1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id: command.ml 10067 2007-08-09 17:13:16Z msozeau $ *)
open Pp
open Util
open Options
open Term
open Termops
open Declarations
open Entries
open Inductive
open Environ
open Reduction
open Redexpr
open Declare
open Nametab
open Names
open Libnames
open Nameops
open Topconstr
open Library
open Libobject
open Constrintern
open Proof_type
open Tacmach
open Safe_typing
open Nametab
open Impargs
open Typeops
open Reductionops
open Indtypes
open Vernacexpr
open Decl_kinds
open Pretyping
open Evarutil
open Evarconv
open Notation
let mkLambdaCit = List.fold_right (fun (x,a) b -> mkLambdaC(x,a,b))
let mkProdCit = List.fold_right (fun (x,a) b -> mkProdC(x,a,b))
let rec abstract_constr_expr c = function
| [] -> c
| LocalRawDef (x,b)::bl -> mkLetInC(x,b,abstract_constr_expr c bl)
| LocalRawAssum (idl,t)::bl ->
List.fold_right (fun x b -> mkLambdaC([x],t,b)) idl
(abstract_constr_expr c bl)
let rec generalize_constr_expr c = function
| [] -> c
| LocalRawDef (x,b)::bl -> mkLetInC(x,b,generalize_constr_expr c bl)
| LocalRawAssum (idl,t)::bl ->
List.fold_right (fun x b -> mkProdC([x],t,b)) idl
(generalize_constr_expr c bl)
let rec under_binders env f n c =
if n = 0 then f env Evd.empty c else
match kind_of_term c with
| Lambda (x,t,c) ->
mkLambda (x,t,under_binders (push_rel (x,None,t) env) f (n-1) c)
| LetIn (x,b,t,c) ->
mkLetIn (x,b,t,under_binders (push_rel (x,Some b,t) env) f (n-1) c)
| _ -> assert false
let rec destSubCast c = match kind_of_term c with
| Lambda (x,t,c) ->
let (b,u) = destSubCast c in mkLambda (x,t,b), mkProd (x,t,u)
| LetIn (x,b,t,c) ->
let (d,u) = destSubCast c in mkLetIn (x,b,t,d), mkLetIn (x,b,t,u)
| Cast (b,_, u) -> (b,u)
| _ -> assert false
let rec complete_conclusion a cs = function
| CProdN (loc,bl,c) -> CProdN (loc,bl,complete_conclusion a cs c)
| CLetIn (loc,b,t,c) -> CLetIn (loc,b,t,complete_conclusion a cs c)
| CHole loc ->
let (has_no_args,name,params) = a in
if not has_no_args then
user_err_loc (loc,"",
str "Cannot infer the non constant arguments of the conclusion of "
++ pr_id cs);
let args = List.map (fun id -> CRef(Ident(loc,id))) params in
CAppExpl (loc,(None,Ident(loc,name)),List.rev args)
| c -> c
(* Commands of the interface *)
(* 1| Constant definitions *)
let definition_message id =
if_verbose message ((string_of_id id) ^ " is defined")
let constant_entry_of_com (bl,com,comtypopt,opacity,boxed) =
let sigma = Evd.empty in
let env = Global.env() in
match comtypopt with
None ->
let b = abstract_constr_expr com bl in
let j = interp_constr_judgment sigma env b in
{ const_entry_body = j.uj_val;
const_entry_type = None;
const_entry_opaque = opacity;
const_entry_boxed = boxed }
| Some comtyp ->
(* We use a cast to avoid troubles with evars in comtyp *)
(* that can only be resolved knowing com *)
let b = abstract_constr_expr (mkCastC (com, Rawterm.CastConv (DEFAULTcast,comtyp))) bl in
let (body,typ) = destSubCast (interp_constr sigma env b) in
{ const_entry_body = body;
const_entry_type = Some typ;
const_entry_opaque = opacity;
const_entry_boxed = boxed }
let red_constant_entry bl ce = function
| None -> ce
| Some red ->
let body = ce.const_entry_body in
{ ce with const_entry_body =
under_binders (Global.env()) (fst (reduction_of_red_expr red))
(local_binders_length bl)
body }
let declare_global_definition ident ce local =
let kn = declare_constant ident (DefinitionEntry ce,IsDefinition Definition) in
if local = Local && Options.is_verbose() then
msg_warning (pr_id ident ++ str" is declared as a global definition");
definition_message ident;
ConstRef kn
let declare_definition ident (local,boxed,dok) bl red_option c typopt hook =
