1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id: tactics.ml 9853 2007-05-23 14:25:47Z letouzey $ *)
open Pp
open Util
open Names
open Nameops
open Sign
open Term
open Termops
open Declarations
open Inductive
open Inductiveops
open Reductionops
open Environ
open Libnames
open Evd
open Pfedit
open Tacred
open Rawterm
open Tacmach
open Proof_trees
open Proof_type
open Logic
open Evar_refiner
open Clenv
open Clenvtac
open Refiner
open Tacticals
open Hipattern
open Coqlib
open Nametab
open Genarg
open Tacexpr
open Decl_kinds
open Evarutil
open Indrec
exception Bound
let rec nb_prod x =
let rec count n c =
match kind_of_term c with
Prod(_,_,t) -> count (n+1) t
| LetIn(_,a,_,t) -> count n (subst1 a t)
| Cast(c,_,_) -> count n c
| _ -> n
in count 0 x
(*********************************************)
(* Tactics *)
(*********************************************)
(****************************************)
(* General functions *)
(****************************************)
(*
let get_pairs_from_bindings =
let pair_from_binding = function
| [(Bindings binds)] -> binds
| _ -> error "not a binding list!"
in
List.map pair_from_binding
*)
let string_of_inductive c =
try match kind_of_term c with
| Ind ind_sp ->
let (mib,mip) = Global.lookup_inductive ind_sp in
string_of_id mip.mind_typename
| _ -> raise Bound
with Bound -> error "Bound head variable"
let rec head_constr_bound t l =
let t = strip_outer_cast(collapse_appl t) in
match kind_of_term t with
| Prod (_,_,c2) -> head_constr_bound c2 l
| LetIn (_,_,_,c2) -> head_constr_bound c2 l
| App (f,args) ->
head_constr_bound f (Array.fold_right (fun a l -> a::l) args l)
| Const _ -> t::l
| Ind _ -> t::l
| Construct _ -> t::l
| Var _ -> t::l
| _ -> raise Bound
let head_constr c =
try head_constr_bound c [] with Bound -> error "Bound head variable"
(*
let bad_tactic_args s l =
raise (RefinerError (BadTacticArgs (s,l)))
*)
(******************************************)
(* Primitive tactics *)
(******************************************)
let introduction = Tacmach.introduction
let intro_replacing = Tacmach.intro_replacing
let internal_cut = Tacmach.internal_cut
let internal_cut_rev = Tacmach.internal_cut_rev
let refine = Tacmach.refine
let convert_concl = Tacmach.convert_concl
let convert_hyp = Tacmach.convert_hyp
let thin = Tacmach.thin
let thin_body = Tacmach.thin_body
(* Moving hypotheses *)
let move_hyp = Tacmach.move_hyp
(* Renaming hypotheses *)
let rename_hyp = Tacmach.rename_hyp
(* Refine as a fixpoint *)
let mutual_fix = Tacmach.mutual_fix
let fix ido n = match ido with
| None -> mutual_fix (Pfedit.get_current_proof_name ()) n []
| Some id -> mutual_fix id n []
(* Refine as a cofixpoint *)
let mutual_cofix = Tacmach.mutual_cofix
let cofix = function
| None -> mutual_cofix (Pfedit.get_current_proof_name ()) []
| Some id -> mutual_cofix id []
(**************************************************************)
(* Reduction and conversion tactics *)
(**************************************************************)
type tactic_reduction = env -> evar_map -> constr -> constr
(* The following two tactics apply an arbitrary
reduction function either to the conclusion or to a
certain hypothesis *)
let reduct_in_concl (redfun,sty) gl =
convert_concl_no_check (pf_reduce redfun gl (pf_concl gl)) sty gl
let reduct_in_hyp redfun ((_,id),where) gl =
let (_,c, ty) = pf_get_hyp gl id in
let redfun' = (*under_casts*) (pf_reduce redfun gl) in
match c with
| None ->
if where = InHypValueOnly then
errorlabstrm "" (pr_id id ++ str "has no value");
convert_hyp_no_check (id,None,redfun' ty) gl
| Some b ->
let b' = if where <> InHypTypeOnly then redfun' b else b in
let ty' = if where <> InHypValueOnly then redfun' ty else ty in
convert_hyp_no_check (id,Some b',ty') gl
let reduct_option redfun = function
| Some id -> reduct_in_hyp (fst redfun) id
| None -> reduct_in_concl redfun
(* The following tactic determines whether the reduction
function has to be applied to the conclusion or
to the hypotheses. *)
let redin_combinator redfun =
onClauses (reduct_option redfun)
(* Now we introduce different instances of the previous tacticals *)
let change_and_check cv_pb t env sigma c =
if is_fconv cv_pb env sigma t c then
t
else
errorlabstrm "convert-check-hyp" (str "Not convertible")
(* Use cumulutavity only if changing the conclusion not a subterm *)
let change_on_subterm cv_pb t = function
| None -> change_and_check cv_pb t
| Some occl -> contextually false occl (change_and_check Reduction.CONV t)
let change_in_concl occl t =
reduct_in_concl ((change_on_subterm Reduction.CUMUL t occl),DEFAULTcast)
let change_in_hyp occl t =
reduct_in_hyp (change_on_subterm Reduction.CONV t occl)
let change_option occl t = function
Some id -> change_in_hyp occl t id
| None -> change_in_concl occl t
let change occl c cls =
(match cls, occl with
({onhyps=(Some(_::_::_)|None)}|{onhyps=Some(_::_);onconcl=true}),
Some _ ->
error "No occurrences expected when changing several hypotheses"
| _ -> ());
onClauses (change_option occl c) cls
(* Pour usage interne (le niveau User est pris en compte par reduce) *)
let red_in_concl = reduct_in_concl (red_product,DEFAULTcast)
let red_in_hyp = reduct_in_hyp red_product
let red_option = reduct_option (red_product,DEFAULTcast)
let hnf_in_concl = reduct_in_concl (hnf_constr,DEFAULTcast)
let hnf_in_hyp = reduct_in_hyp hnf_constr
let hnf_option = reduct_option (hnf_constr,DEFAULTcast)
let simpl_in_concl = reduct_in_concl (nf,DEFAULTcast)
let simpl_in_hyp = reduct_in_hyp nf
let simpl_option = reduct_option (nf,DEFAULTcast)
let normalise_in_concl = reduct_in_concl (compute,DEFAULTcast)
let normalise_in_hyp = reduct_in_hyp compute
let normalise_option = reduct_option (compute,DEFAULTcast)
let normalise_vm_in_concl = reduct_in_concl (Redexpr.cbv_vm,VMcast)
let unfold_in_concl loccname = reduct_in_concl (unfoldn loccname,DEFAULTcast)
let unfold_in_hyp loccname = reduct_in_hyp (unfoldn loccname)
let unfold_option loccname = reduct_option (unfoldn loccname,DEFAULTcast)
let pattern_option l = reduct_option (pattern_occs l,DEFAULTcast)
(* A function which reduces accordingly to a reduction expression,
as the command Eval does. *)
let needs_check = function
(* Expansion is not necessarily well-typed: e.g. expansion of t into x is
not well-typed in [H:(P t); x:=t |- G] because x is defined after H *)
| Fold _ -> true
| _ -> false
let reduce redexp cl goal =
(if needs_check redexp then with_check else (fun x -> x))
(redin_combinator (Redexpr.reduction_of_red_expr redexp) cl)
goal
(* Unfolding occurrences of a constant *)
let unfold_constr = function
| ConstRef sp -> unfold_in_concl [[],EvalConstRef sp]
| VarRef id -> unfold_in_concl [[],EvalVarRef id]
| _ -> errorlabstrm "unfold_constr" (str "Cannot unfold a non-constant.")
(*******************************************)
(* Introduction tactics *)
(*******************************************)
let fresh_id_avoid avoid id =
next_global_ident_away true id avoid
let fresh_id avoid id gl =
fresh_id_avoid (avoid@(pf_ids_of_hyps gl)) id
let id_of_name_with_default s = function
| Anonymous -> id_of_string s
| Name id -> id
let default_id env sigma = function
| (name,None,t) ->
(match Typing.sort_of env sigma t with
| Prop _ -> (id_of_name_with_default "H" name)
| Type _ -> (id_of_name_with_default "X" name))
| (name,Some b,_) -> id_of_name_using_hdchar env b name
(* Non primitive introduction tactics are treated by central_intro
There is possibly renaming, with possibly names to avoid and
possibly a move to do after the introduction *)
type intro_name_flag =
| IntroAvoid of identifier list
| IntroBasedOn of identifier * identifier list
| IntroMustBe of identifier
let find_name decl gl = function
| IntroAvoid idl ->
(* this case must be compatible with [find_intro_names] below. *)
let id = fresh_id idl (default_id (pf_env gl) gl.sigma decl) gl in id
| IntroBasedOn (id,idl) -> fresh_id idl id gl
| IntroMustBe id ->
let id' = fresh_id [] id gl in
if id' <> id then error ((string_of_id id)^" is already used");
id'
(* Returns the names that would be created by intros, without doing
intros. This function is supposed to be compatible with an
iteration of [find_name] above. As [default_id] checks the sort of
the type to build hyp names, we maintain an environment to be able
to type dependent hyps. *)
let find_intro_names ctxt gl =
let _, res = List.fold_right
(fun decl acc ->
let wantedname,x,typdecl = decl in
let env,idl = acc in
let name = fresh_id idl (default_id env gl.sigma decl) gl in
let newenv = push_rel (wantedname,x,typdecl) env in
(newenv,(name::idl)))
ctxt (pf_env gl , []) in
List.rev res
let build_intro_tac id = function
| None -> introduction id
| Some dest -> tclTHEN (introduction id) (move_hyp true id dest)
let rec intro_gen name_flag move_flag force_flag gl =
match kind_of_term (pf_concl gl) with
| Prod (name,t,_) ->
build_intro_tac (find_name (name,None,t) gl name_flag) move_flag gl
| LetIn (name,b,t,_) ->
build_intro_tac (find_name (name,Some b,t) gl name_flag) move_flag gl
| _ ->
if not force_flag then raise (RefinerError IntroNeedsProduct);
try
tclTHEN
(reduce (Red true) onConcl)
(intro_gen name_flag move_flag force_flag) gl
with Redelimination ->
errorlabstrm "Intro" (str "No product even after head-reduction")
let intro_mustbe_force id = intro_gen (IntroMustBe id) None true
let intro_using id = intro_gen (IntroBasedOn (id,[])) None false
let intro_force force_flag = intro_gen (IntroAvoid []) None force_flag
let intro = intro_force false
let introf = intro_force true
let intro_avoiding l = intro_gen (IntroAvoid l) None false
let introf_move_name destopt = intro_gen (IntroAvoid []) destopt true
(* For backwards compatibility *)
let central_intro = intro_gen
(**** Multiple introduction tactics ****)
let rec intros_using = function
[] -> tclIDTAC
| str::l -> tclTHEN (intro_using str) (intros_using l)
let intros = tclREPEAT (intro_force false)
let intro_erasing id = tclTHEN (thin [id]) (introduction id)
let intros_replacing ids gls =
let rec introrec = function
| [] -> tclIDTAC
| id::tl ->
(tclTHEN (tclORELSE (intro_replacing id)
(tclORELSE (intro_erasing id) (* ?? *)
(intro_using id)))
(introrec tl))
in
introrec ids gls
(* User-level introduction tactics *)
let intro_move idopt idopt' = match idopt with
| None -> intro_gen (IntroAvoid []) idopt' true
| Some id -> intro_gen (IntroMustBe id) idopt' true
let pf_lookup_hypothesis_as_renamed env ccl = function
| AnonHyp n -> pf_lookup_index_as_renamed env ccl n
| NamedHyp id -> pf_lookup_name_as_renamed env ccl id
let pf_lookup_hypothesis_as_renamed_gen red h gl =
let env = pf_env gl in
let rec aux ccl =
match pf_lookup_hypothesis_as_renamed env ccl h with
| None when red ->
aux
((fst (Redexpr.reduction_of_red_expr (Red true)))
env (project gl) ccl)
| x -> x
in
try aux (pf_concl gl)
with Redelimination -> None
let is_quantified_hypothesis id g =
match pf_lookup_hypothesis_as_renamed_gen true (NamedHyp id) g with
| Some _ -> true
| None -> false
let msg_quantified_hypothesis = function
