1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i camlp4deps: "parsing/grammar.cma parsing/q_constr.cmo" i*)
(* $Id: hipattern.ml4 8866 2006-05-28 16:21:04Z herbelin $ *)
open Pp
open Util
open Names
open Nameops
open Term
open Termops
open Reductionops
open Inductiveops
open Evd
open Environ
open Proof_trees
open Clenv
open Pattern
open Matching
open Coqlib
open Declarations
(* I implemented the following functions which test whether a term t
is an inductive but non-recursive type, a general conjuction, a
general disjunction, or a type with no constructors.
They are more general than matching with or_term, and_term, etc,
since they do not depend on the name of the type. Hence, they
also work on ad-hoc disjunctions introduced by the user.
-- Eduardo (6/8/97). *)
type 'a matching_function = constr -> 'a option
type testing_function = constr -> bool
let mkmeta n = Nameops.make_ident "X" (Some n)
let meta1 = mkmeta 1
let meta2 = mkmeta 2
let meta3 = mkmeta 3
let meta4 = mkmeta 4
let op2bool = function Some _ -> true | None -> false
let match_with_non_recursive_type t =
match kind_of_term t with
| App _ ->
let (hdapp,args) = decompose_app t in
(match kind_of_term hdapp with
| Ind ind ->
if not (Global.lookup_mind (fst ind)).mind_finite then
Some (hdapp,args)
else
None
| _ -> None)
| _ -> None
let is_non_recursive_type t = op2bool (match_with_non_recursive_type t)
(* A general conjunction type is a non-recursive inductive type with
only one constructor. *)
let match_with_conjunction t =
let (hdapp,args) = decompose_app t in
match kind_of_term hdapp with
| Ind ind ->
let (mib,mip) = Global.lookup_inductive ind in
if (Array.length mip.mind_consnames = 1)
&& (not (mis_is_recursive (ind,mib,mip)))
&& (mip.mind_nrealargs = 0)
then
Some (hdapp,args)
else
None
| _ -> None
let is_conjunction t = op2bool (match_with_conjunction t)
(* A general disjunction type is a non-recursive inductive type all
whose constructors have a single argument. *)
let match_with_disjunction t =
let (hdapp,args) = decompose_app t in
match kind_of_term hdapp with
| Ind ind ->
let car = mis_constr_nargs ind in
if array_for_all (fun ar -> ar = 1) car &&
(let (mib,mip) = Global.lookup_inductive ind in
not (mis_is_recursive (ind,mib,mip)))
then
Some (hdapp,args)
else
None
| _ -> None
let is_disjunction t = op2bool (match_with_disjunction t)
let match_with_empty_type t =
let (hdapp,args) = decompose_app t in
match (kind_of_term hdapp) with
| Ind ind ->
let (mib,mip) = Global.lookup_inductive ind in
let nconstr = Array.length mip.mind_consnames in
if nconstr = 0 then Some hdapp else None
| _ -> None
let is_empty_type t = op2bool (match_with_empty_type t)
let match_with_unit_type t =
let (hdapp,args) = decompose_app t in
match (kind_of_term hdapp) with
| Ind ind ->
let (mib,mip) = Global.lookup_inductive ind in
let constr_types = mip.mind_nf_lc in
let nconstr = Array.length mip.mind_consnames in
let zero_args c =
nb_prod c = mib.mind_nparams in
if nconstr = 1 && array_for_all zero_args constr_types then
Some hdapp
else
None
| _ -> None
let is_unit_type t = op2bool (match_with_unit_type t)
(* Checks if a given term is an application of an
inductive binary relation R, so that R has only one constructor
establishing its reflexivity. *)
