1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
|
(***********************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
(* \VV/ *************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
(* $Id: util.ml 10185 2007-10-06 18:05:13Z herbelin $ *)
open Pp
(* Errors *)
exception Anomaly of string * std_ppcmds (* System errors *)
let anomaly string = raise (Anomaly(string, str string))
let anomalylabstrm string pps = raise (Anomaly(string,pps))
exception UserError of string * std_ppcmds (* User errors *)
let error string = raise (UserError(string, str string))
let errorlabstrm l pps = raise (UserError(l,pps))
let todo s = prerr_string ("TODO: "^s^"\n")
type loc = Compat.loc
let dummy_loc = Compat.dummy_loc
let unloc = Compat.unloc
let make_loc = Compat.make_loc
(* raising located exceptions *)
type 'a located = loc * 'a
let anomaly_loc (loc,s,strm) = Stdpp.raise_with_loc loc (Anomaly (s,strm))
let user_err_loc (loc,s,strm) = Stdpp.raise_with_loc loc (UserError (s,strm))
let invalid_arg_loc (loc,s) = Stdpp.raise_with_loc loc (Invalid_argument s)
let join_loc = Compat.join_loc
(* Like Exc_located, but specifies the outermost file read, the filename
associated to the location of the error, and the error itself. *)
exception Error_in_file of string * (bool * string * loc) * exn
(* Projections from triplets *)
let pi1 (a,_,_) = a
let pi2 (_,a,_) = a
let pi3 (_,_,a) = a
(* Characters *)
let is_letter c =
(c >= 'a' && c <= 'z') or
(c >= 'A' && c <= 'Z') or
(c >= '\248' && c <= '\255') or
(c >= '\192' && c <= '\214') or
(c >= '\216' && c <= '\246')
let is_digit c = (c >= '0' && c <= '9')
let is_ident_tail c =
is_letter c or is_digit c or c = '\'' or c = '_'
(* Strings *)
let explode s =
let rec explode_rec n =
if n >= String.length s then
[]
else
String.make 1 (String.get s n) :: explode_rec (succ n)
in
explode_rec 0
let implode sl = String.concat "" sl
(* substring searching... *)
(* gdzie = where, co = what *)
(* gdzie=gdzie(string) gl=gdzie(length) gi=gdzie(index) *)
let rec is_sub gdzie gl gi co cl ci =
(ci>=cl) ||
((String.unsafe_get gdzie gi = String.unsafe_get co ci) &&
(is_sub gdzie gl (gi+1) co cl (ci+1)))
let rec raw_str_index i gdzie l c co cl =
let i' = String.index_from gdzie i c in
if (i'+cl <= l) && (is_sub gdzie l i' co cl 0) then i' else
raw_str_index (i'+1) gdzie l c co cl
let string_index_from gdzie i co =
if co="" then i else
raw_str_index i gdzie (String.length gdzie)
(String.unsafe_get co 0) co (String.length co)
let string_string_contains ~where ~what =
try
let _ = string_index_from where 0 what in true
with
Not_found -> false
let plural n s = if n>1 then s^"s" else s
(* string parsing *)
let parse_loadpath s =
let len = String.length s in
let rec decoupe_dirs n =
try
let pos = String.index_from s n '/' in
if pos = n then
invalid_arg "parse_loadpath: find an empty dir in loadpath";
let dir = String.sub s n (pos-n) in
dir :: (decoupe_dirs (succ pos))
with
| Not_found -> [String.sub s n (len-n)]
in
if len = 0 then [] else decoupe_dirs 0
module Stringset = Set.Make(struct type t = string let compare = compare end)
module Stringmap = Map.Make(struct type t = string let compare = compare end)
(* Lists *)
let list_add_set x l = if List.mem x l then l else x::l