| NamedHyp id ->
str "hypothesis " ++ pr_id id
| AnonHyp n ->
int n ++ str (match n with 1 -> "st" | 2 -> "nd" | _ -> "th") ++
str " non dependent hypothesis"
let depth_of_quantified_hypothesis red h gl =
match pf_lookup_hypothesis_as_renamed_gen red h gl with
| Some depth -> depth
| None ->
errorlabstrm "lookup_quantified_hypothesis"
(str "No " ++ msg_quantified_hypothesis h ++
str " in current goal" ++
if red then str " even after head-reduction" else mt ())
let intros_until_gen red h g =
tclDO (depth_of_quantified_hypothesis red h g) intro g
let intros_until_id id = intros_until_gen true (NamedHyp id)
let intros_until_n_gen red n = intros_until_gen red (AnonHyp n)
let intros_until = intros_until_gen true
let intros_until_n = intros_until_n_gen true
let intros_until_n_wored = intros_until_n_gen false
let try_intros_until tac = function
| NamedHyp id -> tclTHEN (tclTRY (intros_until_id id)) (tac id)
| AnonHyp n -> tclTHEN (intros_until_n n) (onLastHyp tac)
let rec intros_move = function
| [] -> tclIDTAC
| (hyp,destopt) :: rest ->
tclTHEN (intro_gen (IntroMustBe hyp) destopt false)
(intros_move rest)
let dependent_in_decl a (_,c,t) =
match c with
| None -> dependent a t
| Some body -> dependent a body || dependent a t
let move_to_rhyp rhyp gl =
let rec get_lhyp lastfixed depdecls = function
| [] ->
(match rhyp with
| None -> lastfixed
| Some h -> anomaly ("Hypothesis should occur: "^ (string_of_id h)))
| (hyp,c,typ) as ht :: rest ->
if Some hyp = rhyp then
lastfixed
else if List.exists (occur_var_in_decl (pf_env gl) hyp) depdecls then
get_lhyp lastfixed (ht::depdecls) rest
else
get_lhyp (Some hyp) depdecls rest
in
let sign = pf_hyps gl in
let (hyp,c,typ as decl) = List.hd sign in
match get_lhyp None [decl] (List.tl sign) with
| None -> tclIDTAC gl
| Some hypto -> move_hyp true hyp hypto gl
let rec intros_rmove = function
| [] -> tclIDTAC
| (hyp,destopt) :: rest ->
tclTHENLIST [ introduction hyp;
move_to_rhyp destopt;
intros_rmove rest ]
(**************************)
(* Refinement tactics *)
(**************************)
let apply_type hdcty argl gl =
refine (applist (mkCast (Evarutil.mk_new_meta(),DEFAULTcast, hdcty),argl)) gl
let apply_term hdc argl gl =
refine (applist (hdc,argl)) gl
let bring_hyps hyps =
if hyps = [] then Refiner.tclIDTAC
else
(fun gl ->
let newcl = List.fold_right mkNamedProd_or_LetIn hyps (pf_concl gl) in
let f = mkCast (Evarutil.mk_new_meta(),DEFAULTcast, newcl) in
refine_no_check (mkApp (f, instance_from_named_context hyps)) gl)
(**************************)
(* Cut tactics *)
(**************************)
let cut c gl =
match kind_of_term (hnf_type_of gl c) with
| Sort _ ->
let id=next_name_away_with_default "H" Anonymous (pf_ids_of_hyps gl) in
let t = mkProd (Anonymous, c, pf_concl gl) in
tclTHENFIRST
(internal_cut_rev id c)
(tclTHEN (apply_type t [mkVar id]) (thin [id]))
gl
| _ -> error "Not a proposition or a type"
let cut_intro t = tclTHENFIRST (cut t) intro
(* let cut_replacing id t tac =
tclTHENS (cut t)
[tclORELSE
(intro_replacing id)
(tclORELSE (intro_erasing id) (intro_using id));
tac (refine_no_check (mkVar id)) ] *)
(* cut_replacing choue si l'hypothse remplacer apparat dans le
but, ou dans une autre hypothse *)
let cut_replacing id t tac =
tclTHENS (cut t) [
tclORELSE (intro_replacing id) (intro_erasing id);
tac (refine_no_check (mkVar id)) ]
let cut_in_parallel l =
let rec prec = function
| [] -> tclIDTAC
| h::t -> tclTHENFIRST (cut h) (prec t)
in
prec (List.rev l)
let error_uninstantiated_metas t clenv =
let na = meta_name clenv.env (List.hd (Metaset.elements (metavars_of t))) in
let id = match na with Name id -> id | _ -> anomaly "unnamed dependent meta"
in errorlabstrm "" (str "cannot find an instance for " ++ pr_id id)
let clenv_refine_in id clenv gl =
let new_hyp_typ = clenv_type clenv in
if occur_meta new_hyp_typ then error_uninstantiated_metas new_hyp_typ clenv;
let new_hyp_prf = clenv_value clenv in
tclTHEN
(tclEVARS (evars_of clenv.env))
(cut_replacing id new_hyp_typ
(fun x gl -> refine_no_check new_hyp_prf gl)) gl
(****************************************************)
(* Resolution tactics *)
(****************************************************)
(* Resolution with missing arguments *)
let apply_with_bindings (c,lbind) gl =
(* The actual type of the theorem. It will be matched against the
goal. If this fails, then the head constant will be unfolded step by
step. *)
let thm_ty0 = nf_betaiota (pf_type_of gl c) in
let rec try_apply thm_ty =
try
let n = nb_prod thm_ty - nb_prod (pf_concl gl) in
if n<0 then error "Apply: theorem has not enough premisses.";
let clause = make_clenv_binding_apply gl (Some n) (c,thm_ty) lbind in
Clenvtac.res_pf clause gl
with (Pretype_errors.PretypeError _|RefinerError _|UserError _|Failure _) as exn ->
let red_thm =
try red_product (pf_env gl) (project gl) thm_ty
with (Redelimination | UserError _) -> raise exn in
try_apply red_thm in
try try_apply thm_ty0
with (Pretype_errors.PretypeError _|RefinerError _|UserError _|Failure _) ->
(* Last chance: if the head is a variable, apply may try
second order unification *)
let clause = make_clenv_binding_apply gl None (c,thm_ty0) lbind in
Clenvtac.res_pf clause gl
let apply c = apply_with_bindings (c,NoBindings)
let apply_list = function
| c::l -> apply_with_bindings (c,ImplicitBindings l)
| _ -> assert false
(* Resolution with no reduction on the type *)
let apply_without_reduce c gl =
let clause = mk_clenv_type_of gl c in
res_pf clause gl
(* [apply_in hyp c] replaces
hyp : forall y1, ti -> t hyp : rho(u)
======================== with ============ and the =======
goal goal rho(ti)
assuming that [c] has type [forall x1..xn -> t' -> u] for some [t]
unifiable with [t'] with unifier [rho]
*)
let find_matching_clause unifier clause =
let rec find clause =
try unifier clause
with exn when catchable_exception exn ->
try find (clenv_push_prod clause)
with NotExtensibleClause -> failwith "Cannot apply"
in find clause
let apply_in_once gls innerclause (d,lbind) =
let thm = nf_betaiota (pf_type_of gls d) in
let clause = make_clenv_binding gls (d,thm) lbind in
let ordered_metas = List.rev (clenv_independent clause) in
if ordered_metas = [] then error "Statement without assumptions";
let f mv = find_matching_clause (clenv_fchain mv clause) innerclause in
try list_try_find f ordered_metas
with Failure _ -> error "Unable to unify"
let apply_in id lemmas gls =
let t' = pf_get_hyp_typ gls id in
let innermostclause = mk_clenv_from_n gls (Some 0) (mkVar id,t') in
let clause = List.fold_left (apply_in_once gls) innermostclause lemmas in
clenv_refine_in id clause gls
(* A useful resolution tactic which, if c:A->B, transforms |- C into
|- B -> C and |- A
-------------------
Gamma |- c : A -> B Gamma |- ?2 : A
----------------------------------------
Gamma |- B Gamma |- ?1 : B -> C
-----------------------------------------------------
Gamma |- ? : C
Ltac lapply c :=
let ty := check c in
match eval hnf in ty with
?A -> ?B => cut B; [ idtac | apply c ]
end.
*)
let cut_and_apply c gl =
let goal_constr = pf_concl gl in
match kind_of_term (pf_hnf_constr gl (pf_type_of gl c)) with
| Prod (_,c1,c2) when not (dependent (mkRel 1) c2) ->
let c2 = refresh_universes c2 in
tclTHENLAST
(apply_type (mkProd (Anonymous,c2,goal_constr)) [mkMeta(new_meta())])
(apply_term c [mkMeta (new_meta())]) gl
| _ -> error "Imp_elim needs a non-dependent product"
(********************************************************************)
(* Exact tactics *)
(********************************************************************)
let exact_check c gl =
let concl = (pf_concl gl) in
let ct = pf_type_of gl c in
if pf_conv_x_leq gl ct concl then
refine_no_check c gl
else
error "Not an exact proof"
let exact_no_check = refine_no_check
let vm_cast_no_check c gl =
let concl = pf_concl gl in
refine_no_check (Term.mkCast(c,Term.VMcast,concl)) gl
let exact_proof c gl =
(* on experimente la synthese d'ise dans exact *)
let c = Constrintern.interp_casted_constr (project gl) (pf_env gl) c (pf_concl gl)
in refine_no_check c gl
let (assumption : tactic) = fun gl ->
let concl = pf_concl gl in
let hyps = pf_hyps gl in
let rec arec only_eq = function
| [] ->
if only_eq then arec false hyps else error "No such assumption"
| (id,c,t)::rest ->
if (only_eq & eq_constr t concl)
or (not only_eq & pf_conv_x_leq gl t concl)
then refine_no_check (mkVar id) gl
else arec only_eq rest
in
arec true hyps
(*****************************************************************)
(* Modification of a local context *)
(*****************************************************************)
(* This tactic enables the user to remove hypotheses from the signature.
* Some care is taken to prevent him from removing variables that are
* subsequently used in other hypotheses or in the conclusion of the
* goal. *)
let clear ids gl = (* avant seul dyn_clear n'echouait pas en [] *)
if ids=[] then tclIDTAC gl else with_check (thin ids) gl
let clear_body = thin_body
(* Takes a list of booleans, and introduces all the variables
* quantified in the goal which are associated with a value
* true in the boolean list. *)
let rec intros_clearing = function
| [] -> tclIDTAC
| (false::tl) -> tclTHEN intro (intros_clearing tl)
| (true::tl) ->
tclTHENLIST
[ intro; onLastHyp (fun id -> clear [id]); intros_clearing tl]
(* Adding new hypotheses *)
let new_hyp mopt (c,lbind) g =
let clause = make_clenv_binding g (c,pf_type_of g c) lbind in
let (thd,tstack) = whd_stack (clenv_value clause) in
let nargs = List.length tstack in
let cut_pf =
applist(thd,
match mopt with
| Some m -> if m < nargs then list_firstn m tstack else tstack
| None -> tstack)
in
(tclTHENLAST (tclTHEN (tclEVARS (evars_of clause.env))
(cut (pf_type_of g cut_pf)))
((tclORELSE (apply cut_pf) (exact_no_check cut_pf)))) g
(* Keeping only a few hypotheses *)
let keep hyps gl =
let env = Global.env() in
let ccl = pf_concl gl in
let cl,_ =
fold_named_context_reverse (fun (clear,keep) (hyp,_,_ as decl) ->
if List.mem hyp hyps
or List.exists (occur_var_in_decl env hyp) keep
or occur_var env hyp ccl
then (clear,decl::keep)
else (hyp::clear,keep))
~init:([],[]) (pf_env gl)
in thin cl gl
(************************)
(* Introduction tactics *)
(************************)
let constructor_tac boundopt i lbind gl =
let cl = pf_concl gl in
let (mind,redcl) = pf_reduce_to_quantified_ind gl cl in
let nconstr =
Array.length (snd (Global.lookup_inductive mind)).mind_consnames in
if i=0 then error "The constructors are numbered starting from 1";
if i > nconstr then error "Not enough constructors";
begin match boundopt with
| Some expctdnum ->
if expctdnum <> nconstr then
error "Not the expected number of constructors"
| None -> ()
end;
let cons = mkConstruct (ith_constructor_of_inductive mind i) in
let apply_tac = apply_with_bindings (cons,lbind) in
(tclTHENLIST
[convert_concl_no_check redcl DEFAULTcast; intros; apply_tac]) gl
let one_constructor i = constructor_tac None i
(* Try to apply the constructor of the inductive definition followed by
a tactic t given as an argument.