let coq_refl_rel1_pattern = PATTERN [ forall A:_, forall x:A, _ A x x ]
let coq_refl_rel2_pattern = PATTERN [ forall x:_, _ x x ]
let coq_refl_reljm_pattern = PATTERN [ forall A:_, forall x:A, _ A x A x ]
let match_with_equation t =
let (hdapp,args) = decompose_app t in
match (kind_of_term hdapp) with
| Ind ind ->
let (mib,mip) = Global.lookup_inductive ind in
let constr_types = mip.mind_nf_lc in
let nconstr = Array.length mip.mind_consnames in
if nconstr = 1 &&
(is_matching coq_refl_rel1_pattern constr_types.(0) ||
is_matching coq_refl_rel2_pattern constr_types.(0) ||
is_matching coq_refl_reljm_pattern constr_types.(0))
then
Some (hdapp,args)
else
None
| _ -> None
let is_equation t = op2bool (match_with_equation t)
let coq_arrow_pattern = PATTERN [ ?X1 -> ?X2 ]
let match_arrow_pattern t =
match matches coq_arrow_pattern t with
| [(m1,arg);(m2,mind)] -> assert (m1=meta1 & m2=meta2); (arg, mind)
| _ -> anomaly "Incorrect pattern matching"
let match_with_nottype t =
try
let (arg,mind) = match_arrow_pattern t in
if is_empty_type mind then Some (mind,arg) else None
with PatternMatchingFailure -> None
let is_nottype t = op2bool (match_with_nottype t)
let match_with_forall_term c=
match kind_of_term c with
| Prod (nam,a,b) -> Some (nam,a,b)
| _ -> None
let is_forall_term c = op2bool (match_with_forall_term c)
let match_with_imp_term c=
match kind_of_term c with
| Prod (_,a,b) when not (dependent (mkRel 1) b) ->Some (a,b)
| _ -> None
let is_imp_term c = op2bool (match_with_imp_term c)
let rec has_nodep_prod_after n c =
match kind_of_term c with
| Prod (_,_,b) ->
( n>0 || not (dependent (mkRel 1) b))
&& (has_nodep_prod_after (n-1) b)
| _ -> true
let has_nodep_prod = has_nodep_prod_after 0
let match_with_nodep_ind t =
let (hdapp,args) = decompose_app t in
match (kind_of_term hdapp) with
| Ind ind ->
let (mib,mip) = Global.lookup_inductive ind in
if Array.length (mib.mind_packets)>1 then None else
let nodep_constr = has_nodep_prod_after mib.mind_nparams in
if array_for_all nodep_constr mip.mind_nf_lc then
let params=
if mip.mind_nrealargs=0 then args else
fst (list_chop mib.mind_nparams args) in
Some (hdapp,params,mip.mind_nrealargs)
else
None
| _ -> None
let is_nodep_ind t=op2bool (match_with_nodep_ind t)
let match_with_sigma_type t=
let (hdapp,args) = decompose_app t in
match (kind_of_term hdapp) with
| Ind ind ->
let (mib,mip) = Global.lookup_inductive ind in
if (Array.length (mib.mind_packets)=1) &&
(mip.mind_nrealargs=0) &&
(Array.length mip.mind_consnames=1) &&
has_nodep_prod_after (mib.mind_nparams+1) mip.mind_nf_lc.(0) then
(*allowing only 1 existential*)
Some (hdapp,args)
else
None
| _ -> None
let is_sigma_type t=op2bool (match_with_sigma_type t)
(***** Destructing patterns bound to some theory *)
let rec first_match matcher = function
| [] -> raise PatternMatchingFailure
| (pat,build_set)::l ->
try (build_set (),matcher pat)
with PatternMatchingFailure -> first_match matcher l
(*** Equality *)
(* Patterns "(eq ?1 ?2 ?3)" and "(identity ?1 ?2 ?3)" *)
let coq_eq_pattern_gen eq = lazy PATTERN [ %eq ?X1 ?X2 ?X3 ]
let coq_eq_pattern = coq_eq_pattern_gen coq_eq_ref
let coq_identity_pattern = coq_eq_pattern_gen coq_identity_ref
let match_eq eqn eq_pat =
match matches (Lazy.force eq_pat) eqn with
| [(m1,t);(m2,x);(m3,y)] ->