let list_intersect l1 l2 =
List.filter (fun x -> List.mem x l2) l1
let list_union l1 l2 =
let rec urec = function
| [] -> l2
| a::l -> if List.mem a l2 then urec l else a::urec l
in
urec l1
let list_unionq l1 l2 =
let rec urec = function
| [] -> l2
| a::l -> if List.memq a l2 then urec l else a::urec l
in
urec l1
let list_subtract l1 l2 =
if l2 = [] then l1 else List.filter (fun x -> not (List.mem x l2)) l1
let list_subtractq l1 l2 =
if l2 = [] then l1 else List.filter (fun x -> not (List.memq x l2)) l1
let list_chop n l =
let rec chop_aux acc = function
| (0, l2) -> (List.rev acc, l2)
| (n, (h::t)) -> chop_aux (h::acc) (pred n, t)
| (_, []) -> failwith "list_chop"
in
chop_aux [] (n,l)
let list_tabulate f len =
let rec tabrec n =
if n = len then [] else (f n)::(tabrec (n+1))
in
tabrec 0
let list_assign l n e =
let rec assrec stk = function
| ((h::t), 0) -> List.rev_append stk (e::t)
| ((h::t), n) -> assrec (h::stk) (t, n-1)
| ([], _) -> failwith "list_assign"
in
assrec [] (l,n)
let rec list_smartmap f l = match l with
[] -> l
| h::tl ->
let h' = f h and tl' = list_smartmap f tl in
if h'==h && tl'==tl then l
else h'::tl'
let list_map_left f = (* ensures the order in case of side-effects *)
let rec map_rec = function
| [] -> []
| x::l -> let v = f x in v :: map_rec l
in
map_rec
let list_map_i f =
let rec map_i_rec i = function
| [] -> []
| x::l -> let v = f i x in v :: map_i_rec (i+1) l
in
map_i_rec
let list_map2_i f i l1 l2 =
let rec map_i i = function
| ([], []) -> []
| ((h1::t1), (h2::t2)) -> let v = f i h1 h2 in v :: map_i (succ i) (t1,t2)
| (_, _) -> invalid_arg "map2_i"
in
map_i i (l1,l2)
let list_map3 f l1 l2 l3 =
let rec map = function
| ([], [], []) -> []
| ((h1::t1), (h2::t2), (h3::t3)) -> let v = f h1 h2 h3 in v::map (t1,t2,t3)
| (_, _, _) -> invalid_arg "map3"
in
map (l1,l2,l3)
let list_index x =
let rec index_x n = function
| y::l -> if x = y then n else index_x (succ n) l
| [] -> raise Not_found
in
index_x 1
let list_unique_index x =
let rec index_x n = function
| y::l ->
if x = y then
if List.mem x l then raise Not_found
else n
else index_x (succ n) l
| [] -> raise Not_found
in index_x 1
let list_fold_left_i f =
let rec it_list_f i a = function
| [] -> a
| b::l -> it_list_f (i+1) (f i a b) l
in
it_list_f
(* [list_fold_right_and_left f [a1;...;an] hd =
f (f (... (f (f hd
an
[an-1;...;a1])
an-1
[an-2;...;a1])
...)
a2
[a1])
a1
[]] *)
let rec list_fold_right_and_left f l hd =
let rec aux tl = function
| [] -> hd
| a::l -> let hd = aux (a::tl) l in f hd a tl
in aux [] l
let list_iter_i f l = list_fold_left_i (fun i _ x -> f i x) 0 () l
let list_for_all_i p =
let rec for_all_p i = function
| [] -> true
| a::l -> p i a && for_all_p (i+1) l
in
for_all_p
let list_except x l = List.filter (fun y -> not (x = y)) l
let list_remove = list_except (* Alias *)
let rec list_remove_first a = function
| b::l when a = b -> l
| b::l -> b::list_remove_first a l
| [] -> raise Not_found
let list_eq_set l1 l2 =
let rec aux l1 = function
| [] -> l1 = []
| a::l2 -> aux (list_remove_first a l1) l2 in
try aux l1 l2 with Not_found -> false
let list_for_all2eq f l1 l2 = try List.for_all2 f l1 l2 with Failure _ -> false
let list_map_i f =
let rec map_i_rec i = function
| [] -> []
| x::l -> let v = f i x in v::map_i_rec (i+1) l
