Array.length m - 1 downto 0 do
for j = Array.length n - 1 downto 0 do
let p = m.(i) * n.(j) + r.(i+j+1) in
let (q,s) =
if p < 0
then (p + 1) / base - 1, (p + 1) mod base + base - 1
else p / base, p mod base in
r.(i+j+1) <- s;
if q <> 0 then r.(i+j) <- r.(i+j) + q;
done
done;
normalize r
let rec less_than_same_size m n i j =
i < Array.length m &&
(m.(i) < n.(j) or (m.(i) = n.(j) && less_than_same_size m n (i+1) (j+1)))
let less_than m n =
if is_strictly_neg m then
is_pos_or_zero n or Array.length m > Array.length n
or (Array.length m = Array.length n && less_than_same_size m n 0 0)
else
is_strictly_pos n && (Array.length m < Array.length n or
(Array.length m = Array.length n && less_than_same_size m n 0 0))
let equal m n = (m = n)
let less_or_equal_than m n = equal m n or less_than m n
let less_than_shift_pos k m n =
(Array.length m - k < Array.length n)
or (Array.length m - k = Array.length n && less_than_same_size m n k 0)
let rec can_divide k m d i =
(i = Array.length d) or
(m.(k+i) > d.(i)) or
(m.(k+i) = d.(i) && can_divide k m d (i+1))
(* computes m - d * q * base^(|m|-k) in-place on positive numbers *)
let sub_mult m d q k =
if q <> 0 then
for i = Array.length d - 1 downto 0 do
let v = d.(i) * q in
m.(k+i) <- m.(k+i) - v mod base;
if m.(k+i) < 0 then (m.(k+i) <- m.(k+i) + base; m.(k+i-1) <- m.(k+i-1) -1);
if v >= base then m.(k+i-1) <- m.(k+i-1) - v / base;
done
let euclid m d =
let isnegm, m =
if is_strictly_neg m then (-1),neg m else 1,Array.copy m in
let isnegd, d = if is_strictly_neg d then (-1),neg d else 1,d in
if d = zero then raise Division_by_zero;
let q,r =
if less_than m d then (zero,m) else
let ql = Array.length m - Array.length d in
let q = Array.create (ql+1) 0 in
let i = ref 0 in
while not (less_than_shift_pos !i m d) do
if m.(!i)=0 then incr i else
if can_divide !i m d 0 then begin
let v =
if Array.length d > 1 && d.(0) <> m.(!i) then
(m.(!i) * base + m.(!i+1)) / (d.(0) * base + d.(1) + 1)
else
m.(!i) / d.(0) in
q.(!i) <- q.(!i) + v;
sub_mult m d v !i
end else begin
let v = (m.(!i) * base + m.(!i+1)) / (d.(0) + 1) in
q.(!i) <- q.(!i) + v / base;
sub_mult m d (v / base) !i;
q.(!i+1) <- q.(!i+1) + v mod base;
if q.(!i+1) >= base then
(q.(!i+1) <- q.(!i+1)-base; q.(!i) <- q.(!i)+1);
sub_mult m d (v mod base) (!i+1)
end
done;
(normalize q, normalize m) in
(if isnegd * isnegm = -1 then neg q else q),
(if isnegm = -1 then neg r else r)
(* Parsing/printing ordinary 10-based numbers *)
let of_string s =
let isneg = String.length s > 1 & s.[0] = '-' in
let n = if isneg then 1 else 0 in
let d = ref n in
while !d < String.length s && s.[!d] = '0' do incr d done;
if !d = String.length s then zero else
let r = (String.length s - !d) mod size in
let h = String.sub s (!d) r in
if !d = String.length s - 1 && isneg && h="1" then neg_one else
let e = if h<>"" then 1 else 0 in
let l = (String.length s - !d) / size in
let a = Array.create (l + e + n) 0 in
if isneg then begin
a.(0) <- (-1);
let carry = ref 0 in
for i=l downto 1 do
let v = int_of_string (String.sub s ((i-1)*size + !d +r) size)+ !carry in
if v <> 0 then (a.(i+e)<- base - v; carry := 1) else carry := 0
done;
if e=1 then a.(1) <- base - !carry - int_of_string h;
end
else begin
if e=1 then a.(0) <- int_of_string h;
for i=1 to l do
a.(i+e-1) <- int_of_string (String.sub s ((i-1)*size + !d + r) size)
done
end;
a
let to_string_pos sgn n =
if Array.length n = 0 then "0" else
sgn ^
String.concat ""
(string_of_int n.(0) :: List.map format_size (List.tl (Array.to_list n)))
let to_string n =
if is_strictly_neg n then to_string_pos "-" (neg n)
else to_string_pos "" n
(******************************************************************)
(* Optimized operations on (unbounded) integer numbers *)