Should be generalize in Constructor (Fun c : I -> tactic)
*)
let any_constructor tacopt gl =
let t = match tacopt with None -> tclIDTAC | Some t -> t in
let mind = fst (pf_reduce_to_quantified_ind gl (pf_concl gl)) in
let nconstr =
Array.length (snd (Global.lookup_inductive mind)).mind_consnames in
if nconstr = 0 then error "The type has no constructors";
tclFIRST (List.map (fun i -> tclTHEN (one_constructor i NoBindings) t)
(interval 1 nconstr)) gl
let left = constructor_tac (Some 2) 1
let simplest_left = left NoBindings
let right = constructor_tac (Some 2) 2
let simplest_right = right NoBindings
let split = constructor_tac (Some 1) 1
let simplest_split = split NoBindings
(********************************************)
(* Elimination tactics *)
(********************************************)
let last_arg c = match kind_of_term c with
| App (f,cl) ->
array_last cl
| _ -> anomaly "last_arg"
let elimination_clause_scheme allow_K elimclause indclause gl =
let indmv =
(match kind_of_term (last_arg elimclause.templval.rebus) with
| Meta mv -> mv
| _ -> errorlabstrm "elimination_clause"
(str "The type of elimination clause is not well-formed"))
in
let elimclause' = clenv_fchain indmv elimclause indclause in
res_pf elimclause' ~allow_K:allow_K gl
(* cast added otherwise tactics Case (n1,n2) generates (?f x y) and
* refine fails *)
let type_clenv_binding wc (c,t) lbind =
clenv_type (make_clenv_binding wc (c,t) lbind)
(*
* Elimination tactic with bindings and using an arbitrary
* elimination constant called elimc. This constant should end
* with a clause (x:I)(P .. ), where P is a bound variable.
* The term c is of type t, which is a product ending with a type
* matching I, lbindc are the expected terms for c arguments
*)
let general_elim_clause elimtac (c,lbindc) (elimc,lbindelimc) gl =
let ct = pf_type_of gl c in
let t = try snd (pf_reduce_to_quantified_ind gl ct) with UserError _ -> ct in
let indclause = make_clenv_binding gl (c,t) lbindc in
let elimt = pf_type_of gl elimc in
let elimclause = make_clenv_binding gl (elimc,elimt) lbindelimc in
elimtac elimclause indclause gl
let general_elim c e ?(allow_K=true) =
general_elim_clause (elimination_clause_scheme allow_K) c e
(* Elimination tactic with bindings but using the default elimination
* constant associated with the type. *)
let find_eliminator c gl =
let (ind,t) = pf_reduce_to_quantified_ind gl (pf_type_of gl c) in
lookup_eliminator ind (elimination_sort_of_goal gl)
let default_elim (c,_ as cx) gl =
general_elim cx (find_eliminator c gl,NoBindings) gl
let elim_in_context c = function
| Some elim -> general_elim c elim ~allow_K:true
| None -> default_elim c
let elim (c,lbindc as cx) elim =
match kind_of_term c with
| Var id when lbindc = NoBindings ->
tclTHEN (tclTRY (intros_until_id id)) (elim_in_context cx elim)
| _ -> elim_in_context cx elim
(* The simplest elimination tactic, with no substitutions at all. *)
let simplest_elim c = default_elim (c,NoBindings)
(* Elimination in hypothesis *)
(* Typically, elimclause := (eq_ind ?x ?P ?H ?y ?Heq : ?P ?y)
indclause : forall ..., hyps -> a=b (to take place of ?Heq)
id : phi(a) (to take place of ?H)
and the result is to overwrite id with the proof of phi(b)
but this generalizes to any elimination scheme with one constructor
(e.g. it could replace id:A->B->C by id:C, knowing A/\B)
*)
let elimination_in_clause_scheme id elimclause indclause gl =
let (hypmv,indmv) =
match clenv_independent elimclause with
[k1;k2] -> (k1,k2)
| _ -> errorlabstrm "elimination_clause"
(str "The type of elimination clause is not well-formed") in
let elimclause' = clenv_fchain indmv elimclause indclause in
let hyp = mkVar id in
let hyp_typ = pf_type_of gl hyp in
let hypclause = mk_clenv_from_n gl (Some 0) (hyp, hyp_typ) in
let elimclause'' = clenv_fchain hypmv elimclause' hypclause in
let new_hyp_typ = clenv_type elimclause'' in
if eq_constr hyp_typ new_hyp_typ then
errorlabstrm "general_rewrite_in"
(str "Nothing to rewrite in " ++ pr_id id);
clenv_refine_in id elimclause'' gl
let general_elim_in id =
general_elim_clause (elimination_in_clause_scheme id)
(* Case analysis tactics *)
let general_case_analysis_in_context (c,lbindc) gl =
let (mind,_) = pf_reduce_to_quantified_ind gl (pf_type_of gl c) in
let sort = elimination_sort_of_goal gl in
let case =
if occur_term c (pf_concl gl) then make_case_dep else make_case_gen in
let elim = pf_apply case gl mind sort in
general_elim (c,lbindc) (elim,NoBindings) gl
let general_case_analysis (c,lbindc as cx) =
match kind_of_term c with
| Var id when lbindc = NoBindings ->
tclTHEN (tclTRY (intros_until_id id))
(general_case_analysis_in_context cx)
| _ ->
general_case_analysis_in_context cx
let simplest_case c = general_case_analysis (c,NoBindings)
(*****************************)
(* Decomposing introductions *)
(*****************************)
let clear_last = tclLAST_HYP (fun c -> (clear [destVar c]))
let case_last = tclLAST_HYP simplest_case
let rec explicit_intro_names = function
| (IntroWildcard | IntroAnonymous) :: l -> explicit_intro_names l
| IntroIdentifier id :: l -> id :: explicit_intro_names l
| IntroOrAndPattern ll :: l' ->
List.flatten (List.map (fun l -> explicit_intro_names (l@l')) ll)
| [] -> []
(* We delay thinning until the completion of the whole intros tactic
to ensure that dependent hypotheses are cleared in the right
dependency order (see bug #1000); we use fresh names, not used in
the tactic, for the hyps to clear *)
let rec intros_patterns avoid thin destopt = function
| IntroWildcard :: l ->
tclTHEN
(intro_gen (IntroAvoid (avoid@explicit_intro_names l)) None true)
(onLastHyp (fun id ->
tclORELSE
(tclTHEN (clear [id]) (intros_patterns avoid thin destopt l))
(intros_patterns avoid (id::thin) destopt l)))
| IntroIdentifier id :: l ->
tclTHEN
(intro_gen (IntroMustBe id) destopt true)
(intros_patterns avoid thin destopt l)
| IntroAnonymous :: l ->
tclTHEN
(intro_gen (IntroAvoid (avoid@explicit_intro_names l)) destopt true)
(intros_patterns avoid thin destopt l)
| IntroOrAndPattern ll :: l' ->
tclTHEN
introf
(tclTHENS
(tclTHEN case_last clear_last)
(List.map (fun l -> intros_patterns avoid thin destopt (l@l')) ll))
| [] -> clear thin
let intros_pattern = intros_patterns [] []
let intro_pattern destopt pat = intros_patterns [] [] destopt [pat]
let intro_patterns = function
| [] -> tclREPEAT intro
| l -> intros_pattern None l
(**************************)
(* Other cut tactics *)
(**************************)
let hid = id_of_string "H"
let xid = id_of_string "X"
let make_id s = fresh_id [] (match s with Prop _ -> hid | Type _ -> xid)
let prepare_intros s ipat gl = match ipat with
| IntroAnonymous -> make_id s gl, tclIDTAC
| IntroWildcard -> let id = make_id s gl in id, thin [id]
| IntroIdentifier id -> id, tclIDTAC
| IntroOrAndPattern ll -> make_id s gl,
(tclTHENS
(tclTHEN case_last clear_last)
(List.map (intros_pattern None) ll))
let ipat_of_name = function
| Anonymous -> IntroAnonymous
| Name id -> IntroIdentifier id
let assert_as first ipat c gl =
match kind_of_term (hnf_type_of gl c) with
| Sort s ->
let id,tac = prepare_intros s ipat gl in
tclTHENS ((if first then internal_cut else internal_cut_rev) id c)
(if first then [tclIDTAC; tac] else [tac; tclIDTAC]) gl
| _ -> error "Not a proposition or a type"
let assert_tac first na = assert_as first (ipat_of_name na)
let true_cut = assert_tac true
(**************************)
(* Generalize tactics *)
(**************************)
let generalize_goal gl c cl =
let t = refresh_universes (pf_type_of gl c) in
match kind_of_term c with
| Var id ->
(* The choice of remembering or not a non dependent name has an impact
on the future Intro naming strategy! *)
(* if dependent c cl then mkNamedProd id t cl
else mkProd (Anonymous,t,cl) *)
mkNamedProd id t cl
| _ ->
let cl' = subst_term c cl in
if noccurn 1 cl' then
mkProd (Anonymous,t,cl)
(* On ne se casse pas la tete : on prend pour nom de variable
la premiere lettre du type, meme si "ci" est une
constante et qu'on pourrait prendre directement son nom *)
else
prod_name (Global.env()) (Anonymous, t, cl')
let generalize_dep c gl =
let env = pf_env gl in
let sign = pf_hyps gl in
let init_ids = ids_of_named_context (Global.named_context()) in
let rec seek d toquant =
if List.exists (fun (id,_,_) -> occur_var_in_decl env id d) toquant
or dependent_in_decl c d then
d::toquant
else
toquant in
let to_quantify = Sign.fold_named_context seek sign ~init:[] in
let to_quantify_rev = List.rev to_quantify in
let qhyps = List.map (fun (id,_,_) -> id) to_quantify_rev in
let tothin = List.filter (fun id -> not (List.mem id init_ids)) qhyps in
let tothin' =
match kind_of_term c with
| Var id when mem_named_context id sign & not (List.mem id init_ids)
-> id::tothin
| _ -> tothin
in
let cl' = it_mkNamedProd_or_LetIn (pf_concl gl) to_quantify in
let cl'' = generalize_goal gl c cl' in
let args = Array.to_list (instance_from_named_context to_quantify_rev) in
tclTHEN
(apply_type cl'' (c::args))
(thin (List.rev tothin'))
gl
let generalize lconstr gl =
let newcl = List.fold_right (generalize_goal gl) lconstr (pf_concl gl) in
apply_type newcl lconstr gl
(* Faudra-t-il une version avec plusieurs args de generalize_dep ?
Cela peut-tre troublant de faire "Generalize Dependent H n" dans
"n:nat; H:n=n |- P(n)" et d'chouer parce que H a disparu aprs la
gnralisation dpendante par n.
let quantify lconstr =
List.fold_right
(fun com tac -> tclTHEN tac (tactic_com generalize_dep c))
lconstr
tclIDTAC
*)
(* A dependent cut rule la sequent calculus
------------------------------------------
Sera simplifiable le jour o il y aura un let in primitif dans constr
[letin_tac b na c (occ_hyp,occ_ccl) gl] transforms
[...x1:T1(c),...,x2:T2(c),... |- G(c)] into
[...x:T;x1:T1(x),...,x2:T2(x),... |- G(x)] if [b] is false or
[...x:=c:T;x1:T1(x),...,x2:T2(x),... |- G(x)] if [b] is true
[occ_hyp,occ_ccl] tells which occurrences of [c] have to be substituted;
if [occ_hyp = []] and [occ_ccl = None] then [c] is substituted
wherever it occurs, otherwise [c] is substituted only in hyps
present in [occ_hyps] at the specified occurrences (everywhere if
the list of occurrences is empty), and in the goal at the specified
occurrences if [occ_goal] is not [None];
if name = Anonymous, the name is build from the first letter of the type;
The tactic first quantify the goal over x1, x2,... then substitute then
re-intro x1, x2,... at their initial place ([marks] is internally
used to remember the place of x1, x2, ...: it is the list of hypotheses on
the left of each x1, ...).