in
map_i_rec
let rec list_sep_last = function
| [] -> failwith "sep_last"
| hd::[] -> (hd,[])
| hd::tl -> let (l,tl) = list_sep_last tl in (l,hd::tl)
let list_try_find_i f =
let rec try_find_f n = function
| [] -> failwith "try_find_i"
| h::t -> try f n h with Failure _ -> try_find_f (n+1) t
in
try_find_f
let list_try_find f =
let rec try_find_f = function
| [] -> failwith "try_find"
| h::t -> try f h with Failure _ -> try_find_f t
in
try_find_f
let list_uniquize l =
let rec aux acc = function
| [] -> List.rev acc
| h::t -> if List.mem h acc then aux acc t else aux (h::acc) t
in aux [] l
let rec list_distinct = function
| h::t -> (not (List.mem h t)) && list_distinct t
| _ -> true
let rec list_filter2 f = function
| [], [] as p -> p
| d::dp, l::lp ->
let (dp',lp' as p) = list_filter2 f (dp,lp) in
if f d l then d::dp', l::lp' else p
| _ -> invalid_arg "list_filter2"
let list_subset l1 l2 =
let t2 = Hashtbl.create 151 in
List.iter (fun x -> Hashtbl.add t2 x ()) l2;
let rec look = function
| [] -> true
| x::ll -> try Hashtbl.find t2 x; look ll with Not_found -> false
in
look l1
let list_splitby p =
let rec splitby_loop x y =
match y with
| [] -> ([],[])
| (a::l) -> if (p a) then (x,y) else (splitby_loop (x@[a]) l)
in
splitby_loop []
let rec list_split3 = function
| [] -> ([], [], [])
| (x,y,z)::l ->
let (rx, ry, rz) = list_split3 l in (x::rx, y::ry, z::rz)
let list_firstn n l =
let rec aux acc = function
| (0, l) -> List.rev acc
| (n, (h::t)) -> aux (h::acc) (pred n, t)
| _ -> failwith "firstn"
in
aux [] (n,l)
let rec list_last = function
| [] -> failwith "list_last"
| [x] -> x
| _ :: l -> list_last l
let list_lastn n l =
let len = List.length l in
let rec aux m l =
if m = n then l else aux (m - 1) (List.tl l)
in
if len < n then failwith "lastn" else aux len l
let rec list_skipn n l = match n,l with
| 0, _ -> l
| _, [] -> failwith "list_fromn"
| n, _::l -> list_skipn (pred n) l
let list_prefix_of prefl l =
let rec prefrec = function
| (h1::t1, h2::t2) -> h1 = h2 && prefrec (t1,t2)
| ([], _) -> true
| (_, _) -> false
in
prefrec (prefl,l)
let list_drop_prefix p l =
(* if l=p++t then return t else l *)
let rec list_drop_prefix_rec = function
| ([], tl) -> Some tl
| (_, []) -> None
| (h1::tp, h2::tl) ->
if h1 = h2 then list_drop_prefix_rec (tp,tl) else None
in
match list_drop_prefix_rec (p,l) with
| Some r -> r
| None -> l
let list_map_append f l = List.flatten (List.map f l)
let list_map_append2 f l1 l2 = List.flatten (List.map2 f l1 l2)
let list_share_tails l1 l2 =
let rec shr_rev acc = function
| ((x1::l1), (x2::l2)) when x1 == x2 -> shr_rev (x1::acc) (l1,l2)
| (l1,l2) -> (List.rev l1, List.rev l2, acc)
in
shr_rev [] (List.rev l1, List.rev l2)
let list_join_map f l = List.flatten (List.map f l)
let rec list_fold_map f e = function
| [] -> (e,[])
| h::t ->
let e',h' = f e h in
let e'',t' = list_fold_map f e' t in
e'',h'::t'
(* (* tail-recursive version of the above function *)
let list_fold_map f e l =
let g (e,b') h =
let (e',h') = f e h in
(e',h'::b')
in
let (e',lrev) = List.fold_left g (e,[]) l in
(e',List.rev lrev)
*)
(* The same, based on fold_right, with the effect accumulated on the right *)
let list_fold_map' f l e =
List.fold_right (fun x (l,e) -> let (y,e) = f x e in (y::l,e)) l ([],e)