(* integers smaller than base are represented as machine integers *)
(******************************************************************)
type bigint = Obj.t
let ints_of_int n =
if n >= base then [| n / base; n mod base |]
else if n <= - base then [| n / base - 1; n mod base + base |]
else if n = 0 then [| |] else [| n |]
let big_of_int n =
if n >= base then Obj.repr [| n / base; n mod base |]
else if n <= - base then Obj.repr [| n / base - 1; n mod base + base |]
else Obj.repr n
let big_of_ints n =
let n = normalize n in
if n = zero then Obj.repr 0 else
if Array.length n = 1 then Obj.repr n.(0) else
Obj.repr n
let coerce_to_int = (Obj.magic : Obj.t -> int)
let coerce_to_ints = (Obj.magic : Obj.t -> int array)
let ints_of_z n =
if Obj.is_int n then ints_of_int (coerce_to_int n)
else coerce_to_ints n
let app_pair f (m, n) =
(f m, f n)
let add m n =
if Obj.is_int m & Obj.is_int n
then big_of_int (coerce_to_int m + coerce_to_int n)
else big_of_ints (add (ints_of_z m) (ints_of_z n))
let sub m n =
if Obj.is_int m & Obj.is_int n
then big_of_int (coerce_to_int m - coerce_to_int n)
else big_of_ints (sub (ints_of_z m) (ints_of_z n))
let mult m n =
if Obj.is_int m & Obj.is_int n
then big_of_int (coerce_to_int m * coerce_to_int n)
else big_of_ints (mult (ints_of_z m) (ints_of_z n))
let euclid m n =
if Obj.is_int m & Obj.is_int n
then app_pair big_of_int
(coerce_to_int m / coerce_to_int n, coerce_to_int m mod coerce_to_int n)
else app_pair big_of_ints (euclid (ints_of_z m) (ints_of_z n))
let less_than m n =
if Obj.is_int m & Obj.is_int n
then coerce_to_int m < coerce_to_int n
else less_than (ints_of_z m) (ints_of_z n)
let neg n =
if Obj.is_int n then big_of_int (- (coerce_to_int n))
else big_of_ints (neg (ints_of_z n))
let of_string m = big_of_ints (of_string m)
let to_string m = to_string (ints_of_z m)
let zero = big_of_int 0
let one = big_of_int 1
let sub_1 n = sub n one
let add_1 n = add n one
let two = big_of_int 2
let neg_two = big_of_int (-2)
let mult_2 n = add n n
let is_zero n = n=zero
let div2_with_rest n =
let (q,b) = euclid n two in
(q, b = one)
let is_strictly_neg n = is_strictly_neg (ints_of_z n)
let is_strictly_pos n = is_strictly_pos (ints_of_z n)
let is_neg_or_zero n = is_neg_or_zero (ints_of_z n)
let is_pos_or_zero n = is_pos_or_zero (ints_of_z n)
let pr_bigint n = str (to_string n)
(* Testing suite *)
let check () =
let numbers = [
"1";"2";"99";"100";"101";"9999";"10000";"10001";
"999999";"1000000";"1000001";"99999999";"100000000";"100000001";
"1234";"5678";"12345678";"987654321";
"-1";"-2";"-99";"-100";"-101";"-9999";"-10000";"-10001";
"-999999";"-1000000";"-1000001";"-99999999";"-100000000";"-100000001";
"-1234";"-5678";"-12345678";"-987654321";"0"
]
in
let eucl n m =
let n' = abs_float n and m' = abs_float m in
let q' = floor (n' /. m') in let r' = n' -. m' *. q' in
(if n *. m < 0. & q' <> 0. then -. q' else q'),
(if n < 0. then -. r' else r') in
let round f = floor (abs_float f +. 0.5) *. (if f < 0. then -1. else 1.) in
let i = ref 0 in
let compare op n n' =
incr i;
let s = Printf.sprintf "%30s" (to_string n) in
let s' = Printf.sprintf "% 30.0f" (round n') in
if s <> s' then Printf.printf "%s: %s <> %s\n" op s s' in
List.iter (fun a -> List.iter (fun b ->
let n = of_string a and m = of_string b in
let n' = float_of_string a and m' = float_of_string b in
let a = add n m and a' = n' +. m' in
let s = sub n m and s' = n' -. m' in
let p = mult n m and p' = n' *. m' in
let q,r = try euclid n m with Division_by_zero -> zero,zero
and q',r' = eucl n' m' in
compare "+" a a';
compare "-" s s';
compare "*" p p';
compare "/" q q';
compare "%" r r') numbers) numbers;
Printf.printf "%i tests done\n" !i
|