let ce = constant_entry_of_com (bl,c,typopt,false,boxed) in
let ce' = red_constant_entry bl ce red_option in
let r = match local with
| Local when Lib.sections_are_opened () ->
let c =
SectionLocalDef(ce'.const_entry_body,ce'.const_entry_type,false) in
let _ = declare_variable ident (Lib.cwd(),c,IsDefinition Definition) in
definition_message ident;
if Pfedit.refining () then
msgerrnl (str"Warning: Local definition " ++ pr_id ident ++
str" is not visible from current goals");
VarRef ident
| (Global|Local) ->
declare_global_definition ident ce' local in
hook local r
let syntax_definition ident c local onlyparse =
let c = snd (interp_aconstr [] [] c) in
Syntax_def.declare_syntactic_definition local ident onlyparse c
(* 2| Variable/Hypothesis/Parameter/Axiom declarations *)
let assumption_message id =
if_verbose message ((string_of_id id) ^ " is assumed")
let declare_one_assumption is_coe (local,kind) c (_,ident) =
let r = match local with
| Local when Lib.sections_are_opened () ->
let _ =
declare_variable ident
(Lib.cwd(), SectionLocalAssum c, IsAssumption kind) in
assumption_message ident;
if is_verbose () & Pfedit.refining () then
msgerrnl (str"Warning: Variable " ++ pr_id ident ++
str" is not visible from current goals");
VarRef ident
| (Global|Local) ->
let kn =
declare_constant ident (ParameterEntry c, IsAssumption kind) in
assumption_message ident;
if local=Local & Options.is_verbose () then
msg_warning (pr_id ident ++ str" is declared as a parameter" ++
str" because it is at a global level");
ConstRef kn in
if is_coe then Class.try_add_new_coercion r local
let declare_assumption idl is_coe k bl c =
if not (Pfedit.refining ()) then
let c = generalize_constr_expr c bl in
let c = interp_type Evd.empty (Global.env()) c in
List.iter (declare_one_assumption is_coe k c) idl
else
errorlabstrm "Command.Assumption"
(str "Cannot declare an assumption while in proof editing mode.")
(* 3a| Elimination schemes for mutual inductive definitions *)
open Indrec
let non_type_eliminations =
[ (InProp,elimination_suffix InProp);
(InSet,elimination_suffix InSet) ]
let declare_one_elimination ind =
let (mib,mip) = Global.lookup_inductive ind in
let mindstr = string_of_id mip.mind_typename in
let declare s c t =
let id = id_of_string s in
let kn = Declare.declare_internal_constant id
(DefinitionEntry
{ const_entry_body = c;
const_entry_type = t;
const_entry_opaque = false;
const_entry_boxed = Options.boxed_definitions() },
Decl_kinds.IsDefinition Definition) in
definition_message id;
kn
in
let env = Global.env () in
let sigma = Evd.empty in
let elim_scheme = Indrec.build_indrec env sigma ind in
let npars =
(* if a constructor of [ind] contains a recursive call, the scheme
is generalized only wrt recursively uniform parameters *)
if (Inductiveops.mis_is_recursive_subset [snd ind] mip.mind_recargs)
then
mib.mind_nparams_rec
else
mib.mind_nparams in
let make_elim s = Indrec.instantiate_indrec_scheme s npars elim_scheme in
let kelim = elim_sorts (mib,mip) in
(* in case the inductive has a type elimination, generates only one
induction scheme, the other ones share the same code with the
apropriate type *)
if List.mem InType kelim then
let elim = make_elim (new_sort_in_family InType) in
let cte = declare (mindstr^(Indrec.elimination_suffix InType)) elim None in
let c = mkConst cte in
let t = type_of_constant (Global.env()) cte in
List.iter (fun (sort,suff) ->
let (t',c') =
Indrec.instantiate_type_indrec_scheme (new_sort_in_family sort)
npars c t in
let _ = declare (mindstr^suff) c' (Some t') in ())
non_type_eliminations
else (* Impredicative or logical inductive definition *)
List.iter
(fun (sort,suff) ->
if List.mem sort kelim then
let elim = make_elim (new_sort_in_family sort) in