let list_map_assoc f = List.map (fun (x,a) -> (x,f a))
(* Arrays *)
let array_exists f v =
let rec exrec = function
| -1 -> false
| n -> (f v.(n)) || (exrec (n-1))
in
exrec ((Array.length v)-1)
let array_for_all f v =
let rec allrec = function
| -1 -> true
| n -> (f v.(n)) && (allrec (n-1))
in
allrec ((Array.length v)-1)
let array_for_all2 f v1 v2 =
let rec allrec = function
| -1 -> true
| n -> (f v1.(n) v2.(n)) && (allrec (n-1))
in
let lv1 = Array.length v1 in
lv1 = Array.length v2 && allrec (pred lv1)
let array_for_all3 f v1 v2 v3 =
let rec allrec = function
| -1 -> true
| n -> (f v1.(n) v2.(n) v3.(n)) && (allrec (n-1))
in
let lv1 = Array.length v1 in
lv1 = Array.length v2 && lv1 = Array.length v3 && allrec (pred lv1)
let array_for_all4 f v1 v2 v3 v4 =
let rec allrec = function
| -1 -> true
| n -> (f v1.(n) v2.(n) v3.(n) v4.(n)) && (allrec (n-1))
in
let lv1 = Array.length v1 in
lv1 = Array.length v2 &&
lv1 = Array.length v3 &&
lv1 = Array.length v4 &&
allrec (pred lv1)
let array_hd v =
match Array.length v with
| 0 -> failwith "array_hd"
| _ -> v.(0)
let array_tl v =
match Array.length v with
| 0 -> failwith "array_tl"
| n -> Array.sub v 1 (pred n)
let array_last v =
match Array.length v with
| 0 -> failwith "array_last"
| n -> v.(pred n)
let array_cons e v = Array.append [|e|] v
let array_rev t =
let n=Array.length t in
if n <=0 then ()
else
let tmp=ref t.(0) in
for i=0 to pred (n/2) do
tmp:=t.((pred n)-i);
t.((pred n)-i)<- t.(i);
t.(i)<- !tmp
done
let array_fold_right_i f v a =
let rec fold a n =
if n=0 then a
else
let k = n-1 in
fold (f k v.(k) a) k in
fold a (Array.length v)
let array_fold_left_i f v a =
let n = Array.length a in
let rec fold i v = if i = n then v else fold (succ i) (f i v a.(i)) in
fold 0 v
let array_fold_right2 f v1 v2 a =
let lv1 = Array.length v1 in
let rec fold a n =
if n=0 then a
else
let k = n-1 in
fold (f v1.(k) v2.(k) a) k in
if Array.length v2 <> lv1 then invalid_arg "array_fold_right2";
fold a lv1
let array_fold_left2 f a v1 v2 =
let lv1 = Array.length v1 in
let rec fold a n =
if n >= lv1 then a else fold (f a v1.(n) v2.(n)) (succ n)
in
if Array.length v2 <> lv1 then invalid_arg "array_fold_left2";
fold a 0
let array_fold_left2_i f a v1 v2 =
let lv1 = Array.length v1 in
let rec fold a n =
if n >= lv1 then a else fold (f n a v1.(n) v2.(n)) (succ n)
in
if Array.length v2 <> lv1 then invalid_arg "array_fold_left2";
fold a 0
let array_fold_left_from n f a v =
let rec fold a n =
if n >= Array.length v then a else fold (f a v.(n)) (succ n)
in
fold a n
let array_fold_right_from n f v a =
let rec fold n =
if n >= Array.length v then a else f v.(n) (fold (succ n))
in
fold n
let array_app_tl v l =
if Array.length v = 0 then invalid_arg "array_app_tl";
array_fold_right_from 1 (fun e l -> e::l) v l
let array_list_of_tl v =
if Array.length v = 0 then invalid_arg "array_list_of_tl";
array_fold_right_from 1 (fun e l -> e::l) v []
let array_map_to_list f v =
List.map f (Array.to_list v)
let array_chop n v =
let vlen = Array.length v in
if n > vlen then failwith "array_chop";
(Array.sub v 0 n, Array.sub v n (vlen-n))
exception Local of int
(* If none of the elements is changed by f we return ar itself.
The for loop looks for the first such an element.