*)
let out_arg = function
| ArgVar _ -> anomaly "Unevaluated or_var variable"
| ArgArg x -> x
let occurrences_of_hyp id cls =
let rec hyp_occ = function
[] -> None
| ((occs,id'),hl)::_ when id=id' -> Some (List.map out_arg occs)
| _::l -> hyp_occ l in
match cls.onhyps with
None -> Some []
| Some l -> hyp_occ l
let occurrences_of_goal cls =
if cls.onconcl then Some (List.map out_arg cls.concl_occs) else None
let in_every_hyp cls = (cls.onhyps=None)
(*
(* Implementation with generalisation then re-intro: introduces noise *)
(* in proofs *)
let letin_abstract id c occs gl =
let env = pf_env gl in
let compute_dependency _ (hyp,_,_ as d) ctxt =
let d' =
try
match occurrences_of_hyp hyp occs with
| None -> raise Not_found
| Some occ ->
let newdecl = subst_term_occ_decl occ c d in
if occ = [] & d = newdecl then
if not (in_every_hyp occs)
then raise (RefinerError (DoesNotOccurIn (c,hyp)))
else raise Not_found
else
(subst1_named_decl (mkVar id) newdecl, true)
with Not_found ->
(d,List.exists
(fun ((id,_,_),dep) -> dep && occur_var_in_decl env id d) ctxt)
in d'::ctxt
in
let ctxt' = fold_named_context compute_dependency env ~init:[] in
let compute_marks ((depdecls,marks as accu),lhyp) ((hyp,_,_) as d,b) =
if b then ((d::depdecls,(hyp,lhyp)::marks), lhyp)
else (accu, Some hyp) in
let (depdecls,marks),_ = List.fold_left compute_marks (([],[]),None) ctxt' in
let ccl = match occurrences_of_goal occs with
| None -> pf_concl gl
| Some occ -> subst1 (mkVar id) (subst_term_occ occ c (pf_concl gl))
in
(depdecls,marks,ccl)
let letin_tac with_eq name c occs gl =
let x = id_of_name_using_hdchar (Global.env()) (pf_type_of gl c) name in
let id =
if name = Anonymous then fresh_id [] x gl else
if not (mem_named_context x (pf_hyps gl)) then x else
error ("The variable "^(string_of_id x)^" is already declared") in
let (depdecls,marks,ccl)= letin_abstract id c occs gl in
let t = pf_type_of gl c in
let tmpcl = List.fold_right mkNamedProd_or_LetIn depdecls ccl in
let args = Array.to_list (instance_from_named_context depdecls) in
let newcl = mkNamedLetIn id c t tmpcl in
let lastlhyp = if marks=[] then None else snd (List.hd marks) in
tclTHENLIST
[ apply_type newcl args;
thin (List.map (fun (id,_,_) -> id) depdecls);
intro_gen (IntroMustBe id) lastlhyp false;
if with_eq then tclIDTAC else thin_body [id];
intros_move marks ] gl
*)
(* Implementation without generalisation: abbrev will be lost in hyps in *)
(* in the extracted proof *)
let letin_abstract id c occs gl =
let env = pf_env gl in
let compute_dependency _ (hyp,_,_ as d) depdecls =
match occurrences_of_hyp hyp occs with
| None -> depdecls
| Some occ ->
let newdecl = subst_term_occ_decl occ c d in
if occ = [] & d = newdecl then
if not (in_every_hyp occs)
then raise (RefinerError (DoesNotOccurIn (c,hyp)))
else depdecls
else
(subst1_named_decl (mkVar id) newdecl)::depdecls in
let depdecls = fold_named_context compute_dependency env ~init:[] in
let ccl = match occurrences_of_goal occs with
| None -> pf_concl gl
| Some occ -> subst1 (mkVar id) (subst_term_occ occ c (pf_concl gl)) in
let lastlhyp = if depdecls = [] then None else Some(pi1(list_last depdecls)) in
(depdecls,lastlhyp,ccl)
let letin_tac with_eq name c occs gl =
let id =
let x = id_of_name_using_hdchar (Global.env()) (pf_type_of gl c) name in
if name = Anonymous then fresh_id [] x gl else
if not (mem_named_context x (pf_hyps gl)) then x else
error ("The variable "^(string_of_id x)^" is already declared") in
let (depdecls,lastlhyp,ccl)= letin_abstract id c occs gl in
let t = refresh_universes (pf_type_of gl c) in
let newcl = mkNamedLetIn id c t ccl in
tclTHENLIST
[ convert_concl_no_check newcl DEFAULTcast;
intro_gen (IntroMustBe id) lastlhyp true;
if with_eq then tclIDTAC else thin_body [id];
tclMAP convert_hyp_no_check depdecls ] gl
(* Tactics "pose proof" (usetac=None) and "assert" (otherwise) *)
let forward usetac ipat c gl =
match usetac with
| None ->
let t = refresh_universes (pf_type_of gl c) in
tclTHENFIRST (assert_as true ipat t) (exact_no_check c) gl
| Some tac ->
tclTHENFIRST (assert_as true ipat c) tac gl
(*****************************)
(* High-level induction *)
(*****************************)
(*
* A "natural" induction tactic
*
- [H0:T0, ..., Hi:Ti, hyp0:P->I(args), Hi+1:Ti+1, ..., Hn:Tn |-G] is the goal
- [hyp0] is the induction hypothesis
- we extract from [args] the variables which are not rigid parameters
of the inductive type, this is [indvars] (other terms are forgotten);
[indhyps] are the ones which actually are declared in context
(done in [find_atomic_param_of_ind])
- we look for all hyps depending of [hyp0] or one of [indvars]:
this is [dephyps] of types [deptyps] respectively
- [statuslist] tells for each hyps in [dephyps] after which other hyp
fixed in the context they must be moved (when induction is done)
- [hyp0succ] is the name of the hyp fixed in the context after which to
move the subterms of [hyp0succ] in the i-th branch where it is supposed
to be the i-th constructor of the inductive type.
Strategy: (cf in [induction_from_context])
- requantify and clear all [dephyps]
- apply induction on [hyp0]
- clear [indhyps] and [hyp0]
- in the i-th subgoal, intro the arguments of the i-th constructor
of the inductive type after [hyp0succ] (done in
[induct_discharge]) let the induction hypotheses on top of the
hyps because they may depend on variables between [hyp0] and the
top. A counterpart is that the dep hyps programmed to be intro-ed
on top must now be intro-ed after the induction hypotheses
- move each of [dephyps] at the right place following the
[statuslist]
*)
let check_unused_names names =
if names <> [] & Options.is_verbose () then
let s = if List.tl names = [] then " " else "s " in
msg_warning
(str"Unused introduction pattern" ++ str s ++
str": " ++ prlist_with_sep spc pr_intro_pattern names)
let rec first_name_buggy = function
| IntroOrAndPattern [] -> None
| IntroOrAndPattern ([]::l) -> first_name_buggy (IntroOrAndPattern l)
| IntroOrAndPattern ((p::_)::_) -> first_name_buggy p
| IntroWildcard -> None
| IntroIdentifier id -> Some id
| IntroAnonymous -> assert false
let consume_pattern avoid id gl = function
| [] -> (IntroIdentifier (fresh_id avoid id gl), [])
| IntroAnonymous::names ->
let avoid = avoid@explicit_intro_names names in
(IntroIdentifier (fresh_id avoid id gl), names)
| pat::names -> (pat,names)
let re_intro_dependent_hypotheses tophyp (lstatus,rstatus) =
let newlstatus = (* if some IH has taken place at the top of hyps *)
List.map (function (hyp,None) -> (hyp,tophyp) | x -> x) lstatus in
tclTHEN
(intros_rmove rstatus)
(intros_move newlstatus)
type elim_arg_kind = RecArg | IndArg | OtherArg
let induct_discharge statuslists destopt avoid' (avoid,ra) names gl =
let avoid = avoid @ avoid' in
let rec peel_tac ra names tophyp gl = match ra with
| (RecArg,recvarname) ::
(IndArg,hyprecname) :: ra' ->
let recpat,names = match names with
| [IntroIdentifier id as pat] ->
let id = next_ident_away (add_prefix "IH" id) avoid in
(pat, [IntroIdentifier id])
| _ -> consume_pattern avoid recvarname gl names in
let hyprec,names = consume_pattern avoid hyprecname gl names in
(* IH stays at top: we need to update tophyp *)
(* This is buggy for intro-or-patterns with different first hypnames *)
(* Would need to pass peel_tac as a continuation of intros_patterns *)
(* (or to have hypotheses classified by blocks...) *)
let tophyp = if tophyp=None then first_name_buggy hyprec else tophyp in
tclTHENLIST
[ intros_patterns avoid [] destopt [recpat];
intros_patterns avoid [] None [hyprec];
peel_tac ra' names tophyp] gl
| (IndArg,hyprecname) :: ra' ->
(* Rem: does not happen in Coq schemes, only in user-defined schemes *)
let pat,names = consume_pattern avoid hyprecname gl names in
tclTHEN (intros_patterns avoid [] destopt [pat])
(peel_tac ra' names tophyp) gl
| (RecArg,recvarname) :: ra' ->
let pat,names = consume_pattern avoid recvarname gl names in
tclTHEN (intros_patterns avoid [] destopt [pat])
(peel_tac ra' names tophyp) gl
| (OtherArg,_) :: ra' ->
let pat,names = match names with
| [] -> IntroAnonymous, []
| pat::names -> pat,names in
tclTHEN (intros_patterns avoid [] destopt [pat])
(peel_tac ra' names tophyp) gl
| [] ->
check_unused_names names;
re_intro_dependent_hypotheses tophyp statuslists gl
in
peel_tac ra names None gl
(* - le recalcul de indtyp chaque itration de atomize_one est pour ne pas
s'embter regarder si un letin_tac ne fait pas des
substitutions aussi sur l'argument voisin *)
(* Marche pas... faut prendre en compte l'occurrence prcise... *)
let atomize_param_of_ind (indref,nparams) hyp0 gl =
let tmptyp0 = pf_get_hyp_typ gl hyp0 in
let typ0 = pf_apply reduce_to_quantified_ref gl indref tmptyp0 in
let prods, indtyp = decompose_prod typ0 in
let argl = snd (decompose_app indtyp) in
let params = list_firstn nparams argl in
(* le gl est important pour ne pas prvaluer *)
let rec atomize_one i avoid gl =
if i<>nparams then
let tmptyp0 = pf_get_hyp_typ gl hyp0 in
(* If argl <> [], we expect typ0 not to be quantified, in order to
avoid bound parameters... then we call pf_reduce_to_atomic_ind *)
let indtyp = pf_apply reduce_to_atomic_ref gl indref tmptyp0 in
let argl = snd (decompose_app indtyp) in
let c = List.nth argl (i-1) in
match kind_of_term c with
| Var id when not (List.exists (occur_var (pf_env gl) id) avoid) ->
atomize_one (i-1) ((mkVar id)::avoid) gl
| Var id ->
let x = fresh_id [] id gl in
tclTHEN
(letin_tac true (Name x) (mkVar id) allClauses)
(atomize_one (i-1) ((mkVar x)::avoid)) gl
| _ ->
let id = id_of_name_using_hdchar (Global.env()) (pf_type_of gl c)
Anonymous in
let x = fresh_id [] id gl in
tclTHEN
(letin_tac true (Name x) c allClauses)
(atomize_one (i-1) ((mkVar x)::avoid)) gl
else
tclIDTAC gl
in
atomize_one (List.length argl) params gl
let find_atomic_param_of_ind nparams indtyp =
let argl = snd (decompose_app indtyp) in
let argv = Array.of_list argl in
let params = list_firstn nparams argl in
let indvars = ref Idset.empty in
for i = nparams to (Array.length argv)-1 do
match kind_of_term argv.(i) with
| Var id
when not (List.exists (occur_var (Global.env()) id) params) ->
indvars := Idset.add id !indvars
| _ -> ()
done;
Idset.elements !indvars;
(* [cook_sign] builds the lists [indhyps] of hyps that must be
erased, the lists of hyps to be generalize [(hdeps,tdeps)] on the
goal together with the places [(lstatus,rstatus)] where to re-intro
them after induction. To know where to re-intro the dep hyp, we
remember the name of the hypothesis [lhyp] after which (if the dep
hyp is more recent than [hyp0]) or [rhyp] before which (if older
than [hyp0]) its equivalent must be moved when the induction has
been applied. Since computation of dependencies and [rhyp] is from
more ancient (on the right) to more recent hyp (on the left) but
the computation of [lhyp] progresses from the other way, [cook_hyp]
is in two passes (an alternative would have been to write an
higher-order algorithm). We strongly use references to reduce
the accumulation of arguments.