let _ = declare (mindstr^suff) elim None in ())
non_type_eliminations
let declare_eliminations sp =
let mib = Global.lookup_mind sp in
if mib.mind_finite then
for i = 0 to Array.length mib.mind_packets - 1 do
declare_one_elimination (sp,i)
done
(* 3b| Mutual inductive definitions *)
let compute_interning_datas env l nal typl =
let mk_interning_data na typ =
let idl, impl =
if is_implicit_args() then
let impl = compute_implicits env typ in
let sub_impl,_ = list_chop (List.length l) impl in
let sub_impl' = List.filter is_status_implicit sub_impl in
(List.map name_of_implicit sub_impl', impl)
else
([],[]) in
(na, (idl, impl, compute_arguments_scope typ)) in
(l, List.map2 mk_interning_data nal typl)
let declare_interning_data (_,impls) (df,c,scope) =
silently (Metasyntax.add_notation_interpretation df impls c) scope
let push_named_types env idl tl =
List.fold_left2 (fun env id t -> Environ.push_named (id,None,t) env)
env idl tl
let push_types env idl tl =
List.fold_left2 (fun env id t -> Environ.push_rel (Name id,None,t) env)
env idl tl
type inductive_expr = {
ind_name : identifier;
ind_arity : constr_expr;
ind_lc : (identifier * constr_expr) list
}
let minductive_message = function
| [] -> error "no inductive definition"
| [x] -> (pr_id x ++ str " is defined")
| l -> hov 0 (prlist_with_sep pr_coma pr_id l ++
spc () ++ str "are defined")
let check_all_names_different indl =
let get_names ind = ind.ind_name::List.map fst ind.ind_lc in
if not (list_distinct (List.flatten (List.map get_names indl))) then
error "Two inductive objects have the same name"
let mk_mltype_data isevars env assums arity indname =
let is_ml_type = is_sort env (Evd.evars_of !isevars) arity in
(is_ml_type,indname,assums)
let prepare_param = function
| (na,None,t) -> out_name na, LocalAssum t
| (na,Some b,_) -> out_name na, LocalDef b
let interp_ind_arity isevars env ind =
interp_type_evars isevars env ind.ind_arity
let interp_cstrs isevars env impls mldata arity ind =
let cnames,ctyps = List.split ind.ind_lc in
(* Complete conclusions of constructor types if given in ML-style syntax *)
let ctyps' = List.map2 (complete_conclusion mldata) cnames ctyps in
(* Interpret the constructor types *)
let ctyps'' = List.map (interp_type_evars isevars env ~impls) ctyps' in
(cnames, ctyps'')
let interp_mutual paramsl indl notations finite =
check_all_names_different indl;
let env0 = Global.env() in
let isevars = ref (Evd.create_evar_defs Evd.empty) in
let env_params, ctx_params = interp_context_evars isevars env0 paramsl in
let indnames = List.map (fun ind -> ind.ind_name) indl in
(* Names of parameters as arguments of the inductive type (defs removed) *)
let assums = List.filter(fun (_,b,_) -> b=None) ctx_params in
let params = List.map (fun (na,_,_) -> out_name na) assums in
(* Interpret the arities *)
let arities = List.map (interp_ind_arity isevars env_params) indl in
let fullarities = List.map (fun c -> it_mkProd_or_LetIn c ctx_params) arities in
let env_ar = push_types env0 indnames fullarities in
let env_ar_params = push_rel_context ctx_params env_ar in
(* Compute interpretation metadatas *)
let impls = compute_interning_datas env0 params indnames fullarities in
let mldatas = List.map2 (mk_mltype_data isevars env_params params) arities indnames in
let constructors =
States.with_heavy_rollback (fun () ->
(* Temporary declaration of notations and scopes *)
List.iter (declare_interning_data impls) notations;
(* Interpret the constructor types *)
list_map3 (interp_cstrs isevars env_ar_params impls) mldatas arities indl)
() in
(* Instantiate evars and check all are resolved *)
let isevars,_ = consider_remaining_unif_problems env_params !isevars in