assert (m1 = meta1 & m2 = meta2 & m3 = meta3);
(t,x,y)
| _ -> anomaly "match_eq: an eq pattern should match 3 terms"
let equalities =
[coq_eq_pattern, build_coq_eq_data;
coq_identity_pattern, build_coq_identity_data]
let find_eq_data_decompose eqn = (* fails with PatternMatchingFailure *)
first_match (match_eq eqn) equalities
open Tacmach
open Tacticals
let match_eq_nf gls eqn eq_pat =
match pf_matches gls (Lazy.force eq_pat) eqn with
| [(m1,t);(m2,x);(m3,y)] ->
assert (m1 = meta1 & m2 = meta2 & m3 = meta3);
(t,pf_whd_betadeltaiota gls x,pf_whd_betadeltaiota gls y)
| _ -> anomaly "match_eq: an eq pattern should match 3 terms"
let dest_nf_eq gls eqn =
try
snd (first_match (match_eq_nf gls eqn) equalities)
with PatternMatchingFailure ->
error "Not an equality"
(*** Sigma-types *)
(* Patterns "(existS ?1 ?2 ?3 ?4)" and "(existT ?1 ?2 ?3 ?4)" *)
let coq_ex_pattern_gen ex = lazy PATTERN [ %ex ?X1 ?X2 ?X3 ?X4 ]
let coq_existT_pattern = coq_ex_pattern_gen coq_existT_ref
let match_sigma ex ex_pat =
match matches (Lazy.force ex_pat) ex with
| [(m1,a);(m2,p);(m3,car);(m4,cdr)] ->
assert (m1=meta1 & m2=meta2 & m3=meta3 & m4=meta4);
(a,p,car,cdr)
| _ ->
anomaly "match_sigma: a successful sigma pattern should match 4 terms"
let find_sigma_data_decompose ex = (* fails with PatternMatchingFailure *)
first_match (match_sigma ex)
[coq_existT_pattern, build_sigma_type]
(* Pattern "(sig ?1 ?2)" *)
let coq_sig_pattern = lazy PATTERN [ %coq_sig_ref ?X1 ?X2 ]
let match_sigma t =
match matches (Lazy.force coq_sig_pattern) t with
| [(_,a); (_,p)] -> (a,p)
| _ -> anomaly "Unexpected pattern"
let is_matching_sigma t = is_matching (Lazy.force coq_sig_pattern) t
(*** Decidable equalities *)
(* The expected form of the goal for the tactic Decide Equality *)
(* Pattern "{<?1>x=y}+{~(<?1>x=y)}" *)
(* i.e. "(sumbool (eq ?1 x y) ~(eq ?1 x y))" *)
let coq_eqdec_inf_pattern =
lazy PATTERN [ { ?X2 = ?X3 :> ?X1 } + { ~ ?X2 = ?X3 :> ?X1 } ]
let coq_eqdec_inf_rev_pattern =
lazy PATTERN [ { ~ ?X2 = ?X3 :> ?X1 } + { ?X2 = ?X3 :> ?X1 } ]
let coq_eqdec_pattern =
lazy PATTERN [ %coq_or_ref (?X2 = ?X3 :> ?X1) (~ ?X2 = ?X3 :> ?X1) ]
let coq_eqdec_rev_pattern =
lazy PATTERN [ %coq_or_ref (~ ?X2 = ?X3 :> ?X1) (?X2 = ?X3 :> ?X1) ]
let op_or = coq_or_ref
let op_sum = coq_sumbool_ref
let match_eqdec t =
let eqonleft,op,subst =
try true,op_sum,matches (Lazy.force coq_eqdec_inf_pattern) t
with PatternMatchingFailure ->
try false,op_sum,matches (Lazy.force coq_eqdec_inf_rev_pattern) t
with PatternMatchingFailure ->
try true,op_or,matches (Lazy.force coq_eqdec_pattern) t
with PatternMatchingFailure ->
false,op_or,matches (Lazy.force coq_eqdec_rev_pattern) t in
match subst with
| [(_,typ);(_,c1);(_,c2)] ->
eqonleft, Libnames.constr_of_global (Lazy.force op), c1, c2, typ
| _ -> anomaly "Unexpected pattern"
(* Patterns "~ ?" and "? -> False" *)
let coq_not_pattern = lazy PATTERN [ ~ _ ]
let coq_imp_False_pattern = lazy PATTERN [ _ -> %coq_False_ref ]
let is_matching_not t = is_matching (Lazy.force coq_not_pattern) t
let is_matching_imp_False t = is_matching (Lazy.force coq_imp_False_pattern) t
(* Remark: patterns that have references to the standard library must
be evaluated lazily (i.e. at the time they are used, not a the time
coqtop starts) *)
|