If found it is temporarily stored in a ref and the new array is produced,
but f is not re-applied to elements that are already checked *)
let array_smartmap f ar =
let ar_size = Array.length ar in
let aux = ref None in
try
for i = 0 to ar_size-1 do
let a = ar.(i) in
let a' = f a in
if a != a' then (* pointer (in)equality *) begin
aux := Some a';
raise (Local i)
end
done;
ar
with
Local i ->
let copy j =
if j<i then ar.(j)
else if j=i then
match !aux with Some a' -> a' | None -> failwith "Error"
else f (ar.(j))
in
Array.init ar_size copy
let array_map2 f v1 v2 =
if Array.length v1 <> Array.length v2 then invalid_arg "array_map2";
if Array.length v1 == 0 then
[| |]
else begin
let res = Array.create (Array.length v1) (f v1.(0) v2.(0)) in
for i = 1 to pred (Array.length v1) do
res.(i) <- f v1.(i) v2.(i)
done;
res
end
let array_map2_i f v1 v2 =
if Array.length v1 <> Array.length v2 then invalid_arg "array_map2";
if Array.length v1 == 0 then
[| |]
else begin
let res = Array.create (Array.length v1) (f 0 v1.(0) v2.(0)) in
for i = 1 to pred (Array.length v1) do
res.(i) <- f i v1.(i) v2.(i)
done;
res
end
let array_map3 f v1 v2 v3 =
if Array.length v1 <> Array.length v2 ||
Array.length v1 <> Array.length v3 then invalid_arg "array_map3";
if Array.length v1 == 0 then
[| |]
else begin
let res = Array.create (Array.length v1) (f v1.(0) v2.(0) v3.(0)) in
for i = 1 to pred (Array.length v1) do
res.(i) <- f v1.(i) v2.(i) v3.(i)
done;
res
end
let array_map_left f a = (* Ocaml does not guarantee Array.map is LR *)
let l = Array.length a in (* (even if so), then we rewrite it *)
if l = 0 then [||] else begin
let r = Array.create l (f a.(0)) in
for i = 1 to l - 1 do
r.(i) <- f a.(i)
done;
r
end
let array_map_left_pair f a g b =
let l = Array.length a in
if l = 0 then [||],[||] else begin
let r = Array.create l (f a.(0)) in
let s = Array.create l (g b.(0)) in
for i = 1 to l - 1 do
r.(i) <- f a.(i);
s.(i) <- g b.(i)
done;
r, s
end
let pure_functional = false
let array_fold_map' f v e =
if pure_functional then
let (l,e) =
Array.fold_right
(fun x (l,e) -> let (y,e) = f x e in (y::l,e))
v ([],e) in
(Array.of_list l,e)
else
let e' = ref e in
let v' = Array.map (fun x -> let (y,e) = f x !e' in e' := e; y) v in
(v',!e')
let array_fold_map2' f v1 v2 e =
let e' = ref e in
let v' =
array_map2 (fun x1 x2 -> let (y,e) = f x1 x2 !e' in e' := e; y) v1 v2
in
(v',!e')
let array_distinct v =
try
for i=0 to Array.length v-1 do
for j=i+1 to Array.length v-1 do
if v.(i)=v.(j) then raise Exit
done
done;
true
with Exit ->
false
(* Matrices *)
let matrix_transpose mat =
List.fold_right (List.map2 (fun p c -> p::c)) mat
(if mat = [] then [] else List.map (fun _ -> []) (List.hd mat))
(* Functions *)
let identity x = x
let compose f g x = f (g x)
let iterate f =
let rec iterate_f n x =
if n <= 0 then x else iterate_f (pred n) (f x)
in
iterate_f
let repeat n f x =
for i = 1 to n do f x done
let iterate_for a b f x =
let rec iterate i v = if i > b then v else iterate (succ i) (f i v) in
iterate a x
(* Misc *)
type ('a,'b) union = Inl of 'a | Inr of 'b
module Intset = Set.Make(struct type t = int let compare = compare end)
module Intmap = Map.Make(struct type t = int let compare = compare end)
let intmap_in_dom x m =
try let _ = Intmap.find x m in true with Not_found -> false
let intmap_to_list m = Intmap.fold (fun n v l -> (n,v)::l) m []
let intmap_inv m b = Intmap.fold (fun n v l -> if v = b then n::l else l) m []
let interval n m =
let rec interval_n (l,m) =
if n > m then l else interval_n (m::l,pred m)
in
interval_n ([],m)
let in_some x = Some x
let out_some = function
| Some x -> x
| None -> failwith "out_some"
let option_map f = function
| None -> None
| Some x -> Some (f x)
let option_cons a l = match a with
| Some x -> x::l
| None -> l
let option_fold_left2 f e a b = match (a,b) with