let sigma = Evd.evars_of isevars in
let constructors = List.map (fun (idl,cl) -> (idl,List.map (nf_evar sigma) cl)) constructors in
let ctx_params = Sign.map_rel_context (nf_evar sigma) ctx_params in
let arities = List.map (nf_evar sigma) arities in
List.iter (check_evars env_params Evd.empty isevars) arities;
Sign.iter_rel_context (check_evars env0 Evd.empty isevars) ctx_params;
List.iter (fun (_,ctyps) ->
List.iter (check_evars env_ar_params Evd.empty isevars) ctyps)
constructors;
(* Build the inductive entries *)
let entries = list_map3 (fun ind arity (cnames,ctypes) -> {
mind_entry_typename = ind.ind_name;
mind_entry_arity = arity;
mind_entry_consnames = cnames;
mind_entry_lc = ctypes
}) indl arities constructors in
(* Build the mutual inductive entry *)
{ mind_entry_params = List.map prepare_param ctx_params;
mind_entry_record = false;
mind_entry_finite = finite;
mind_entry_inds = entries }
let eq_constr_expr c1 c2 =
try let _ = Constrextern.check_same_type c1 c2 in true with _ -> false
(* Very syntactical equality *)
let eq_local_binder d1 d2 = match d1,d2 with
| LocalRawAssum (nal1,c1), LocalRawAssum (nal2,c2) ->
List.length nal1 = List.length nal2 &&
List.for_all2 (fun (_,na1) (_,na2) -> na1 = na2) nal1 nal2 &&
eq_constr_expr c1 c2
| LocalRawDef ((_,id1),c1), LocalRawDef ((_,id2),c2) ->
id1 = id2 && eq_constr_expr c1 c2
| _ ->
false
let eq_local_binders bl1 bl2 =
List.length bl1 = List.length bl2 && List.for_all2 eq_local_binder bl1 bl2
let extract_coercions indl =
let mkqid (_,((_,id),_)) = make_short_qualid id in
let extract lc = List.filter (fun (iscoe,_) -> iscoe) lc in
List.map mkqid (List.flatten(List.map (fun (_,_,_,lc) -> extract lc) indl))
let extract_params indl =
let paramsl = List.map (fun (_,params,_,_) -> params) indl in
match paramsl with
| [] -> anomaly "empty list of inductive types"
| params::paramsl ->
if not (List.for_all (eq_local_binders params) paramsl) then error
"Parameters should be syntactically the same for each inductive type";
params
let prepare_inductive ntnl indl =
let indl =
List.map (fun ((_,indname),_,ar,lc) -> {
ind_name = indname;
ind_arity = ar;
ind_lc = List.map (fun (_,((_,id),t)) -> (id,t)) lc
}) indl in
List.fold_right option_cons ntnl [], indl
let declare_mutual_with_eliminations isrecord mie =
let names = List.map (fun e -> e.mind_entry_typename) mie.mind_entry_inds in
let (_,kn) = declare_mind isrecord mie in
if_verbose ppnl (minductive_message names);
declare_eliminations kn;
kn
let build_mutual l finite =
let indl,ntnl = List.split l in
let paramsl = extract_params indl in
let coes = extract_coercions indl in
let notations,indl = prepare_inductive ntnl indl in
let mie = interp_mutual paramsl indl notations finite in
(* Declare the mutual inductive block with its eliminations *)
ignore (declare_mutual_with_eliminations false mie);
(* Declare the possible notations of inductive types *)
List.iter (declare_interning_data ([],[])) notations;
(* Declare the coercions *)
List.iter (fun qid -> Class.try_add_new_coercion (locate qid) Global) coes
(* 3c| Fixpoints and co-fixpoints *)
let recursive_message = function
| [] -> anomaly "no recursive definition"
| [id] -> pr_id id ++ str " is recursively defined"
| l -> hov 0 (prlist_with_sep pr_coma pr_id l ++
spc () ++ str "are recursively defined")
let corecursive_message = function
| [] -> error "no corecursive definition"
| [id] -> pr_id id ++ str " is corecursively defined"
| l -> hov 0 (prlist_with_sep pr_coma pr_id l ++
spc () ++ str "are corecursively defined")
let recursive_message isfix =
if isfix=Fixpoint then recursive_message else corecursive_message
(* An (unoptimized) function that maps preorders to partial orders...