To summarize, the situation looks like this
Goal(n,x) -| H6:(Q n); x:A; H5:True; H4:(le O n); H3:(P n); H2:True; n:nat
Left Right
Induction hypothesis is H4 ([hyp0])
Variable parameters of (le O n) is the singleton list with "n" ([indvars])
Part of [indvars] really in context is the same ([indhyps])
The dependent hyps are H3 and H6 ([dephyps])
For H3 the memorized places are H5 ([lhyp]) and H2 ([rhyp])
because these names are among the hyp which are fixed through the induction
For H6 the neighbours are None ([lhyp]) and H5 ([rhyp])
For H3, because on the right of H4, we remember rhyp (here H2)
For H6, because on the left of H4, we remember lhyp (here None)
For H4, we remember lhyp (here H5)
The right neighbour is then translated into the left neighbour
because move_hyp tactic needs the name of the hyp _after_ which we
move the hyp to move.
But, say in the 2nd subgoal of the hypotheses, the goal will be
(m:nat)((P m)->(Q m)->(Goal m)) -> (P Sm)-> (Q Sm)-> (Goal Sm)
^^^^^^^^^^^^^^^^^^^^^^^^^^^ ^^^^
both go where H4 was goes where goes where
H3 was H6 was
We have to intro and move m and the recursive hyp first, but then
where to move H3 ??? Only the hyp on its right is relevant, but we
have to translate it into the name of the hyp on the left
Note: this case where some hyp(s) in [dephyps] has(have) the same
left neighbour as [hyp0] is the only problematic case with right
neighbours. For the other cases (e.g. an hyp H1:(R n) between n and H2
would have posed no problem. But for uniformity, we decided to use
the right hyp for all hyps on the right of H4.
Others solutions are welcome
PC 9 fev 06: Adapted to accept multi argument principle with no
main arg hyp. hyp0 is now optional, meaning that it is possible
that there is no main induction hypotheses. In this case, we
consider the last "parameter" (in [indvars]) as the limit between
"left" and "right", BUT it must be included in indhyps.
Other solutions are still welcome
*)
exception Shunt of identifier option
let cook_sign hyp0_opt indvars_init env =
let hyp0,indvars =
match hyp0_opt with
| None -> List.hd (List.rev indvars_init) , indvars_init
| Some h -> h,indvars_init in
(* First phase from L to R: get [indhyps], [decldep] and [statuslist]
for the hypotheses before (= more ancient than) hyp0 (see above) *)
let allindhyps = hyp0::indvars in
let indhyps = ref [] in
let decldeps = ref [] in
let ldeps = ref [] in
let rstatus = ref [] in
let lstatus = ref [] in
let before = ref true in
let seek_deps env (hyp,_,_ as decl) rhyp =
if hyp = hyp0 then begin
before:=false;
(* If there was no main induction hypotheses, then hyp is one of
indvars too, so add it to indhyps. *)
(if hyp0_opt=None then indhyps := hyp::!indhyps);
None (* fake value *)
end else if List.mem hyp indvars then begin
(* warning: hyp can still occur after induction *)
(* e.g. if the goal (t hyp hyp0) with other occs of hyp in t *)
indhyps := hyp::!indhyps;
rhyp
end else
if (List.exists (fun id -> occur_var_in_decl env id decl) allindhyps
or List.exists (fun (id,_,_) -> occur_var_in_decl env id decl)
!decldeps)
then begin
decldeps := decl::!decldeps;
if !before then
rstatus := (hyp,rhyp)::!rstatus
else
ldeps := hyp::!ldeps; (* status computed in 2nd phase *)
Some hyp end
else
Some hyp
in
let _ = fold_named_context seek_deps env ~init:None in
(* 2nd phase from R to L: get left hyp of [hyp0] and [lhyps] *)
let compute_lstatus lhyp (hyp,_,_) =
if hyp = hyp0 then raise (Shunt lhyp);
if List.mem hyp !ldeps then begin
lstatus := (hyp,lhyp)::!lstatus;
lhyp
end else
if List.mem hyp !indhyps then lhyp else (Some hyp)
in
try
let _ = fold_named_context_reverse compute_lstatus ~init:None env in
(* anomaly "hyp0 not found" *)
raise (Shunt (None)) (* ?? FIXME *)
with Shunt lhyp0 ->
let statuslists = (!lstatus,List.rev !rstatus) in
(statuslists, (if hyp0_opt=None then None else lhyp0) , !indhyps, !decldeps)
(*
The general form of an induction principle is the following:
forall prm1 prm2 ... prmp, (induction parameters)
forall Q1...,(Qi:Ti_1 -> Ti_2 ->...-> Ti_ni),...Qq, (predicates)
branch1, branch2, ... , branchr, (branches of the principle)
forall (x1:Ti_1) (x2:Ti_2) ... (xni:Ti_ni), (induction arguments)
(HI: I prm1..prmp x1...xni) (optional main induction arg)
-> (Qi x1...xni HI (f prm1...prmp x1...xni)).(conclusion)
^^ ^^^^^^^^^^^^^^^^^^^^^^^^
optional optional argument added if
even if HI principle generated by functional
present above induction, only if HI does not exist
[indarg] [farg]
HI is not present when the induction principle does not come directly from an
inductive type (like when it is generated by functional induction for
example). HI is present otherwise BUT may not appear in the conclusion
(dependent principle). HI and (f...) cannot be both present.
Principles taken from functional induction have the final (f...).*)
(* [rel_contexts] and [rel_declaration] actually contain triples, and
lists are actually in reverse order to fit [compose_prod]. *)
type elim_scheme = {
elimc: (Term.constr * constr Rawterm.bindings) option;
elimt: types;
indref: global_reference option;
params: rel_context; (* (prm1,tprm1);(prm2,tprm2)...(prmp,tprmp) *)
nparams: int; (* number of parameters *)
predicates: rel_context; (* (Qq, (Tq_1 -> Tq_2 ->...-> Tq_nq)), (Q1,...) *)
npredicates: int; (* Number of predicates *)
branches: rel_context; (* branchr,...,branch1 *)
nbranches: int; (* Number of branches *)
args: rel_context; (* (xni, Ti_ni) ... (x1, Ti_1) *)
nargs: int; (* number of arguments *)
indarg: rel_declaration option; (* Some (H,I prm1..prmp x1...xni)
if HI is in premisses, None otherwise *)
concl: types; (* Qi x1...xni HI (f...), HI and (f...)
are optional and mutually exclusive *)
indarg_in_concl: bool; (* true if HI appears at the end of conclusion *)
farg_in_concl: bool; (* true if (f...) appears at the end of conclusion *)
}
let empty_scheme =
{
elimc = None;
elimt = mkProp;
indref = None;
params = [];
nparams = 0;
predicates = [];
npredicates = 0;
branches = [];
nbranches = 0;
args = [];
nargs = 0;
indarg = None;
concl = mkProp;
indarg_in_concl = false;
farg_in_concl = false;
}
(* Unification between ((elimc:elimt) ?i ?j ?k ?l ... ?m) and the
hypothesis on which the induction is made *)
let induction_tac varname typ scheme (*(elimc,lbindelimc),elimt*) gl =
let elimc,lbindelimc =
match scheme.elimc with | Some x -> x | None -> error "No definition of the principle" in
let elimt = scheme.elimt in
let c = mkVar varname in
let indclause = make_clenv_binding gl (c,typ) NoBindings in
let elimclause =
make_clenv_binding gl
(mkCast (elimc,DEFAULTcast, elimt),elimt) lbindelimc in
elimination_clause_scheme true elimclause indclause gl
let make_base n id =
if n=0 or n=1 then id
else
(* This extends the name to accept new digits if it already ends with *)
(* digits *)
id_of_string (atompart_of_id (make_ident (string_of_id id) (Some 0)))
(* Builds tw different names from an optional inductive type and a
number, also deals with a list of names to avoid. If the inductive
type is None, then hyprecname is HIi where i is a number. *)
let make_up_names n ind_opt cname =
let is_hyp = atompart_of_id cname = "H" in
let base = string_of_id (make_base n cname) in
let base_ind =
if is_hyp then
match ind_opt with
| None -> id_of_string ""
| Some ind_id -> Nametab.id_of_global ind_id
else cname in
let hyprecname = add_prefix "IH" (make_base n base_ind) in
let avoid =
if n=1 (* Only one recursive argument *) or n=0 then []
else
(* Forbid to use cname, cname0, hyprecname and hyprecname0 *)
(* in order to get names such as f1, f2, ... *)
let avoid =
(make_ident (string_of_id hyprecname) None) ::
(make_ident (string_of_id hyprecname) (Some 0)) :: [] in
if atompart_of_id cname <> "H" then
(make_ident base (Some 0)) :: (make_ident base None) :: avoid
else avoid in
id_of_string base, hyprecname, avoid
let is_indhyp p n t =
let l, c = decompose_prod t in
let c,_ = decompose_app c in
let p = p + List.length l in
match kind_of_term c with
| Rel k when p < k & k <= p + n -> true
| _ -> false
let chop_context n l =
let rec chop_aux acc = function
| n, (_,Some _,_ as h :: t) -> chop_aux (h::acc) (n, t)
| 0, l2 -> (List.rev acc, l2)
| n, (h::t) -> chop_aux (h::acc) (n-1, t)
| _, [] -> anomaly "chop_context"
in
chop_aux [] (n,l)
let error_ind_scheme s =
let s = if s <> "" then s^" " else s in
error ("Cannot recognise "^s^"an induction schema")
let occur_rel n c =
let res = not (noccurn n c) in
res
let list_filter_firsts f l =
let rec list_filter_firsts_aux f acc l =
match l with
| e::l' when f e -> list_filter_firsts_aux f (acc@[e]) l'
| _ -> acc,l
in
list_filter_firsts_aux f [] l
let count_rels_from n c =
let rels = free_rels c in
let cpt,rg = ref 0, ref n in
while Intset.mem !rg rels do
cpt:= !cpt+1; rg:= !rg+1;
done;
!cpt
let count_nonfree_rels_from n c =
let rels = free_rels c in
if Intset.exists (fun x -> x >= n) rels then
let cpt,rg = ref 0, ref n in
while not (Intset.mem !rg rels) do
cpt:= !cpt+1; rg:= !rg+1;
done;
!cpt
else raise Not_found
(* cuts a list in two parts, first of size n. Size must be greater than n *)
let cut_list n l =
let rec cut_list_aux acc n l =
if n<=0 then acc,l
else match l with
| [] -> assert false
| e::l' -> cut_list_aux (acc@[e]) (n-1) l' in
let res = cut_list_aux [] n l in
res
(* This functions splits the products of the induction scheme [elimt] in three
parts:
- branches, easily detectable (they are not referred by rels in the subterm)
- what was found before branches (acc1) that is: parameters and predicates
- what was found after branches (acc3) that is: args and indarg if any
if there is no branch, we try to fill in acc3 with args/indargs.