| Some x, Some y -> f e x y
| _ -> e
let option_fold_left f e a = match a with
| Some x -> f e x
| _ -> e
let option_fold_right f a e = match a with
| Some x -> f x e
| _ -> e
let option_compare f a b = match (a,b) with
| None, None -> true
| Some a', Some b' -> f a' b'
| _ -> failwith "option_compare"
let option_iter f = function
| None -> ()
| Some x -> f x
let option_smartmap f a = match a with
| None -> a
| Some x -> let x' = f x in if x'==x then a else Some x'
let map_succeed f =
let rec map_f = function
| [] -> []
| h::t -> try (let x = f h in x :: map_f t) with Failure _ -> map_f t
in
map_f
(* Pretty-printing *)
let pr_spc = spc
let pr_fnl = fnl
let pr_int = int
let pr_str = str
let pr_coma () = str "," ++ spc ()
let pr_semicolon () = str ";" ++ spc ()
let pr_bar () = str "|" ++ spc ()
let pr_arg pr x = spc () ++ pr x
let pr_opt pr = function None -> mt () | Some x -> pr_arg pr x
let pr_ord n =
let suff = match n mod 10 with 1 -> "st" | 2 -> "nd" | _ -> "th" in
int n ++ str suff
let rec prlist elem l = match l with
| [] -> mt ()
| h::t -> Stream.lapp (fun () -> elem h) (prlist elem t)
let rec prlist_with_sep sep elem l = match l with
| [] -> mt ()
| [h] -> elem h
| h::t ->
let e = elem h and s = sep() and r = prlist_with_sep sep elem t in
e ++ s ++ r
let pr_vertical_list pr = function
| [] -> str "none" ++ fnl ()
| l -> fnl () ++ str " " ++ hov 0 (prlist_with_sep pr_fnl pr l) ++ fnl ()
let prvecti elem v =
let n = Array.length v in
let rec pr i =
if i = 0 then
elem 0 v.(0)
else
let r = pr (i-1) and e = elem i v.(i) in r ++ e
in
if n = 0 then mt () else pr (n - 1)
let prvect_with_sep sep elem v =
let rec pr n =
if n = 0 then
elem v.(0)
else
let r = pr (n-1) and s = sep() and e = elem v.(n) in
r ++ s ++ e
in
let n = Array.length v in
if n = 0 then mt () else pr (n - 1)
let surround p = hov 1 (str"(" ++ p ++ str")")
(*s Size of ocaml values. *)
module Size = struct
open Obj
(*s Pointers already visited are stored in a hash-table, where
comparisons are done using physical equality. *)
module H = Hashtbl.Make(
struct
type t = Obj.t
let equal = (==)
let hash o = Hashtbl.hash (magic o : int)
end)
let node_table = (H.create 257 : unit H.t)
let in_table o = try H.find node_table o; true with Not_found -> false
let add_in_table o = H.add node_table o ()
let reset_table () = H.clear node_table
(*s Objects are traversed recursively, as soon as their tags are less than
[no_scan_tag]. [count] records the numbers of words already visited. *)
let size_of_double = size (repr 1.0)
let count = ref 0
let rec traverse t =
if not (in_table t) then begin
add_in_table t;
if is_block t then begin
let n = size t in
let tag = tag t in
if tag < no_scan_tag then begin
count := !count + 1 + n;
for i = 0 to n - 1 do
let f = field t i in
if is_block f then traverse f
done
end else if tag = string_tag then
count := !count + 1 + n
else if tag = double_tag then
count := !count + size_of_double
else if tag = double_array_tag then
count := !count + 1 + size_of_double * n
else
incr count
end
end
(*s Sizes of objects in words and in bytes. The size in bytes is computed
system-independently according to [Sys.word_size]. *)
let size_w o =
reset_table ();
count := 0;
traverse (repr o);
!count
let size_b o = (size_w o) * (Sys.word_size / 8)
let size_kb o = (size_w o) / (8192 / Sys.word_size)
end
let size_w = Size.size_w
let size_b = Size.size_b
let size_kb = Size.size_kb
(*s Total size of the allocated ocaml heap. *)
let heap_size () =
let stat = Gc.stat ()
and control = Gc.get () in
let max_words_total = stat.Gc.heap_words + control.Gc.minor_heap_size in
(max_words_total * Sys.word_size / 8)
let heap_size_kb () = (heap_size () + 1023) / 1024
(*s interruption *)
let interrupt = ref false
let check_for_interrupt () =
if !interrupt then begin interrupt := false; raise Sys.Break end
|