Input: a list of associations (x,[y1;...;yn]), all yi distincts
and different of x, meaning x<=y1, ..., x<=yn
Output: a list of associations (x,Inr [y1;...;yn]), collecting all
distincts yi greater than x, _or_, (x, Inl y) meaning that
x is in the same class as y (in which case, x occurs
nowhere else in the association map)
partial_order : ('a * 'a list) list -> ('a * ('a,'a list) union) list
*)
let rec partial_order = function
| [] -> []
| (x,xge)::rest ->
let rec browse res xge' = function
| [] ->
let res = List.map (function
| (z, Inr zge) when List.mem x zge -> (z, Inr (list_union zge xge'))
| r -> r) res in
(x,Inr xge')::res
| y::xge ->
let rec link y =
try match List.assoc y res with
| Inl z -> link z
| Inr yge ->
if List.mem x yge then
let res = List.remove_assoc y res in
let res = List.map (function
| (z, Inl t) ->
if t = y then (z, Inl x) else (z, Inl t)
| (z, Inr zge) ->
if List.mem y zge then
(z, Inr (list_add_set x (list_remove y zge)))
else
(z, Inr zge)) res in
browse ((y,Inl x)::res) xge' (list_union xge (list_remove x yge))
else
browse res (list_add_set y (list_union xge' yge)) xge
with Not_found -> browse res (list_add_set y xge') xge
in link y
in browse (partial_order rest) [] xge
let non_full_mutual_message x xge y yge kind rest =
let reason =
if List.mem x yge then
string_of_id y^" depends on "^string_of_id x^" but not conversely"
else if List.mem y xge then
string_of_id x^" depends on "^string_of_id y^" but not conversely"
else
string_of_id y^" and "^string_of_id x^" are not mutually dependent" in
let e = if rest <> [] then "e.g.: "^reason else reason in
let k = if kind=Fixpoint then "fixpoint" else "cofixpoint" in
let w =
if kind=Fixpoint then "Well-foundedness check may fail unexpectedly.\n"
else "" in
"Not a fully mutually defined "^k^"\n("^e^").\n"^w
let check_mutuality env kind fixl =
let names = List.map fst fixl in
let preorder =
List.map (fun (id,def) ->
(id, List.filter (fun id' -> id<>id' & occur_var env id' def) names))
fixl in
let po = partial_order preorder in
match List.filter (function (_,Inr _) -> true | _ -> false) po with
| (x,Inr xge)::(y,Inr yge)::rest ->
if_verbose warning (non_full_mutual_message x xge y yge kind rest)
| _ -> ()
type fixpoint_kind =
| IsFixpoint of (int option * recursion_order_expr) list
| IsCoFixpoint
type fixpoint_expr = {
fix_name : identifier;
fix_binders : local_binder list;
fix_body : constr_expr;
fix_type : constr_expr
}
let interp_fix_type isevars env fix =
interp_type_evars isevars env
(generalize_constr_expr fix.fix_type fix.fix_binders)
let interp_fix_body isevars env impls fix fixtype =
interp_casted_constr_evars isevars env ~impls
(abstract_constr_expr fix.fix_body fix.fix_binders) fixtype
let declare_fix boxed kind f def t =
let ce = {
const_entry_body = def;
const_entry_type = Some t;
const_entry_opaque = false;
const_entry_boxed = boxed
} in
let kn = declare_constant f (DefinitionEntry ce,IsDefinition kind) in
ConstRef kn
let prepare_recursive_declaration fixnames fixtypes fixdefs =
let defs = List.map (subst_vars (List.rev fixnames)) fixdefs in
let names = List.map (fun id -> Name id) fixnames in
(Array.of_list names, Array.of_list fixtypes, Array.of_list defs)
let compute_guardness_evidence (n,_) fixl fixtype =
match n with
| Some n -> n
| None ->
(* Recursive argument was not given by the user :
We check that there is only one inductive argument *)
let m = local_binders_length fixl.fix_binders in
let ctx = fst (Sign.decompose_prod_n_assum m fixtype) in
let isIndApp t = isInd (fst (decompose_app (strip_head_cast t))) in
(* This could be more precise (e.g. do some delta) *)
let lb = List.rev_map (fun (_,_,t) -> isIndApp t) ctx in
try (list_unique_index true lb) - 1
with Not_found -> error "the recursive argument needs to be specified"
let interp_recursive fixkind l boxed =
let env = Global.env() in