We also return the conclusion.
*)
let decompose_paramspred_branch_args elimt =
let rec cut_noccur elimt acc2 : rel_context * rel_context * types =
match kind_of_term elimt with
| Prod(nme,tpe,elimt') ->
let hd_tpe,_ = decompose_app (snd (decompose_prod_assum tpe)) in
if not (occur_rel 1 elimt') && isRel hd_tpe
then cut_noccur elimt' ((nme,None,tpe)::acc2)
else let acc3,ccl = decompose_prod_assum elimt in acc2 , acc3 , ccl
| App(_, _) | Rel _ -> acc2 , [] , elimt
| _ -> error "cannot recognise an induction schema" in
let rec cut_occur elimt acc1 : rel_context * rel_context * rel_context * types =
match kind_of_term elimt with
| Prod(nme,tpe,c) when occur_rel 1 c -> cut_occur c ((nme,None,tpe)::acc1)
| Prod(nme,tpe,c) -> let acc2,acc3,ccl = cut_noccur elimt [] in acc1,acc2,acc3,ccl
| App(_, _) | Rel _ -> acc1,[],[],elimt
| _ -> error "cannot recognise an induction schema" in
let acc1, acc2 , acc3, ccl = cut_occur elimt [] in
(* Particular treatment when dealing with a dependent empty type elim scheme:
if there is no branch, then acc1 contains all hyps which is wrong (acc1
should contain parameters and predicate only). This happens for an empty
type (See for example Empty_set_ind, as False would actually be ok). Then
we must find the predicate of the conclusion to separate params_pred from
args. We suppose there is only one predicate here. *)
if List.length acc2 <> 0 then acc1, acc2 , acc3, ccl
else
let hyps,ccl = decompose_prod_assum elimt in
let hd_ccl_pred,_ = decompose_app ccl in
match kind_of_term hd_ccl_pred with
| Rel i -> let acc3,acc1 = cut_list (i-1) hyps in acc1 , [] , acc3 , ccl
| _ -> error "cannot recognize an induction schema"
let exchange_hd_app subst_hd t =
let hd,args= decompose_app t in mkApp (subst_hd,Array.of_list args)
exception NoLastArg
exception NoLastArgCcl
(* Builds an elim_scheme frome its type and calling form (const+binding) We
first separate branches. We obtain branches, hyps before (params + preds),
hyps after (args <+ indarg if present>) and conclusion. Then we proceed as
follows:
- separate parameters and predicates in params_preds. For that we build:
forall (x1:Ti_1)(xni:Ti_ni) (HI:I prm1..prmp x1...xni), DUMMY x1...xni HI/farg
^^^^^^^^^^^^^^^^^^^^^^^^^ ^^^^^^^
optional opt
Free rels appearing in this term are parameters (branches should not
appear, and the only predicate would have been Qi but we replaced it by
DUMMY). We guess this heuristic catches all params. TODO: generalize to
the case where args are merged with branches (?) and/or where several
predicates are cited in the conclusion.
- finish to fill in the elim_scheme: indarg/farg/args and finally indref. *)
let compute_elim_sig ?elimc elimt =
let params_preds,branches,args_indargs,conclusion =
decompose_paramspred_branch_args elimt in
let ccl = exchange_hd_app (mkVar (id_of_string "__QI_DUMMY__")) conclusion in
let concl_with_args = it_mkProd_or_LetIn ccl args_indargs in
let nparams = Intset.cardinal (free_rels concl_with_args) in
let preds,params = cut_list (List.length params_preds - nparams) params_preds in
(* A first approximation, further anlysis will tweak it *)
let res = ref { empty_scheme with
(* This fields are ok: *)
elimc = elimc; elimt = elimt; concl = conclusion;
predicates = preds; npredicates = List.length preds;
branches = branches; nbranches = List.length branches;
farg_in_concl = (try isApp (last_arg ccl) with _ -> false);
params = params; nparams = nparams;
(* all other fields are unsure at this point. Including these:*)
args = args_indargs; nargs = List.length args_indargs; } in
try
(* Order of tests below is important. Each of them exits if successful. *)
(* 1- First see if (f x...) is in the conclusion. *)
if !res.farg_in_concl
then begin
res := { !res with
indarg = None;
indarg_in_concl = false; farg_in_concl = true };
raise Exit
end;
(* 2- If no args_indargs (=!res.nargs at this point) then no indarg *)
if !res.nargs=0 then raise Exit;
(* 3- Look at last arg: is it the indarg? *)
ignore (
match List.hd args_indargs with
| hiname,Some _,hi -> error "cannot recognize an induction schema"
| hiname,None,hi ->
let hi_ind, hi_args = decompose_app hi in
let hi_is_ind = (* hi est d'un type globalisable *)
match kind_of_term hi_ind with
| Ind (mind,_) -> true
| Var _ -> true
| Const _ -> true
| Construct _ -> true
| _ -> false in
let hi_args_enough = (* hi a le bon nbre d'arguments *)
List.length hi_args = List.length params + !res.nargs -1 in
(* FIXME: Ces deux tests ne sont pas suffisants. *)
if not (hi_is_ind & hi_args_enough) then raise Exit (* No indarg *)
else (* Last arg is the indarg *)
res := {!res with
indarg = Some (List.hd !res.args);
indarg_in_concl = occur_rel 1 ccl;
args = List.tl !res.args; nargs = !res.nargs - 1;
};
raise Exit);
raise Exit(* exit anyway *)
with Exit -> (* Ending by computing indrev: *)
match !res.indarg with
| None -> !res (* No indref *)
| Some ( _,Some _,_) -> error "Cannot recognise an induction scheme"
| Some ( _,None,ind) ->
let indhd,indargs = decompose_app ind in
try {!res with indref = Some (global_of_constr indhd) }
with _ -> error "Cannot find the inductive type of the inductive schema";;
(* Check that the elimination scheme has a form similar to the
elimination schemes built by Coq. Schemes may have the standard
form computed from an inductive type OR (feb. 2006) a non standard
form. That is: with no main induction argument and with an optional
extra final argument of the form (f x y ...) in the conclusion. In
the non standard case, naming of generated hypos is slightly
different. *)
let compute_elim_signature elimc elimt names_info =
let scheme = compute_elim_sig ~elimc:elimc elimt in
let f,l = decompose_app scheme.concl in
(* Vrifier que les arguments de Qi sont bien les xi. *)
match scheme.indarg with
| Some (_,Some _,_) -> error "strange letin, cannot recognize an induction schema"
| None -> (* Non standard scheme *)
let npred = List.length scheme.predicates in
let is_pred n c =
let hd = fst (decompose_app c) in match kind_of_term hd with
| Rel q when n < q & q <= n+npred -> IndArg
| _ -> OtherArg in
let rec check_branch p c =
match kind_of_term c with
| Prod (_,t,c) -> is_pred p t :: check_branch (p+1) c
| LetIn (_,_,_,c) -> OtherArg :: check_branch (p+1) c
| _ when is_pred p c = IndArg -> []
| _ -> raise Exit in
let rec find_branches p lbrch =
match lbrch with
| (_,None,t)::brs ->
(try
let lchck_brch = check_branch p t in
let n = List.fold_left
(fun n b -> if b=RecArg then n+1 else n) 0 lchck_brch in
let recvarname, hyprecname, avoid =
make_up_names n scheme.indref names_info in
let namesign =
List.map (fun b -> (b,if b=IndArg then hyprecname else recvarname))
lchck_brch in
(avoid,namesign) :: find_branches (p+1) brs
with Exit-> error_ind_scheme "the branches of")
| (_,Some _,_)::_ -> error_ind_scheme "the branches of"
| [] -> [] in
let indsign = Array.of_list (find_branches 0 (List.rev scheme.branches)) in
indsign,scheme
| Some ( _,None,ind) -> (* Standard scheme from an inductive type *)
let indhd,indargs = decompose_app ind in
let npred = List.length scheme.predicates in
let is_pred n c =
let hd = fst (decompose_app c) in match kind_of_term hd with
| Rel q when n < q & q <= n+npred -> IndArg
| _ when hd = indhd -> RecArg
| _ -> OtherArg in
let rec check_branch p c = match kind_of_term c with
| Prod (_,t,c) -> is_pred p t :: check_branch (p+1) c
| LetIn (_,_,_,c) -> OtherArg :: check_branch (p+1) c
| _ when is_pred p c = IndArg -> []
| _ -> raise Exit in
let rec find_branches p lbrch =
match lbrch with
| (_,None,t)::brs ->
(try
let lchck_brch = check_branch p t in
let n = List.fold_left
(fun n b -> if b=RecArg then n+1 else n) 0 lchck_brch in
let recvarname, hyprecname, avoid =
make_up_names n scheme.indref names_info in
let namesign =
List.map (fun b -> (b,if b=IndArg then hyprecname else recvarname))
lchck_brch in
(avoid,namesign) :: find_branches (p+1) brs
with Exit -> error_ind_scheme "the branches of")
| (_,Some _,_)::_ -> error_ind_scheme "the branches of"
| [] ->
(* Check again conclusion *)
let ccl_arg_ok = is_pred (p + scheme.nargs + 1) f = IndArg in
let ind_is_ok =
list_lastn scheme.nargs indargs
= extended_rel_list 0 scheme.args in
if not (ccl_arg_ok & ind_is_ok) then
error "Cannot recognize the conclusion of an induction schema";
[]
in
let indsign = Array.of_list (find_branches 0 (List.rev scheme.branches)) in
indsign,scheme
let find_elim_signature isrec elim hyp0 gl =
let tmptyp0 = pf_get_hyp_typ gl hyp0 in
let (elimc,elimt) = match elim with
| None ->
let mind,_ = pf_reduce_to_quantified_ind gl tmptyp0 in
let s = elimination_sort_of_goal gl in
let elimc =
if isrec then lookup_eliminator mind s
else pf_apply make_case_gen gl mind s in
let elimt = pf_type_of gl elimc in
((elimc, NoBindings), elimt)
| Some (elimc,lbind as e) ->
(e, pf_type_of gl elimc) in
let indsign,elim_scheme = compute_elim_signature elimc elimt hyp0 in
(indsign,elim_scheme)
let mapi f l =
let rec mapi_aux f i l =
match l with
| [] -> []
| e::l' -> f e i :: mapi_aux f (i+1) l' in
mapi_aux f 0 l
(* Instanciate all meta variables of elimclause using lid, some elts
of lid are parameters (first ones), the other are
arguments. Returns the clause obtained. *)
let recolle_clenv scheme lid elimclause gl =
let _,arr = destApp elimclause.templval.rebus in
let lindmv =
Array.map
(fun x ->
match kind_of_term x with
| Meta mv -> mv
| _ -> errorlabstrm "elimination_clause"
(str "The type of elimination clause is not well-formed"))
arr in
let nmv = Array.length lindmv in
let lidparams,lidargs = cut_list (scheme.nparams) lid in
let nidargs = List.length lidargs in
(* parameters correspond to first elts of lid. *)
let clauses_params =
mapi (fun id i -> mkVar id , pf_get_hyp_typ gl id , lindmv.(i)) lidparams in
(* arguments correspond to last elts of lid. *)
let clauses_args =
mapi
(fun id i -> mkVar id , pf_get_hyp_typ gl id , lindmv.(nmv-nidargs+i))
lidargs in
let clause_indarg =
match scheme.indarg with
| None -> []
| Some (x,_,typx) -> []
in
let clauses = clauses_params@clauses_args@clause_indarg in
(* iteration of clenv_fchain with all infos we have. *)
List.fold_right
(fun e acc ->
let x,y,i = e in
(* from_n (Some 0) means that x should be taken "as is" without
trying to unify (which would lead to trying to apply it to
evars if y is a product). *)
let indclause = mk_clenv_from_n gl (Some 0) (x,y) in
let elimclause' = clenv_fchain i acc indclause in
elimclause')
(List.rev clauses)
elimclause
(* Unification of the goal and the principle applied to meta variables:
(elimc ?i ?j ?k...?l). This solves partly meta variables (and may
produce new ones). Then refine with the resulting term with holes.