let fixl, ntnl = List.split l in
let kind = if fixkind <> IsCoFixpoint then Fixpoint else CoFixpoint in
let fixnames = List.map (fun fix -> fix.fix_name) fixl in
(* Interp arities allowing for unresolved types *)
let isevars = ref (Evd.create_evar_defs Evd.empty) in
let fixtypes = List.map (interp_fix_type isevars env) fixl in
let env_rec = push_named_types env fixnames fixtypes in
(* Get interpretation metadatas *)
let impls = compute_interning_datas env [] fixnames fixtypes in
let notations = List.fold_right option_cons ntnl [] in
(* Interp bodies with rollback because temp use of notations/implicit *)
let fixdefs =
States.with_heavy_rollback (fun () ->
List.iter (declare_interning_data impls) notations;
List.map2 (interp_fix_body isevars env_rec impls) fixl fixtypes)
() in
(* Instantiate evars and check all are resolved *)
let isevars,_ = consider_remaining_unif_problems env_rec !isevars in
let fixdefs = List.map (nf_evar (Evd.evars_of isevars)) fixdefs in
let fixtypes = List.map (nf_evar (Evd.evars_of isevars)) fixtypes in
List.iter (check_evars env_rec Evd.empty isevars) fixdefs;
List.iter (check_evars env Evd.empty isevars) fixtypes;
check_mutuality env kind (List.combine fixnames fixdefs);
(* Build the fix declaration block *)
let fixdecls = prepare_recursive_declaration fixnames fixtypes fixdefs in
let fixdecls =
match fixkind with
| IsFixpoint wfl ->
let fixwf = list_map3 compute_guardness_evidence wfl fixl fixtypes in
list_map_i (fun i _ -> mkFix ((Array.of_list fixwf,i),fixdecls)) 0 l
| IsCoFixpoint ->
list_map_i (fun i _ -> mkCoFix (i,fixdecls)) 0 l
in
(* Declare the recursive definitions *)
ignore (list_map3 (declare_fix boxed kind) fixnames fixdecls fixtypes);
if_verbose ppnl (recursive_message kind fixnames);
(* Declare notations *)
List.iter (declare_interning_data ([],[])) notations
let build_recursive l b =
let g = List.map (fun ((_,wf,_,_,_),_) -> wf) l in
let fixl = List.map (fun ((id,_,bl,typ,def),ntn) ->
({fix_name = id; fix_binders = bl; fix_body = def; fix_type = typ},ntn))
l in
interp_recursive (IsFixpoint g) fixl b
let build_corecursive l b =
let fixl = List.map (fun ((id,bl,typ,def),ntn) ->
({fix_name = id; fix_binders = bl; fix_body = def; fix_type = typ},ntn))
l in
interp_recursive IsCoFixpoint fixl b
(* 3d| Schemes *)
let build_scheme lnamedepindsort =
let lrecnames = List.map (fun ((_,f),_,_,_) -> f) lnamedepindsort
and sigma = Evd.empty
and env0 = Global.env() in
let lrecspec =
List.map
(fun (_,dep,indid,sort) ->
let ind = Nametab.global_inductive indid in
let (mib,mip) = Global.lookup_inductive ind in
(ind,mib,mip,dep,interp_elimination_sort sort))
lnamedepindsort
in
let listdecl = Indrec.build_mutual_indrec env0 sigma lrecspec in
let rec declare decl fi lrecref =
let decltype = Retyping.get_type_of env0 Evd.empty decl in
let decltype = refresh_universes decltype in
let ce = { const_entry_body = decl;
const_entry_type = Some decltype;
const_entry_opaque = false;
const_entry_boxed = Options.boxed_definitions() } in
let kn = declare_constant fi (DefinitionEntry ce, IsDefinition Scheme) in
ConstRef kn :: lrecref
in
let _ = List.fold_right2 declare listdecl lrecnames [] in
if_verbose ppnl (recursive_message Fixpoint lrecnames)
let rec get_concl n t =
if n = 0 then t
else
match kind_of_term t with
Prod (_,_,t) -> get_concl (pred n) t
| _ -> raise (Invalid_argument "get_concl")
let cut_last l =
let rec aux acc = function
hd :: [] -> List.rev acc, hd
| hd :: tl -> aux (hd :: acc) tl
| [] -> raise (Invalid_argument "cut_last")
in aux [] l
let build_combined_scheme name schemes =
let env = Global.env () in
let defs =
List.map (fun x ->
let refe = Ident x in
let qualid = qualid_of_reference refe in
let cst = Nametab.locate_constant (snd qualid) in
qualid, cst, Typeops.type_of_constant env cst)
schemes
in
let (qid, c, t) = List.hd defs in
let nargs =