*)
let induction_tac_felim indvars (* (elimc,lbindelimc) elimt *) scheme gl =
let elimt = scheme.elimt in
let elimc,lbindelimc =
match scheme.elimc with | Some x -> x | None -> error "No definition of the principle" in
(* elimclause contains this: (elimc ?i ?j ?k...?l) *)
let elimclause =
make_clenv_binding gl (mkCast (elimc,DEFAULTcast, elimt),elimt) lbindelimc in
(* elimclause' is built from elimclause by instanciating all args and params. *)
let elimclause' = recolle_clenv scheme indvars elimclause gl in
(* one last resolution (useless?) *)
let resolved = clenv_unique_resolver true elimclause' gl in
clenv_refine resolved gl
(* Induction with several induction arguments, main differences with
induction_from_context is that there is no main induction argument,
so we chose one to be the positioning reference. On the other hand,
all args and params must be given, so we help a bit the unifier by
making the "pattern" by hand before calling induction_tac_felim
FIXME: REUNIF AVEC induction_tac_felim? *)
let induction_from_context_l isrec elim_info lid names gl =
let indsign,scheme = elim_info in
(* number of all args, counting farg and indarg if present. *)
let nargs_indarg_farg = scheme.nargs
+ (if scheme.farg_in_concl then 1 else 0)
+ (if scheme.indarg <> None then 1 else 0) in
(* Number of given induction args must be exact. *)
if List.length lid <> nargs_indarg_farg + scheme.nparams then
error "not the right number of arguments given to induction scheme";
let env = pf_env gl in
(* hyp0 is used for re-introducing hyps at the right place afterward.
We chose the first element of the list of variables on which to
induct. It is probably the first of them appearing in the
context. *)
let hyp0,indvars,lid_params =
match lid with
| [] -> anomaly "induction_from_context_l"
| e::l ->
let nargs_without_first = nargs_indarg_farg - 1 in
let ivs,lp = cut_list nargs_without_first l in
e, ivs, lp in
let statlists,lhyp0,indhyps,deps = cook_sign None (hyp0::indvars) env in
let tmpcl = it_mkNamedProd_or_LetIn (pf_concl gl) deps in
let names = compute_induction_names (Array.length indsign) names in
let dephyps = List.map (fun (id,_,_) -> id) deps in
let deps_cstr =
List.fold_left (fun a (id,b,_) -> if b = None then (mkVar id)::a else a) [] deps in
(* terms to patternify we must patternify indarg or farg if present in concl *)
let lid_in_pattern =
if scheme.indarg <> None & not scheme.indarg_in_concl then List.rev indvars
else List.rev (hyp0::indvars) in
let lidcstr = List.map (fun x -> mkVar x) lid_in_pattern in
let realindvars = (* hyp0 is a real induction arg if it is not the
farg in the conclusion of the induction scheme *)
List.rev ((if scheme.farg_in_concl then indvars else hyp0::indvars) @ lid_params) in
(* Magistral effet de bord: comme dans induction_from_context. *)
tclTHENLIST
[
(* Generalize dependent hyps (but not args) *)
if deps = [] then tclIDTAC else apply_type tmpcl deps_cstr;
thin dephyps; (* clear dependent hyps *)
(* pattern to make the predicate appear. *)
reduce (Pattern (List.map (fun e -> ([],e)) lidcstr)) onConcl;
(* FIXME: Tester ca avec un principe dependant et non-dependant *)
(if isrec then tclTHENFIRSTn else tclTHENLASTn)
(tclTHENLIST [
(* Induction by "refine (indscheme ?i ?j ?k...)" + resolution of all
possible holes using arguments given by the user (but the
functional one). *)
induction_tac_felim realindvars scheme;
tclTRY (thin (List.rev (indhyps)));
])
(array_map2
(induct_discharge statlists lhyp0 (List.rev dephyps)) indsign names)
]
gl
let induction_from_context isrec elim_info hyp0 names gl =
(*test suivant sans doute inutile car refait par le letin_tac*)
if List.mem hyp0 (ids_of_named_context (Global.named_context())) then
errorlabstrm "induction"
(str "Cannot generalize a global variable");
let indsign,scheme = elim_info in
let indref = match scheme.indref with | None -> assert false | Some x -> x in
let tmptyp0 = pf_get_hyp_typ gl hyp0 in
let typ0 = pf_apply reduce_to_quantified_ref gl indref tmptyp0 in
let env = pf_env gl in
let indvars = find_atomic_param_of_ind scheme.nparams (snd (decompose_prod typ0)) in
(* induction_from_context_l isrec elim_info (hyp0::List.rev indvars) names gl *)
let statlists,lhyp0,indhyps,deps = cook_sign (Some hyp0) indvars env in
let tmpcl = it_mkNamedProd_or_LetIn (pf_concl gl) deps in
let names = compute_induction_names (Array.length indsign) names in
let dephyps = List.map (fun (id,_,_) -> id) deps in
let deps_cstr =
List.fold_left
(fun a (id,b,_) -> if b = None then (mkVar id)::a else a) [] deps in
(* Magistral effet de bord: si hyp0 a des arguments, ceux d'entre
eux qui ouvrent de nouveaux buts arrivent en premier dans la
liste des sous-buts du fait qu'ils sont le plus gauche dans le
combinateur engendr par make_case_gen (un "Cases (hyp0 ?) of
...") et il faut alors appliquer tclTHENLASTn; en revanche,
comme lookup_eliminator renvoie un combinateur de la forme
"ind_rec ... (hyp0 ?)", les buts correspondant des arguments de
hyp0 sont maintenant la fin et c'est tclTHENFIRSTn qui marche !!! *)
tclTHENLIST
[ if deps = [] then tclIDTAC else apply_type tmpcl deps_cstr;
thin dephyps;
(if isrec then tclTHENFIRSTn else tclTHENLASTn)
(tclTHENLIST
[ induction_tac hyp0 typ0 scheme (*scheme.elimc,scheme.elimt*);
thin [hyp0];
tclTRY (thin indhyps) ])
(array_map2
(induct_discharge statlists lhyp0 (List.rev dephyps)) indsign names)
]
gl
exception TryNewInduct of exn
let induction_with_atomization_of_ind_arg isrec elim names hyp0 gl =
let (indsign,scheme as elim_info) = find_elim_signature isrec elim hyp0 gl in
if scheme.indarg = None then (* This is not a standard induction scheme (the
argument is probably a parameter) So try the
more general induction mechanism. *)
induction_from_context_l isrec elim_info [hyp0] names gl
else
let indref = match scheme.indref with | None -> assert false | Some x -> x in
tclTHEN
(atomize_param_of_ind (indref,scheme.nparams) hyp0)
(induction_from_context isrec elim_info hyp0 names) gl
(* Induction on a list of induction arguments. Analyse the elim
scheme (which is mandatory for multiple ind args), check that all
parameters and arguments are given (mandatory too). *)
let induction_without_atomization isrec elim names lid gl =
let (indsign,scheme as elim_info) =
find_elim_signature isrec elim (List.hd lid) gl in
let awaited_nargs =
scheme.nparams + scheme.nargs
+ (if scheme.farg_in_concl then 1 else 0)
+ (if scheme.indarg <> None then 1 else 0)
in
let nlid = List.length lid in
if nlid <> awaited_nargs
then error "Not the right number of induction arguments"
else induction_from_context_l isrec elim_info lid names gl
let new_induct_gen isrec elim names c gl =
match kind_of_term c with
| Var id when not (mem_named_context id (Global.named_context())) ->
induction_with_atomization_of_ind_arg isrec elim names id gl
| _ ->
let x = id_of_name_using_hdchar (Global.env()) (pf_type_of gl c)
Anonymous in
let id = fresh_id [] x gl in
tclTHEN
(letin_tac true (Name id) c allClauses)
(induction_with_atomization_of_ind_arg isrec elim names id) gl
(* The two following functions should already exist, but found nowhere *)
(* Unfolds x by its definition everywhere *)
let unfold_body x gl =
let hyps = pf_hyps gl in
let xval =
match Sign.lookup_named x hyps with
(_,Some xval,_) -> xval
| _ -> errorlabstrm "unfold_body"
(pr_id x ++ str" is not a defined hypothesis") in
let aft = afterHyp x gl in
let hl = List.fold_right (fun (y,yval,_) cl -> (([],y),InHyp) :: cl) aft [] in
let xvar = mkVar x in
let rfun _ _ c = replace_term xvar xval c in
tclTHENLIST
[tclMAP (fun h -> reduct_in_hyp rfun h) hl;
reduct_in_concl (rfun,DEFAULTcast)] gl
(* Unfolds x by its definition everywhere and clear x. This may raise
an error if x is not defined. *)
let unfold_all x gl =
let (_,xval,_) = pf_get_hyp gl x in
(* If x has a body, simply replace x with body and clear x *)
if xval <> None then tclTHEN (unfold_body x) (clear [x]) gl
else tclIDTAC gl
(* Induction on a list of arguments. First make induction arguments
atomic (using letins), then do induction. The specificity here is
that all arguments and parameters of the scheme are given
(mandatory for the moment), so we don't need to deal with
parameters of the inductive type as in new_induct_gen. *)
let new_induct_gen_l isrec elim names lc gl =
let newlc = ref [] in
let letids = ref [] in
let rec atomize_list l gl =
match l with
| [] -> tclIDTAC gl
| c::l' ->
match kind_of_term c with
| Var id when not (mem_named_context id (Global.named_context())) ->
let _ = newlc:= id::!newlc in
atomize_list l' gl
| _ ->
let x =
id_of_name_using_hdchar (Global.env()) (pf_type_of gl c) Anonymous in
let id = fresh_id [] x gl in
let newl' = List.map (replace_term c (mkVar id)) l' in
let _ = newlc:=id::!newlc in
let _ = letids:=id::!letids in
tclTHEN
(letin_tac true (Name id) c allClauses)
(atomize_list newl') gl in
tclTHENLIST
[
(atomize_list lc);
(fun gl' -> (* recompute each time to have the new value of newlc *)
induction_without_atomization isrec elim names !newlc gl') ;
(* after induction, try to unfold all letins created by atomize_list
FIXME: unfold_all does not exist anywhere else? *)
(fun gl' -> (* recompute each time to have the new value of letids *)
tclMAP (fun x -> tclTRY (unfold_all x)) !letids gl')
]
gl
let induct_destruct_l isrec lc elim names =
(* Several induction hyps: induction scheme is mandatory *)
let _ =
if elim = None
then
error ("Induction scheme must be given when several induction hypothesis.\n"
^ "Example: induction x1 x2 x3 using my_scheme.") in
let newlc =
List.map
(fun x ->
match x with (* FIXME: should we deal with ElimOnIdent? *)
| ElimOnConstr x -> x
| _ -> error "don't know where to find some argument")
lc in
new_induct_gen_l isrec elim names newlc
(* Induction either over a term, over a quantified premisse, or over
several quantified premisses (like with functional induction
principles).
TODO: really unify induction with one and induction with several
args *)
let induct_destruct isrec lc elim names =
assert (List.length lc > 0); (* ensured by syntax, but if called inside caml? *)
if List.length lc = 1 then (* induction on one arg: use old mechanism *)
try
let c = List.hd lc in
match c with
| ElimOnConstr c -> new_induct_gen isrec elim names c
| ElimOnAnonHyp n ->
tclTHEN (intros_until_n n)
(tclLAST_HYP (new_induct_gen isrec elim names))
(* Identifier apart because id can be quantified in goal and not typable *)
| ElimOnIdent (_,id) ->
tclTHEN (tclTRY (intros_until_id id))
(new_induct_gen isrec elim names (mkVar id))
with (* If this fails, try with new mechanism but if it fails too,
then the exception is the first one. *)
| x -> (try induct_destruct_l isrec lc elim names with _ -> raise x)
else induct_destruct_l isrec lc elim names
let new_induct = induct_destruct true
let new_destruct = induct_destruct false
(* The registered tactic, which calls the default elimination
* if no elimination constant is provided. *)
(* Induction tactics *)
(* This was Induction before 6.3 (induction only in quantified premisses) *)
let raw_induct s = tclTHEN (intros_until_id s) (tclLAST_HYP simplest_elim)
let raw_induct_nodep n = tclTHEN (intros_until_n n) (tclLAST_HYP simplest_elim)
let simple_induct_id hyp = raw_induct hyp
let simple_induct_nodep = raw_induct_nodep
let simple_induct = function
| NamedHyp id -> simple_induct_id id
| AnonHyp n -> simple_induct_nodep n
(* Destruction tactics *)
let simple_destruct_id s =
(tclTHEN (intros_until_id s) (tclLAST_HYP simplest_case))
let simple_destruct_nodep n =
(tclTHEN (intros_until_n n) (tclLAST_HYP simplest_case))
let simple_destruct = function
| NamedHyp id -> simple_destruct_id id
| AnonHyp n -> simple_destruct_nodep n
(*
* Eliminations giving the type instead of the proof.