let (_, arity, _) = destProd t in
nb_prod arity
in
let prods = nb_prod t - nargs in
let defs, (qid, c, t) = cut_last defs in
let (args, concl) = decompose_prod_n prods t in
let concls = List.map (fun (_, cst, t) -> cst, get_concl prods t) defs in
let coqand = Coqlib.build_coq_and () and coqconj = Coqlib.build_coq_conj () in
let relargs = rel_vect 0 prods in
let concl_typ, concl_bod =
List.fold_right
(fun (cst, x) (acct, accb) ->
mkApp (coqand, [| x; acct |]),
mkApp (coqconj, [| x; acct; mkApp(mkConst cst, relargs); accb |]))
concls (concl, mkApp (mkConst c, relargs))
in
let ctx = List.map (fun (x, y) -> x, None, y) args in
let typ = it_mkProd_wo_LetIn concl_typ ctx in
let body = it_mkLambda_or_LetIn concl_bod ctx in
let ce = { const_entry_body = body;
const_entry_type = Some typ;
const_entry_opaque = false;
const_entry_boxed = Options.boxed_definitions() } in
let _ = declare_constant (snd name) (DefinitionEntry ce, IsDefinition Scheme) in
if_verbose ppnl (recursive_message Fixpoint [snd name])
(* 4| Goal declaration *)
let start_proof id kind c hook =
let sign = Global.named_context () in
let sign = clear_proofs sign in
Pfedit.start_proof id kind sign c hook
let start_proof_com sopt kind (bl,t) hook =
let id = match sopt with
| Some id ->
(* We check existence here: it's a bit late at Qed time *)
if Nametab.exists_cci (Lib.make_path id) or is_section_variable id then
errorlabstrm "start_proof" (pr_id id ++ str " already exists");
id
| None ->
next_global_ident_away false (id_of_string "Unnamed_thm")
(Pfedit.get_all_proof_names ())
in
let env = Global.env () in
let c = interp_type Evd.empty env (generalize_constr_expr t bl) in
let _ = Typeops.infer_type env c in
start_proof id kind c hook
let save id const (locality,kind) hook =
let {const_entry_body = pft;
const_entry_type = tpo;
const_entry_opaque = opacity } = const in
let l,r = match locality with
| Local when Lib.sections_are_opened () ->
let k = logical_kind_of_goal_kind kind in
let c = SectionLocalDef (pft, tpo, opacity) in
let _ = declare_variable id (Lib.cwd(), c, k) in
(Local, VarRef id)
| Local ->
let k = logical_kind_of_goal_kind kind in
let kn = declare_constant id (DefinitionEntry const, k) in
(Global, ConstRef kn)
| Global ->
let k = logical_kind_of_goal_kind kind in
let kn = declare_constant id (DefinitionEntry const, k) in
(Global, ConstRef kn) in
Pfedit.delete_current_proof ();
definition_message id;
hook l r
let save_named opacity =
let id,(const,persistence,hook) = Pfedit.cook_proof () in
let const = { const with const_entry_opaque = opacity } in
save id const persistence hook
let check_anonymity id save_ident =
if atompart_of_id id <> "Unnamed_thm" then
error "This command can only be used for unnamed theorem"
(*
message("Overriding name "^(string_of_id id)^" and using "^save_ident)
*)
let save_anonymous opacity save_ident =
let id,(const,persistence,hook) = Pfedit.cook_proof () in
let const = { const with const_entry_opaque = opacity } in
check_anonymity id save_ident;
save save_ident const persistence hook
let save_anonymous_with_strength kind opacity save_ident =
let id,(const,_,hook) = Pfedit.cook_proof () in
let const = { const with const_entry_opaque = opacity } in
check_anonymity id save_ident;
(* we consider that non opaque behaves as local for discharge *)
save save_ident const (Global, Proof kind) hook
let admit () =
let (id,k,typ,hook) = Pfedit.current_proof_statement () in
(* Contraire aux besoins d'interactivit...
if k <> IsGlobal (Proof Conjecture) then
error "Only statements declared as conjecture can be admitted";
*)
let kn =
declare_constant id (ParameterEntry typ, IsAssumption Conjectural) in
Pfedit.delete_current_proof ();
assumption_message id;
hook Global (ConstRef kn)
let get_current_context () =
try Pfedit.get_current_goal_context ()
with e when Logic.catchable_exception e ->
(Evd.empty, Global.env())
|