* These tactics use the default elimination constant and
* no substitutions at all.
* May be they should be integrated into Elim ...
*)
let elim_scheme_type elim t gl =
let clause = mk_clenv_type_of gl elim in
match kind_of_term (last_arg clause.templval.rebus) with
| Meta mv ->
let clause' =
(* t is inductive, then CUMUL or CONV is irrelevant *)
clenv_unify true Reduction.CUMUL t
(clenv_meta_type clause mv) clause in
res_pf clause' ~allow_K:true gl
| _ -> anomaly "elim_scheme_type"
let elim_type t gl =
let (ind,t) = pf_reduce_to_atomic_ind gl t in
let elimc = lookup_eliminator ind (elimination_sort_of_goal gl) in
elim_scheme_type elimc t gl
let case_type t gl =
let (ind,t) = pf_reduce_to_atomic_ind gl t in
let env = pf_env gl in
let elimc = make_case_gen env (project gl) ind (elimination_sort_of_goal gl) in
elim_scheme_type elimc t gl
(* Some eliminations frequently used *)
(* These elimination tactics are particularly adapted for sequent
calculus. They take a clause as argument, and yield the
elimination rule if the clause is of the form (Some id) and a
suitable introduction rule otherwise. They do not depend on
the name of the eliminated constant, so they can be also
used on ad-hoc disjunctions and conjunctions introduced by
the user.
-- Eduardo Gimenez (11/8/97)
HH (29/5/99) replaces failures by specific error messages
*)
let andE id gl =
let t = pf_get_hyp_typ gl id in
if is_conjunction (pf_hnf_constr gl t) then
(tclTHEN (simplest_elim (mkVar id)) (tclDO 2 intro)) gl
else
errorlabstrm "andE"
(str("Tactic andE expects "^(string_of_id id)^" is a conjunction."))
let dAnd cls =
onClauses
(function
| None -> simplest_split
| Some ((_,id),_) -> andE id)
cls
let orE id gl =
let t = pf_get_hyp_typ gl id in
if is_disjunction (pf_hnf_constr gl t) then
(tclTHEN (simplest_elim (mkVar id)) intro) gl
else
errorlabstrm "orE"
(str("Tactic orE expects "^(string_of_id id)^" is a disjunction."))
let dorE b cls =
onClauses
(function
| (Some ((_,id),_)) -> orE id
| None -> (if b then right else left) NoBindings)
cls
let impE id gl =
let t = pf_get_hyp_typ gl id in
if is_imp_term (pf_hnf_constr gl t) then
let (dom, _, rng) = destProd (pf_hnf_constr gl t) in
tclTHENLAST
(cut_intro rng)
(apply_term (mkVar id) [mkMeta (new_meta())]) gl
else
errorlabstrm "impE"
(str("Tactic impE expects "^(string_of_id id)^
" is a an implication."))
let dImp cls =
onClauses
(function
| None -> intro
| Some ((_,id),_) -> impE id)
cls
(************************************************)
(* Tactics related with logic connectives *)
(************************************************)
(* Reflexivity tactics *)
let setoid_reflexivity = ref (fun _ -> assert false)
let register_setoid_reflexivity f = setoid_reflexivity := f
let reflexivity_red allowred gl =
(* PL: usual reflexivity don't perform any reduction when searching
for an equality, but we may need to do some when called back from
inside setoid_reflexivity (see Optimize cases in setoid_replace.ml). *)
let concl = if not allowred then pf_concl gl
else whd_betadeltaiota (pf_env gl) (project gl) (pf_concl gl)
in
match match_with_equation concl with
| None -> !setoid_reflexivity gl
| Some _ -> one_constructor 1 NoBindings gl
let reflexivity gl = reflexivity_red false gl
let intros_reflexivity = (tclTHEN intros reflexivity)
(* Symmetry tactics *)
(* This tactic first tries to apply a constant named sym_eq, where eq
is the name of the equality predicate. If this constant is not
defined and the conclusion is a=b, it solves the goal doing (Cut
b=a;Intro H;Case H;Constructor 1) *)
let setoid_symmetry = ref (fun _ -> assert false)
let register_setoid_symmetry f = setoid_symmetry := f
let symmetry_red allowred gl =
(* PL: usual symmetry don't perform any reduction when searching
for an equality, but we may need to do some when called back from
inside setoid_reflexivity (see Optimize cases in setoid_replace.ml). *)
let concl = if not allowred then pf_concl gl
else whd_betadeltaiota (pf_env gl) (project gl) (pf_concl gl)
in
match match_with_equation concl with
| None -> !setoid_symmetry gl
| Some (hdcncl,args) ->
let hdcncls = string_of_inductive hdcncl in
begin
try
(apply (pf_parse_const gl ("sym_"^hdcncls)) gl)
with _ ->
let symc = match args with
| [t1; c1; t2; c2] -> mkApp (hdcncl, [| t2; c2; t1; c1 |])
| [typ;c1;c2] -> mkApp (hdcncl, [| typ; c2; c1 |])
| [c1;c2] -> mkApp (hdcncl, [| c2; c1 |])
| _ -> assert false
in
tclTHENFIRST (cut symc)
(tclTHENLIST
[ intro;
tclLAST_HYP simplest_case;
one_constructor 1 NoBindings ])
gl
end
let symmetry gl = symmetry_red false gl
let setoid_symmetry_in = ref (fun _ _ -> assert false)
let register_setoid_symmetry_in f = setoid_symmetry_in := f
let symmetry_in id gl =
let ctype = pf_type_of gl (mkVar id) in
let sign,t = decompose_prod_assum ctype in
match match_with_equation t with
| None -> !setoid_symmetry_in id gl
| Some (hdcncl,args) ->
let symccl = match args with
| [t1; c1; t2; c2] -> mkApp (hdcncl, [| t2; c2; t1; c1 |])
| [typ;c1;c2] -> mkApp (hdcncl, [| typ; c2; c1 |])
| [c1;c2] -> mkApp (hdcncl, [| c2; c1 |])
| _ -> assert false in
tclTHENS (cut (it_mkProd_or_LetIn symccl sign))
[ intro_replacing id;
tclTHENLIST [ intros; symmetry; apply (mkVar id); assumption ] ]
gl
let intros_symmetry =
onClauses
(function
| None -> tclTHEN intros symmetry
| Some ((_,id),_) -> symmetry_in id)
(* Transitivity tactics *)
(* This tactic first tries to apply a constant named trans_eq, where eq
is the name of the equality predicate. If this constant is not
defined and the conclusion is a=b, it solves the goal doing
Cut x1=x2;
[Cut x2=x3; [Intros e1 e2; Case e2;Assumption
| Idtac]
| Idtac]
--Eduardo (19/8/97)
*)
let setoid_transitivity = ref (fun _ _ -> assert false)
let register_setoid_transitivity f = setoid_transitivity := f
let transitivity_red allowred t gl =
(* PL: usual transitivity don't perform any reduction when searching
for an equality, but we may need to do some when called back from
inside setoid_reflexivity (see Optimize cases in setoid_replace.ml). *)
let concl = if not allowred then pf_concl gl
else whd_betadeltaiota (pf_env gl) (project gl) (pf_concl gl)
in
match match_with_equation concl with
| None -> !setoid_transitivity t gl
| Some (hdcncl,args) ->
let hdcncls = string_of_inductive hdcncl in
begin
try
apply_list [(pf_parse_const gl ("trans_"^hdcncls));t] gl
with _ ->
let eq1, eq2 = match args with
| [typ1;c1;typ2;c2] -> let typt = pf_type_of gl t in
( mkApp(hdcncl, [| typ1; c1; typt ;t |]),
mkApp(hdcncl, [| typt; t; typ2; c2 |]) )
| [typ;c1;c2] ->
( mkApp (hdcncl, [| typ; c1; t |]),
mkApp (hdcncl, [| typ; t; c2 |]) )
| [c1;c2] ->
( mkApp (hdcncl, [| c1; t|]),
mkApp (hdcncl, [| t; c2 |]) )
| _ -> assert false
in
tclTHENFIRST (cut eq2)
(tclTHENFIRST (cut eq1)
(tclTHENLIST
[ tclDO 2 intro;
tclLAST_HYP simplest_case;
assumption ])) gl
end
let transitivity t gl = transitivity_red false t gl
let intros_transitivity n = tclTHEN intros (transitivity n)
(* tactical to save as name a subproof such that the generalisation of
the current goal, abstracted with respect to the local signature,
is solved by tac *)
let interpretable_as_section_decl d1 d2 = match d1,d2 with
| (_,Some _,_), (_,None,_) -> false
| (_,Some b1,t1), (_,Some b2,t2) -> eq_constr b1 b2 & eq_constr t1 t2
| (_,None,t1), (_,_,t2) -> eq_constr t1 t2
let abstract_subproof name tac gls =
let current_sign = Global.named_context()
and global_sign = pf_hyps gls in
let sign,secsign =
List.fold_right
(fun (id,_,_ as d) (s1,s2) ->
if mem_named_context id current_sign &
interpretable_as_section_decl (Sign.lookup_named id current_sign) d
then (s1,push_named_context_val d s2)
else (add_named_decl d s1,s2))
global_sign (empty_named_context,empty_named_context_val) in
let na = next_global_ident_away false name (pf_ids_of_hyps gls) in
let concl = it_mkNamedProd_or_LetIn (pf_concl gls) sign in
if occur_existential concl then
error "\"abstract\" cannot handle existentials";
let lemme =
start_proof na (Global, Proof Lemma) secsign concl (fun _ _ -> ());
let _,(const,kind,_) =
try
by (tclCOMPLETE (tclTHEN (tclDO (List.length sign) intro) tac));
let r = cook_proof () in
delete_current_proof (); r
with e ->
(delete_current_proof(); raise e)
in (* Faudrait un peu fonctionnaliser cela *)
let cd = Entries.DefinitionEntry const in
let con = Declare.declare_internal_constant na (cd,IsProof Lemma) in
constr_of_global (ConstRef con)
in
exact_no_check
(applist (lemme,
List.rev (Array.to_list (instance_from_named_context sign))))
gls
let tclABSTRACT name_op tac gls =
let s = match name_op with
| Some s -> s
| None -> add_suffix (get_current_proof_name ()) "_subproof"
in
abstract_subproof s tac gls
let admit_as_an_axiom gls =
let current_sign = Global.named_context()
and global_sign = pf_hyps gls in
let sign,secsign =
List.fold_right
(fun (id,_,_ as d) (s1,s2) ->
if mem_named_context id current_sign &
interpretable_as_section_decl (Sign.lookup_named id current_sign) d
then (s1,add_named_decl d s2)
else (add_named_decl d s1,s2))
global_sign (empty_named_context,empty_named_context) in
let name = add_suffix (get_current_proof_name ()) "_admitted" in
let na = next_global_ident_away false name (pf_ids_of_hyps gls) in
let concl = it_mkNamedProd_or_LetIn (pf_concl gls) sign in
if occur_existential concl then error "\"admit\" cannot handle existentials";
let axiom =
let cd = Entries.ParameterEntry concl in
let con = Declare.declare_internal_constant na (cd,IsAssumption Logical) in
constr_of_global (ConstRef con)
in
exact_no_check
(applist (axiom,
List.rev (Array.to_list (instance_from_named_context sign))))
gls
|